\space
| Matroids | Books | Surveys | Bibliography | Software | People |

BIBLIOGRAPHY
A - D E - H I - L M - P Q R S T U - Z

    Q

    R

  1. Rado, R. (1942). A theorem on independence relations. Quart. J. Math. Oxford Ser. 13, 83-89.
  2. Rado, R. (1949). Axiomatic treatment of rank in infinite sets. Canad. J. Math. 1, 337-343.
  3. Rado, R. (1966). Abstract linear dependence. Colloq. Math. 14, 257-264.
  4. Rado, R. (1967). On the number of systems of distinct representatives of sets. J. London math. Soc. 42, 107-109.
  5. Rado, R. 0 (1957). Note on independence functions. Proc. London Math. Soc. 7, 300-320.
  6. Rajappan, K. P. (1969). Geometrical considerations in realization of cut-set matrices into graphs. Internat. J. Electron. 27, 155-158.
  7. Rajappan, K. P. and Stone, A. H. (1971). On Okada's method for realizing cut-set matrices. J. Combin. Theory Ser. B 10, 113-134.
  8. Read, R. C. (1968). An introduction to chromatic polynomials. J. Combin. Theory 4, 52-71.
  9. Recski, A. (1975). On partitional matroids with applications. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday) Vol. III, pp. 1169-1179. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam.
  10. Recski, A. (1975). Enumerating partitional matroids. Stud. Sci. Math. Hungar 9, 247-249.
  11. Recski, A. (1981). On the sum of matroids, III. Discrete Math. 36, 273-287.
  12. Recski, A. (1985). Some open problems of matroid theory, suggested by its applications. In Matroid theory (eds. Lovasz, L. and Recski, A.), Colloq. Math. Soc. Janos Bolyai, 40, pp. 311-325. North-Holland, Amterdam.
  13. Recski, A. (1989). Matroid theory and its applications in electrical network theory and in statics. Springer-Verlag, Berlin.
  14. Reid, T. J. (1988). On roundedness in matroid theory. Ph. D. thesis, Louisana State University.
  15. Reid, T. J. (1990). Fixing elements in minors of binary matroids. Congressus Numerantium 73, 215-222.
  16. Reid, T. J. (1991). Triangles in 3-connected matroids. Discrete Math. 90, 281-296.
  17. Reid, T. J. (1991). A note on roundedness in 4-connected matroids. Discrete Math. 91, 211-214.
  18. Reid, T. J. (1993). The binary matroids with an element in every four-wheel minor. Ars Combinatoria. 36, 33-46.
  19. Reid, T. J. (1996). On fixing edges in graph minors. Graphs and Combinatorics. 12, 59-68.
  20. Reid, T. J. (to appear). Ramsey numbers for matroids. European J. Combin.
  21. Reid, T. J. and Virden, L. (to appear). On rounded five element lines of matroids. Discrete Math.
  22. Reid, T. J. and Wu, H. (submitted). The minimally 3-connected graphs with exactly 5 simple-contractible edges.
  23. Reid, T. J. and Wu, H. (to appear). A longest cycle version of Tutte's Wheels Theorem. J. Combin. Theory Ser. B.
  24. Richardson, W. R. H. (1973). Decomposition of chain-groups and binary matroids. In Proc. Fourth Southeastern Conf. on Combinatorics, Graph Theory and Computing, pp. 463-476, Utilitas Mathematica, Winnipeg.
  25. Roberts, L. (1974). Characterisation of a pregeometry by its flats. In Combinatorial Mathematics (Proc. Second Australian Conf. Univ. Melbourne, Melbourne, 1973), Lecture Notes in Math., Vol 403, pp. 101-104. Springer, Berlin.
  26. Roberts, L. (1975). All erections of a combinatorial geometry and their automorphism groups. In Combinatorial Mathematics, III (Proc. Third Australian Conf., Univ. Queensland, St. Lucia) Lecture Notes in Math., Vol. 452. Springer, Berlin, 1975.
  27. Robertson, N. (1984). Minimal cyclic-4-connected graphs. Trans. Amer. Math. Soc. 284, 665-687.
  28. Robertson, N. and Seymour, P. D. (1984). Generalizing Kuratowski's theorem. Congressus Numerantium 45, 129-138.
  29. Robinson, G. C. and Welsh, D. J. A. (1980). The computational complexity of matroid properties. Math. Proc. Camb. Phil. Soc. 87, 29-45.
  30. Rockafellar, R. T. (1969). The elementary vectors of a subspace of R^N. In Combinatorial mathematics and its applications (eds. Bose, R. C. and Dowling, T. A.), pp. 104-127. University of North Carolina Press, Chapel Hill.
  31. Rota, G. -C. (1971). Combinatorial theory, old and new. In Proc. Internat. Cong. Math. (Nice, Sept. 1970), pp. 229-233. Gauthier-Villars, Paris.
  32. S

