\space
| Matroids | Books | Surveys | Bibliography | Software | People |

BIBLIOGRAPHY
A - D E - H I J K L M - P Q - T U - Z

    I

  1. Ingleton, A. W. (1959). A note on independence functions and rank. J, Lindon Math. Soc. 34, 49-56.
  2. Ingleton, A. W. (1971). Conditions for representability and tranversality of matroids. In Théorie des matröides, Lecture Notes in Math., Vol. 211, Springer, Berlin.
  3. Ingleton, A. W. (1971). Representation of matroids. In Combinatorial mathematics and its applications (ed. Welsh, D. J. A.), pp. 149-167. Academic Pess, London.
  4. Ingleton, A. W. (1971). A geometric characterization of transversal independence structures. Bull. London Math. Soc. 3, 47-51.
  5. Ingleton, A. W. (1976). Non-base-orderable matroids. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pp. 355-359. Utilitas Math., Winnipeg, Man.
  6. Ingleton, A. W. (1977). Transversal matroids and related structures. In Higher combinatorics (ed. Aigner, M.), pp. 117-131. Reidel, Dordrecht.
  7. Ingleton, A. W. and Main, R. A. (1975). Non-algebraic matroids exist. Bull. London Math. Soc. 7, 144-146.
  8. Ingleton, A. W. and Piff, M. J. (1973). Gammoids and transversal matroids. J. Combin. Theory Ser. B 15, 51-68.
  9. Inukai, T. and Weinburg, L. (1978). Theorems on matroid connectivity. Discrete Math. 22, 311-312.
  10. Inukai, T. and Weinburg, L. (1981). Whitney connectivity of matroids. SIAM J. Alg. Disc. Methods 2, 108-120.
  11. J

  12. Jackson, B. (1980). Removable cycles in 2-connected graphs of minimum degree at least four. J. London Math. Soc. (2) 21, 385-392.
  13. Jacobson, N. (1953). Lectures in abstract algebra. Volume II. Linear algebra. Van Nostrand, Princeton.
  14. Jaeger, F., Vertigan D. L. and Welsh, D. J. A. (1990). On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35-53.
  15. Jensen, P. M. (1978). Binary fundamental matroids. In Algebraic methods in graph theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai 25, pp. 281-296. North-Holland, Amsterdam.
  16. Jensen, P. M. and Korte, B. (1982). Complexity of matroid property algorithms. SIAM J. Comput. 11, 184-190.
  17. Johnson, K. G. (1961). A theorem on abstract linear dependence relations. Publ. Math. Debrecen 8, 64-67.
  18. K

