\space |
| Matroids | Books | Surveys | Bibliography | Software | People |
- Rado, R. (1942). A theorem on independence relations. Quart. J. Math. Oxford Ser. 13, 83-89.
- Rado, R. (1949). Axiomatic treatment of rank in infinite sets. Canad. J. Math. 1, 337-343.
- Rado, R. (1966). Abstract linear dependence. Colloq. Math. 14, 257-264.
- Rado, R. (1967). On the number of systems of distinct representatives of sets. J. London math. Soc. 42, 107-109.
- Rado, R.
0 (1957). Note on independence functions. Proc. London Math. Soc. 7, 300-320.
- Rajappan, K. P. (1969). Geometrical considerations in realization of cut-set matrices into graphs. Internat. J. Electron. 27, 155-158.
- Rajappan, K. P. and Stone, A. H. (1971). On Okada's method for realizing cut-set matrices. J. Combin. Theory Ser. B 10, 113-134.
- Read, R. C. (1968). An introduction to chromatic polynomials. J. Combin. Theory 4, 52-71.
- Recski, A. (1975). On partitional matroids with applications. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdös on his 60th birthday) Vol. III, pp. 1169-1179. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam.
- Recski, A. (1975). Enumerating partitional matroids. Stud. Sci. Math. Hungar 9, 247-249.
- Recski, A. (1981). On the sum of matroids, III. Discrete Math. 36, 273-287.
- Recski, A. (1985). Some open problems of matroid theory, suggested by its applications. In Matroid theory (eds. Lovasz, L. and Recski, A.), Colloq. Math. Soc. Janos Bolyai, 40, pp. 311-325. North-Holland, Amterdam.
- Recski, A. (1989). Matroid theory and its applications in electrical network theory and in statics. Springer-Verlag, Berlin.
- Reid, T. J. (1988). On roundedness in matroid theory. Ph. D. thesis, Louisana State University.
- Reid, T. J. (1990). Fixing elements in minors of binary matroids. Congressus Numerantium 73, 215-222.
- Reid, T. J. (1991). Triangles in 3-connected matroids. Discrete Math. 90, 281-296.
- Reid, T. J. (1991). A note on roundedness in 4-connected matroids. Discrete Math. 91, 211-214.
- Reid, T. J. (1993). The binary matroids with an element in every four-wheel minor. Ars Combinatoria. 36, 33-46.
- Reid, T. J. (1996). On fixing edges in graph minors. Graphs and Combinatorics. 12, 59-68.
- Reid, T. J. (to appear). Ramsey numbers for matroids. European J. Combin.
- Reid, T. J. and Virden, L. (to appear). On rounded five element lines of matroids. Discrete Math.
- Reid, T. J. and Wu, H. (submitted). The minimally 3-connected graphs with exactly 5 simple-contractible edges.
- Reid, T. J. and Wu, H. (to appear). A longest cycle version of Tutte's Wheels Theorem. J. Combin. Theory Ser. B.
- Richardson, W. R. H. (1973). Decomposition of chain-groups and binary matroids. In Proc. Fourth Southeastern Conf. on Combinatorics, Graph Theory and Computing, pp. 463-476, Utilitas Mathematica, Winnipeg.
- Roberts, L. (1974). Characterisation of a pregeometry by its flats. In Combinatorial Mathematics (Proc. Second Australian Conf. Univ. Melbourne, Melbourne, 1973), Lecture Notes in Math., Vol 403, pp. 101-104. Springer, Berlin.
- Roberts, L. (1975). All erections of a combinatorial geometry and their automorphism groups. In Combinatorial Mathematics, III (Proc. Third Australian Conf., Univ. Queensland, St. Lucia) Lecture Notes in Math., Vol. 452. Springer, Berlin, 1975.
- Robertson, N. (1984). Minimal cyclic-4-connected graphs. Trans. Amer. Math. Soc. 284, 665-687.
- Robertson, N. and Seymour, P. D. (1984). Generalizing Kuratowski's theorem. Congressus Numerantium 45, 129-138.
- Robinson, G. C. and Welsh, D. J. A. (1980). The computational complexity of matroid properties. Math. Proc. Camb. Phil. Soc. 87, 29-45.
- Rockafellar, R. T. (1969). The elementary vectors of a subspace of R^N. In Combinatorial mathematics and its applications (eds. Bose, R. C. and Dowling, T. A.), pp. 104-127. University of North Carolina Press, Chapel Hill.