  33. Sachs, D. (1961). Partition and modulated lattices. Pacific J. Math. 11, 325-345.
  34. Sachs, D. (1966). Reciprocity in matroid lattices. Rend. Sem. Mat. Univ. Padova 36, 66-79.
  35. Sachs, D. (1970). Graphs, matroids, and geometric lattices. J. Combin. Theory 9, 192-199.
  36. Sachs, D. (1971). Geometric mappings on geometric lattices. Canad. J. Math. 23, 22-35.
  37. Sachs, D. (1972). A note on geometric mappings. Rend. Sem. Mat. Univ. Padova 47, 23-28.
  38. Sasaki, U. and Fujiwara, S. (1952). The characterization of partition lattices. J. Sci. Hiroshima Univ. Ser. A 15, 189-201.
  39. Schrijver, A. (1986). Theory of integer and linear programming. Wiley, Chichester.
  40. Schrijver, L. (1976). Linking systems, matroids and bipartite graphs. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pp. 541-544. Utilitas Math., Winnipeg, Man.
  41. Semple, C. and Whittle, G. (1996). On representable matroids with no U(2,5) or U(3,5)-minor. In Matroid theory: Proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference (eds. Bonin, J., Oxley, J. G. and Servatius, B.), American Mathematical Society, Providence, RI.
  42. Serge, B. (1955). Curve razionali normali k-archi negli spazi finiti. Ann. Mat. pura Appl. (4) 39, 357-379.
  43. Servatius, B. (1989). Birigidity in the plane. SIAM J. Disc. Math. 2, 582-589.
  44. Servatius, B. (1991). The 2-dimensional generic rigidity matroid and its dual. J. Combin. Theory Ser. B 53 (1), 106-113.
  45. Servatius, B. (1993). Combinatorics and the rigidity of frameworks. Newsletter of the SIAM Activity Group on Discrete Math. 4 (1), 1-5.
  46. Servatius, B. and Servatius, H. (1992). Path decomposition of rigid graphs. Graph theory notes of New York 23, 25-28.
  47. Seymour, P. D. (1975). Matroids hypergraphs and the max-flow min-cut theorem. D. Phil thesis, University of Oxford.
  48. Seymour, P. D. (1976). The max-flow min-cut property in matroids. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pp. 545-549. Utilitas Math., Winnipeg, Man.
  49. Seymour, P. D. (1976). The forbidden minors of binary clutters. J. London Math. Soc. (2) 12, 356-360.
  50. Seymour, P. D. (1977). The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189-222.
  51. Seymour, P. D. (1977). A note on the production of matroid minors. J. Combin. Theory Ser. B 22, 289-295.
  52. Seymour, P. D. (1978). Some applications of matroid decomposition. In Algebraic methods in graph theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai, 25, pp. 713-726. North-Holland, Amsterdam.
  53. Seymour, P. D. (1979). Sums of circuits. In Graph theory and related topics (eds. Bondy, J. A. and Murty, U. S. R.), pp. 341- 355. Academic Press, New York.
  54. Seymour, P. D. (1979). Matroid representation over GF(3). J. Combin. Theory Ser. B 26, 159-173.
  55. Seymour, P. D. (1980). On Tutte's characterization of graphic matroids. In Combinatorics 79. Part I (eds. Deza, M. and Rosenberg, J. G.), Ann. Discrete Math. 8, pp. 83-90. North-Holland, Amsterdam.
  56. Seymour, P. D. (1980). Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305-359.
  57. Seymour, P. D. (1980). Packing and covering with matroid circuits. J. Combin. Theory Ser. B 28, 237-242.
  58. Seymour, P. D. (1981). On minors of nonbinary matroids. Combinatorica 1, 387-394.