  19. Kahn, J. (1982). Characteristic sets of matroids. J. London Math. Soc. (2) 26, 207-217.
  20. Kahn, J. (1984). A geometric approach to forbidden minors for GF(3). J. Combin. Theory Ser. A 37, 1-12.
  21. Kahn, J. (1985). A problem of P. Seymour on nonbinary matroids. Combinatorica 5, 319-323.
  22. Kahn, J. (1988). On the uniqueness of matroid representations over GF(4). Bull. London Math. Soc. 20, 5-10.
  23. Kahn, J. and Seymour, P. D. (1988). On forbidden minors for GF(3). Proc. Amer. Math. Soc. 102, 437-440.
  24. Kajitani, Y. (1970). On the realizability of fundamental circuit matrices. J. Franklin Inst. 290, 355-363.
  25. Kantor, W. (1975). Envelopes of geometric lattices. J. Combin. Theory Ser. A 18, 12-26.
  26. Kantor, W. M. (1974). Dimension and embedding theorems for geometric lattices. J. Combinatorial Theory Ser. A 17, 173-195.
  27. Kelly, D. and Rota, G. -C. (1973). Some problems in combinatorial geometry. In A survey of combinatorial theory (eds. Srivastava, J. N. et al), pp. 309-312. North-Holland, Amsterdam.
  28. Kelly, P. J. (1942). On isometric transformations. Ph. D. thesis, University of Wisconsin.
  29. Kingan, S. R. (1994). Structural results for binary matroids. Ph. D. Thesis, Louisiana State University.
  30. Kingan, S. R. (1996). Binary matroids without prisms, prism duals and cubes. Discrete Math. 152, 211-224.
  31. Kingan, S. R. (1996). On binary matroids with a K33-minor. In Matroid theory: Proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference (eds. Bonin, J., Oxley, J. G. and Servatius, B.), American Mathematical Society, Providence, RI.
  32. Kingan, S. R. and Oxley, J. G. (1996). On the matroids in which all hyperplanes are binary. Discrete Math. 160, 265-271.
  33. Kingan, S. R. (1997). A generalization of a graph result of D. W. Hall. Discrete Math. 173, 129-135.
  34. Kingan, S. R. (1999). On the intersections of circuits and cocircuits in binary matroids. Discrete Math. 195, 157-165.
  35. Kirkpatrick, P. B. (1975). On homologies in finite combinatorial geometries. Bull. Austral. Math. Soc. 13, no. 1, 85-99.
  36. Klee, V. (1971). The greedy algorithm for finitary and cofinitary matroids. In Combinatorics (Proc. Sympos. Pure Math., Vol XIX, Univ. California, Los Angeles, CA, 1968), pp. 137-152. American Mathematical Society, Providence, RI.
  37. Klein-Barmen, F. (1937). Birkhoffsche und harmonische Verbände. Math. Zeitschrift 42, 58-81.
  38. Knuth, D. E. (1974). The asymptotic number of geometries. J. Combin. Theory Ser. A 17, 398-401.
  39. Korte, B., Lovasz, L and Schrader, R. (1991). Greedoids. Springer-Verlag, Berlin.
  40. Krogdahl, S. (1977). The dependence graph for bases in matroids. Discrete Math. 19, 47-59.
  41. Kruskal, J. B. (1956). On the shortest spanning tree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7, 48-50.
  42. Kundu, S. and Lawler, E. L. (1973). A matroid generalization of a theorem of Mendelsohn and Dulmage. Discrete Math. 4, 159-163.
  43. Kung J. P. S. (1995). The geometric approach to matroid theory. In Gian-Carlo Rota on combinatorics: Introductory papers and commentaries (ed. Kung, J. P. S.) pp. 604-622. Birkhauser, Basel and Boston.
  44. Kung, J. P. S. (1977). The core extraction algorithm for combinatorial geometries. Discrete Math. 19, 167-175.
  45. Kung, J. P. S. (1978). The alpha function of a matroid - I. Transversal matroids. Studies in Appl. Math. 58, 263-275.
  46. Kung, J. P. S. (1986). A source book in matroid theory. Birkhauser, Boston.
  47. Kung, J. P. S. (1987). Excluding the cycle geometries of the Kuratowski graphs from binary geometries. Proc. London Math. Soc. (3) 55, 209-242.
  48. Kung, J. P. S. (1990). Combinatorial geometries representable over GF(3) and GF(q). I. The number of points. Discrete Comput. Geom. 5, 83-95.
  49. Kung, J. P. S. (1992). Extremal matroid theory. In Graph structure theory (eds. Robertson N. and Seymour, P.D.), pp. 21-61. American Mathematical Society, Providence, RI.
  50. Kung, J. P. S. (1993). The Radon transforms of a combinatorial geometry. II. Partition latices. Adv. in Math. 101, 114-132.
  51. Kung, J. P. S. (1993). Sign-coherent identities for characteristic polynomials of representable matroids. Combinatorics, Probability and Computing 2, 33-51.
  52. Kung, J. P. S. (1993). Flags and Whitney numbers of matroids. J. Combin. Theory Ser. B 59, 85-88.
  53. Kung, J. P. S. (1995). Matroids. In Handbook of algebra (ed. Hazewinkel), pp. 157-184. North-Holland, Amsterdam and New York.
  54. Kung, J. P. S. (1996). Critical problems. In Matroid theory: Proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference (eds. Bonin, J., Oxley, J. G. and Servatius, B.), American Mathematical Society, Providence, RI.
  55. Kung, J. P. S. and Oxley, J. G. (1988). Combinatorial geometries representable over GF(3) and GF(q). II. Dowling geometries. Graphs Combin. 4, 323-332.
  56. Kung, J. P. S., ed. (1995). Gian-Carlo Rota on combinatorics: Introductory papers and commentaries. Birkhauser, Basel and Boston.
  57. Kuratowski, K. (1930). Sur le probleme des courbes gauches en topologie. Fund. Math. 15, 271-283.
  58. L