- Rota, G. -C. (1971). Combinatorial theory, old and new. In Proc. Internat. Cong. Math. (Nice, Sept. 1970), pp. 229-233. Gauthier-Villars, Paris.
- Sachs, D. (1961). Partition and modulated lattices. Pacific J. Math. 11, 325-345.
- Sachs, D. (1966). Reciprocity in matroid lattices. Rend. Sem. Mat. Univ. Padova 36, 66-79.
- Sachs, D. (1970). Graphs, matroids, and geometric lattices. J. Combin. Theory 9, 192-199.
- Sachs, D. (1971). Geometric mappings on geometric lattices. Canad. J. Math. 23, 22-35.
- Sachs, D. (1972). A note on geometric mappings. Rend. Sem. Mat. Univ. Padova 47, 23-28.
- Sasaki, U. and Fujiwara, S. (1952). The characterization of partition lattices. J. Sci. Hiroshima Univ. Ser. A 15, 189-201.
- Schrijver, A. (1986). Theory of integer and linear programming. Wiley, Chichester.
- Schrijver, L. (1976). Linking systems, matroids and bipartite graphs. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pp. 541-544. Utilitas Math., Winnipeg, Man.
- Semple, C. and Whittle, G. (1996). On representable matroids with no U(2,5) or U(3,5)-minor. In Matroid theory: Proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference (eds. Bonin, J., Oxley, J. G. and Servatius, B.), American Mathematical Society, Providence, RI.
- Serge, B. (1955). Curve razionali normali k-archi negli spazi finiti. Ann. Mat. pura Appl. (4) 39, 357-379.
- Servatius, B. (1989). Birigidity in the plane. SIAM J. Disc. Math. 2, 582-589.
- Servatius, B. (1991). The 2-dimensional generic rigidity matroid and its dual. J. Combin. Theory Ser. B 53 (1), 106-113.
- Servatius, B. (1993). Combinatorics and the rigidity of frameworks. Newsletter of the SIAM Activity Group on Discrete Math. 4 (1), 1-5.
- Servatius, B. and Servatius, H. (1992). Path decomposition of rigid graphs. Graph theory notes of New York 23, 25-28.
- Seymour, P. D. (1975). Matroids hypergraphs and the max-flow min-cut theorem. D. Phil thesis, University of Oxford.
- Seymour, P. D. (1976). The max-flow min-cut property in matroids. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pp. 545-549. Utilitas Math., Winnipeg, Man.
- Seymour, P. D. (1976). The forbidden minors of binary clutters. J. London Math. Soc. (2) 12, 356-360.
- Seymour, P. D. (1977). The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189-222.
- Seymour, P. D. (1977). A note on the production of matroid minors. J. Combin. Theory Ser. B 22, 289-295.
- Seymour, P. D. (1978). Some applications of matroid decomposition. In Algebraic methods in graph theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai, 25, pp. 713-726. North-Holland, Amsterdam.
- Seymour, P. D. (1979). Sums of circuits. In Graph theory and related topics (eds. Bondy, J. A. and Murty, U. S. R.), pp. 341- 355. Academic Press, New York.
- Seymour, P. D. (1979). Matroid representation over GF(3). J. Combin. Theory Ser. B 26, 159-173.
- Seymour, P. D. (1980). On Tutte's characterization of graphic matroids. In Combinatorics 79. Part I (eds. Deza, M. and Rosenberg, J. G.), Ann. Discrete Math. 8, pp. 83-90. North-Holland, Amsterdam.
- Seymour, P. D. (1980). Decomposition of regular matroids. J. Combin. Theory Ser. B 28, 305-359.
- Seymour, P. D. (1980). Packing and covering with matroid circuits. J. Combin. Theory Ser. B 28, 237-242.
- Seymour, P. D. (1981). On minors of nonbinary matroids. Combinatorica 1, 387-394.
- Seymour, P. D. (1981). Some applications of matroid decomposition. In Algebraic methods in graph theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai, 25, pp. 713-726. North-Holland, Amsterdam.
- Seymour, P. D. (1981). On Tutte's extension of the four-color problem. J. Combin. Theory ser. B 31, 82-94.
- Seymour, P. D. (1981). Recognizing graphic matroids. Combinatorica 1, 75-78.
- Seymour, P. D. (1981). Matroids and multicommodity flows. European J. Combin. 2, 257-290.
- Seymour, P. D. (1981). On minors of nonbinary matroids. Combinatorica 1, 387-394.