  59. Seymour, P. D. (1981). Some applications of matroid decomposition. In Algebraic methods in graph theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai, 25, pp. 713-726. North-Holland, Amsterdam.
  60. Seymour, P. D. (1981). On Tutte's extension of the four-color problem. J. Combin. Theory ser. B 31, 82-94.
  61. Seymour, P. D. (1981). Recognizing graphic matroids. Combinatorica 1, 75-78.
  62. Seymour, P. D. (1981). Matroids and multicommodity flows. European J. Combin. 2, 257-290.
  63. Seymour, P. D. (1981). On minors of nonbinary matroids. Combinatorica 1, 387-394.
  64. Seymour, P. D. (1982). On the points-lines-planes conjecture. J. Combin. Theory Ser. B 33, 17-26.
  65. Seymour, P. D. (1985). Applications of the regular matroid decomposition. In Matroid theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai, 40, pp. 345-357. North-Holland, Amsterdam.
  66. Seymour, P. D. (1985). Minors of 3-connected matroids. European J. Combin. 6, 375-382.
  67. Seymour, P. D. (1986). Triples in matroid circuits. European J. Combin. 7, 177-185.
  68. Seymour, P. D. (1986). Adjacency in binary matroids. European J. Combin. 7, 171-176.
  69. Seymour, P. D. (1988). On the connectivity function of a matroid. J. Combin. Theory Ser. B 45, 25-30.
  70. Seymour, P. D. (1990). On Lehman's width-length characterization. In Polyhedral combinatorics (eds. Seymour, P. D. and Cook, W.), DIMACS Series in Discrete Math. and Theoritical Computer Science, Vol 1. American Mathematical Society, Providence, RI.
  71. Seymour, P. D. (1992). Matroid minors. In Handbook of combinatorics (eds. Graham, R., Grotschel, M and Lovasz, L.), Elsevier.
  72. Seymour, P. D. and Walton, P. N. (1981). Detecting matroid minors. J. London Math Soc. (2) 23, 193-203.
  73. Shameeva, O. V. (1985). Algebraic representability of matroids. Vestnik Moskov. Univ. Ser. I. Mat. Mekh. 40, no. 4, 29-32.
  74. Shatoff, L. D. (1972). Binary multiples of combinatorial geometris. Rend. Sem. Mat. Univ. Padova 48, 95-104.
  75. Shatoff, L. D. (1973). Binary multiples of combinatorial geometris, II. Rend. Sem. Mat. Univ. Padova 49, 237-240.
  76. Simöes-Pereira, J. M. S. (1973). On matroids on edge sets of graphs with connected subgraphs as circuits. Proc. Amer. Math. Soc. 38, 503-506.
  77. Simöes-Pereira, J. M. S. (1974). Matroids, graphs and topology. Congressus Numerantium, 10, 145-155.
  78. Simöes-Pereira, J. M. S. (1975). Subgraphs as circuits and bases of matroids. Discrete Math. 12, 79-88.
  79. Smith, C. A. B. (1972). Electric currents in regular matroids. In Combinatorics (eds. Welsh, D. J. A. and Woodall, D), pp. 262-284. Institute of Math. and its Applications, Southend-on-Sea.
  80. Smith, C. A. B. (1974). Patroids. J. Combin. Theory Ser. B. 16, 64-76.
  81. Smoliar, S. W. (1975). On the free matrix representation of transversal geometries. J. Combinatorial Theory Ser. A 18, 60-70.
  82. Stanley, R. P. (1971). Modular elements of geometric lattices. Algebra Universalis 1, 214-217.
  83. Steinitz, E. (1910). Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167-309.
  84. Stonesifer, J. R. (1975). Logarithmic concavity for edge lattices of graphs. J. Combin. Theory Ser. A 18, 36-46.
  85. T