- Seymour, P. D. (1982). On the points-lines-planes conjecture. J. Combin. Theory Ser. B 33, 17-26.
- Seymour, P. D. (1985). Applications of the regular matroid decomposition. In Matroid theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai, 40, pp. 345-357. North-Holland, Amsterdam.
- Seymour, P. D. (1985). Minors of 3-connected matroids. European J. Combin. 6, 375-382.
- Seymour, P. D. (1986). Triples in matroid circuits. European J. Combin. 7, 177-185.
- Seymour, P. D. (1986). Adjacency in binary matroids. European J. Combin. 7, 171-176.
- Seymour, P. D. (1988). On the connectivity function of a matroid. J. Combin. Theory Ser. B 45, 25-30.
- Seymour, P. D. (1990). On Lehman's width-length characterization. In Polyhedral combinatorics (eds. Seymour, P. D. and Cook, W.), DIMACS Series in Discrete Math. and Theoritical Computer Science, Vol 1. American Mathematical Society, Providence, RI.
- Seymour, P. D. (1992). Matroid minors. In Handbook of combinatorics (eds. Graham, R., Grotschel, M and Lovasz, L.), Elsevier.
- Seymour, P. D. and Walton, P. N. (1981). Detecting matroid minors. J. London Math Soc. (2) 23, 193-203.
- Shameeva, O. V. (1985). Algebraic representability of matroids. Vestnik Moskov. Univ. Ser. I. Mat. Mekh. 40, no. 4, 29-32.
- Shatoff, L. D. (1972). Binary multiples of combinatorial geometris. Rend. Sem. Mat. Univ. Padova 48, 95-104.
- Shatoff, L. D. (1973). Binary multiples of combinatorial geometris, II. Rend. Sem. Mat. Univ. Padova 49, 237-240.
- Simöes-Pereira, J. M. S. (1973). On matroids on edge sets of graphs with connected subgraphs as circuits. Proc. Amer. Math. Soc. 38, 503-506.
- Simöes-Pereira, J. M. S. (1974). Matroids, graphs and topology. Congressus Numerantium, 10, 145-155.
- Simöes-Pereira, J. M. S. (1975). Subgraphs as circuits and bases of matroids. Discrete Math. 12, 79-88.
- Smith, C. A. B. (1972). Electric currents in regular matroids. In Combinatorics (eds. Welsh, D. J. A. and Woodall, D), pp. 262-284. Institute of Math. and its Applications, Southend-on-Sea.
- Smith, C. A. B. (1974). Patroids. J. Combin. Theory Ser. B. 16, 64-76.
- Smoliar, S. W. (1975). On the free matrix representation of transversal geometries. J. Combinatorial Theory Ser. A 18, 60-70.
- Stanley, R. P. (1971). Modular elements of geometric lattices. Algebra Universalis 1, 214-217.
- Steinitz, E. (1910). Algebraische Theorie der Körper. J. Reine Angew. Math. 137, 167-309.
- Stonesifer, J. R. (1975). Logarithmic concavity for edge lattices of graphs. J. Combin. Theory Ser. A 18, 36-46.
- Tan, J. J. -M. (1981). Matroid 3-connectivity. Ph. D. thesis, Carleton University.
- Thas, J. A. (1968). Normal rational curves and k-arcs in Galois spaces. Rend. Mat. (6) 1, 331-334.
- Todd, M. J. (1976). A combinatorial generalization of polytopes. J. Combin. Theory Ser. B 20, no. 3, 229-242.
- Tomizawa, N. (1973). On a specialization sequence from general matroids to ladder graphs with special emphasis on the characterization of ladder matroids. RAAG Res Notes (3) No. 191.
- Truemper, K. (1977). Unimodular matrices of flow problems with additional constraints. Networks 7, 343-358.
- Truemper, K. (1978). Algebraic characterizations of unimodular matrices. SIAM J. Appl. Math. 35, 328-332.
- Truemper, K. (1980). Complement total unimodularity. Linear Alg. Appl. 30, 77-92.
- Truemper, K. (1980). On Whitney's 2-isomorphism theorem for graphs. J. Graph Theory. 4, 43-49.
- Truemper, K. (1982). Alpha-balanced graphs and matrices and GF(3)-representability of matroids. J. Combin. Theory ser. B 32, 275-291.
- Truemper, K. (1982). On the efficiency of representability tests for matroids. European J. Combin. 3, 275-291.
- Truemper, K. (1984). Partial matroid representation. European J. Combin. 5, 377-394.