  86. Tan, J. J. -M. (1981). Matroid 3-connectivity. Ph. D. thesis, Carleton University.
  87. Thas, J. A. (1968). Normal rational curves and k-arcs in Galois spaces. Rend. Mat. (6) 1, 331-334.
  88. Todd, M. J. (1976). A combinatorial generalization of polytopes. J. Combin. Theory Ser. B 20, no. 3, 229-242.
  89. Tomizawa, N. (1973). On a specialization sequence from general matroids to ladder graphs with special emphasis on the characterization of ladder matroids. RAAG Res Notes (3) No. 191.
  90. Truemper, K. (1977). Unimodular matrices of flow problems with additional constraints. Networks 7, 343-358.
  91. Truemper, K. (1978). Algebraic characterizations of unimodular matrices. SIAM J. Appl. Math. 35, 328-332.
  92. Truemper, K. (1980). Complement total unimodularity. Linear Alg. Appl. 30, 77-92.
  93. Truemper, K. (1980). On Whitney's 2-isomorphism theorem for graphs. J. Graph Theory. 4, 43-49.
  94. Truemper, K. (1982). Alpha-balanced graphs and matrices and GF(3)-representability of matroids. J. Combin. Theory ser. B 32, 275-291.
  95. Truemper, K. (1982). On the efficiency of representability tests for matroids. European J. Combin. 3, 275-291.
  96. Truemper, K. (1984). Partial matroid representation. European J. Combin. 5, 377-394.
  97. Truemper, K. (1984). Elements of a decomposition theory for matroids. In Progress in graph theory (eds. Bondy, J. A. and Murty, U. S. R.), pp. 439-475. Academic Press, Toronto.
  98. Truemper, K. (1985). A decomposition theory for matroids. I. General results. J. Combin. Theory Ser. B 39, 43-76.
  99. Truemper, K. (1985). A decomposition theory for matroids. II. Minimal violation matroids. J. Combin. Theory Ser. B 39, 282-297.
  100. Truemper, K. (1986). A decomposition theory for matroids. III. Decomposition conditions. J. Combin. Theory Ser. B 41, 275-305.
  101. Truemper, K. (1987). On matroid seperations of graphs. J. Graph Theory 11, 531-536.
  102. Truemper, K. (1987). Max-flow min-cut matroids: Polynomial testing and polynomial algorithms for maximum flow and shortest routes. Mathematics of Operations Research 12, 72-96.
  103. Truemper, K. (1988). A decomposition theory for matroids. IV. Graph decomposition. J. Combin. Theory Ser. B 45, 259-292.
  104. Truemper, K. (1989). On the delta-wye reduction for planar graphs. J. Graph Theory 13, 141-148.
  105. Truemper, K. (1990). A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Combin. Theory Ser. B 49, 241-281.
  106. Truemper, K. (1992). Matroid decomposition. Academic Press, Boston.
  107. Truemper, K. (to appear). A decomposition theory for matroids. VI. Almost regular matroids. J. Combin. Theory Ser. B.
  108. Truemper, K. (to appear). A decomposition theory for matroids. VII. Analysis of minimal violation matroids. J. Combin. Theory Ser. B.
  109. Truemper, K. and Chandrasekaran, R. (1978). Local unimodularity of matrix-vector pairs. Linear Alg. Appl. 22, 65-78.
  110. Truemper, K. and Soun, Y. (1979). Minimal forbidden subgraphs of unimodular multicommodity networks. Mathematics of Operations Research. 4, 379-389.
  111. Truemper, K. and Soun, Y. (1980). Single commodity representation of multicommodity networks. SIAM J. on Algebraic and Discrete Methods 1, 348-358.
  112. Truemper, K. and Tseng, F. T. (1986). A decomposition of the matroids with the max-flow min-cut property. Discrete Appl. Math. 15, 329-364.
  113. Tutte, W. T. (1954). A contribution to the theory of chromatic polynomials. Canad. J. Math. 6, 80-91.
  114. Tutte, W. T. (1956). A class of Abelian groups. Canad. J. Math. 8, 13-28.
  115. Tutte, W. T. (1958). A homotopy theorem for matroids, I, II. Trans. Amer. Math. Soc. 88, 144-174.
  116. Tutte, W. T. (1959). Matroids and graphs. Trans. Amer. Math. Soc. 90, 527-552.
  117. Tutte, W. T. (1960). An algorithm for determining whether a given binary matroid is graphic. Proc. Amer. Math. Soc. II, 905-917.
  118. Tutte, W. T. (1961). On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36, 221-230.
  119. Tutte, W. T. (1961). A theory of 3-connected graphs. Nederl. Akad. Wetensch. Proc. Ser. A 64, 441-455.
  120. Tutte, W. T. (1964). From matrices to graphs. Canad. J. Math. 16, 108-127.
  121. Tutte, W. T. (1965). Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B 69B, 1-47.
  122. Tutte, W. T. (1966). On the algebraic theory of graph colorings. J. Combin. Theory 1, 15-50.
  123. Tutte, W. T. (1966). Connectivity in matroids. Canad. J. Math. 18, 1301-1324.
  124. Tutte, W. T. (1966). Connectivity in graphs. University of Toronto Press, Toronto.
  125. Tutte, W. T. (1967). On even matroids. J. Res. Nat. Bur. Standards Sect. B 71B, 213-214.
  126. Tutte, W. T. (1971). Wheels and Whirls. In Théorie des matroïdes (Rencontre Franco-Britannique, Brest, 1970), Lecture Notes in Math., Vol. 211, pp. 1-4. Springer, Berlin.
  127. Tutte, W. T. (1971). Introduction to the theory of matroids. Modern analytic and computational methods in science and mathematics, No 37. American Elsevier Publishing Co., Inc., NY.
  128. Tutte, W. T. (1977). Bridges and Hamiltonian circuits in planar graphs. Aequationes Math. 15, 1-33.
  129. Tutte, W. T. (1984). Graph theory. Cambridge University Press, Cambridge.
  130. A - D E - H I - L M - P Q R S T U - Z

    | Matroids | Books | Surveys | Bibliography | Software | People |