- Truemper, K. (1984). Elements of a decomposition theory for matroids. In Progress in graph theory (eds. Bondy, J. A. and Murty, U. S. R.), pp. 439-475. Academic Press, Toronto.
- Truemper, K. (1985). A decomposition theory for matroids. I. General results. J. Combin. Theory Ser. B 39, 43-76.
- Truemper, K. (1985). A decomposition theory for matroids. II. Minimal violation matroids. J. Combin. Theory Ser. B 39, 282-297.
- Truemper, K. (1986). A decomposition theory for matroids. III. Decomposition conditions. J. Combin. Theory Ser. B 41, 275-305.
- Truemper, K. (1987). On matroid seperations of graphs. J. Graph Theory 11, 531-536.
- Truemper, K. (1987). Max-flow min-cut matroids: Polynomial testing and polynomial algorithms for maximum flow and shortest routes. Mathematics of Operations Research 12, 72-96.
- Truemper, K. (1988). A decomposition theory for matroids. IV. Graph decomposition. J. Combin. Theory Ser. B 45, 259-292.
- Truemper, K. (1989). On the delta-wye reduction for planar graphs. J. Graph Theory 13, 141-148.
- Truemper, K. (1990). A decomposition theory for matroids. V. Testing of matrix total unimodularity. J. Combin. Theory Ser. B 49, 241-281.
- Truemper, K. (1992). Matroid decomposition. Academic Press, Boston.
- Truemper, K. (to appear). A decomposition theory for matroids. VI. Almost regular matroids. J. Combin. Theory Ser. B.
- Truemper, K. (to appear). A decomposition theory for matroids. VII. Analysis of minimal violation matroids. J. Combin. Theory Ser. B.
- Truemper, K. and Chandrasekaran, R. (1978). Local unimodularity of matrix-vector pairs. Linear Alg. Appl. 22, 65-78.
- Truemper, K. and Soun, Y. (1979). Minimal forbidden subgraphs of unimodular multicommodity networks. Mathematics of Operations Research. 4, 379-389.
- Truemper, K. and Soun, Y. (1980). Single commodity representation of multicommodity networks. SIAM J. on Algebraic and Discrete Methods 1, 348-358.
- Truemper, K. and Tseng, F. T. (1986). A decomposition of the matroids with the max-flow min-cut property. Discrete Appl. Math. 15, 329-364.
- Tutte, W. T. (1954). A contribution to the theory of chromatic polynomials. Canad. J. Math. 6, 80-91.
- Tutte, W. T. (1956). A class of Abelian groups. Canad. J. Math. 8, 13-28.
- Tutte, W. T. (1958). A homotopy theorem for matroids, I, II. Trans. Amer. Math. Soc. 88, 144-174.
- Tutte, W. T. (1959). Matroids and graphs. Trans. Amer. Math. Soc. 90, 527-552.
- Tutte, W. T. (1960). An algorithm for determining whether a given binary matroid is graphic. Proc. Amer. Math. Soc. II, 905-917.
- Tutte, W. T. (1961). On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36, 221-230.
- Tutte, W. T. (1961). A theory of 3-connected graphs. Nederl. Akad. Wetensch. Proc. Ser. A 64, 441-455.
- Tutte, W. T. (1964). From matrices to graphs. Canad. J. Math. 16, 108-127.
- Tutte, W. T. (1965). Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B 69B, 1-47.
- Tutte, W. T. (1966). On the algebraic theory of graph colorings. J. Combin. Theory 1, 15-50.
- Tutte, W. T. (1966). Connectivity in matroids. Canad. J. Math. 18, 1301-1324.
- Tutte, W. T. (1966). Connectivity in graphs. University of Toronto Press, Toronto.
- Tutte, W. T. (1967). On even matroids. J. Res. Nat. Bur. Standards Sect. B 71B, 213-214.
- Tutte, W. T. (1971). Wheels and Whirls. In Théorie des matroïdes (Rencontre Franco-Britannique, Brest, 1970), Lecture Notes in Math., Vol. 211, pp. 1-4. Springer, Berlin.
- Tutte, W. T. (1971). Introduction to the theory of matroids. Modern analytic and computational methods in science and mathematics, No 37. American Elsevier Publishing Co., Inc., NY.
- Tutte, W. T. (1977). Bridges and Hamiltonian circuits in planar graphs. Aequationes Math. 15, 1-33.
- Tutte, W. T. (1984). Graph theory. Cambridge University Press, Cambridge.
| Matroids | Books | Surveys | Bibliography | Software | People |
|