  59. Löfgren, L. (1959). Irredundant and redundant boolean branch-networks. IRE Transactions on Circuit Theory CT-6, Special Supplement 158-175.
  60. Lageweg, B. J. (1973). An algorithm for a maximum weighted common partial transversal. Mathematisch Centrum, Afdeling Mathematische Besliskunde, BW 25/73. Mathematisch Centrum, Amsterdam.
  61. Lang, S. (1965). Algebra. Addison-Wesley, Reading, MA.
  62. Las Vergnas, M. (1970). Sur un théoréme de Rado. C. R. Acad. Sci. Paris Sér. A-B 270, A733-A735.
  63. Las Vergnas, M. (1970). Sur la dualité en théorie des matroides. C.R. Acad. Sci. Paris Sér. A-B 270, A804-A806.
  64. Las Vergnas, M. (1970). Sur les systemes de representants distincts d'une famille d'ensembles. C. R. Acad. Sci. Paris Ser. A-B 270, A501-A503.
  65. Las Vergnas, M. (1971). Sur la dualité en théorie des matroïdes. In Théorie des matroïdes (Rencontre Franco-Britannique, Brest, 1970), Lecture Notes in Math., Vol. 211, pp. 67-85. Springer, Berlin.
  66. Las Vergnas, M. (1975). Matroides orientables. (English summary) C. R. Acad. Sci. Paris Sér. A-B 280, A61-A64.
  67. Las Vergnas, M. (1975). Sur les extensions principales d'un matroide. C. R. Acad. Sci. Paris Sér. A-B 280, A187-A190.
  68. Las Vergnas, M. (1980). Fundamental circuits and a characteristic of binary matroids. Discrete Math. 31, 327.
  69. Lawler, E. (1976). Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, New York.
  70. Lawler, E. L. (1973). Polynomial-bounded and (apparently) non-polynomial-bounded matroid computations. In Combinatorial Algorithms (Courant Comput. Sci. Sympos., No. 9), pp. 49-57. Algorithmics Press, NY.
  71. Lawler, E. L. (1975). Matroid intersection algorithms. Math. Programming 9, no.1, 31-56.
  72. Laywine, C., Mullen, G. and Whittle, G (1995). d-dimensional hypercubes and Euler and MacNiesh conjectures. Monatshefte fur Mathematik 119, 223-238.
  73. Lazarson, T. (1958). The representation problem for independent functions. J. London Math. Soc. 33, 21-25.
  74. Lehman, A. (1964). A solution of the Shannon switching game. J. Soc. Indust. Appl. Math. 12, 687-725.
  75. Lemos, M. (1985). On Seymour's question about packing and covering with matroid circuits. Ars Combinatoria 20B, 27-34.
  76. Lemos, M. (1988). An extension of Lindstrom's result about characteristic sets of matroids. Discrete Math. 68, 85-101.
  77. Lemos, M. (1989). On 3-connected matroids. Discrete Math. 73, 273-283.
  78. Lemos, M. (1991). K-Elimination property for circuits of matroids. J. Combin. Theory. Ser. B 51, 211-226.
  79. Lemos, M. (1994). Matroids having the same conectivity function. Discrete Math. , 131, 153-161.
  80. Lemos, M. (1994). Non-binary matroids having at most three non-binary elements. Combinatorics, Probability and Computing 3, 355-369.
  81. Lemos, M. (1997). Non-binary matroids having four non-binary elements. Ars Combinatoria 46, 97-117.
  82. Lemos, M. and Oxley, J. G. (1998). On packing minors into connected matroids. Discrete Math. 189 283-289.
  83. Lemos, M. and Oxley, J. G. (1999). Removable circuits in graphs and matroids. J. of Graph Theory 30, 51-66.
  84. Lemos, M. and Oxley, J. G. (2000). On size, circumference and circuit removal in 3-connected matroids. Discrete Math. 220, 145-157.
  85. Lemos, M. and Oxley, J. G. (2000). On the 3-connected matroids that are minimal having a fixed spanning restriction. Discrete Math. 218, 131-165.
  86. Lemos, M. and Mota, S. (2000). The reconstruction of a matroid from its connectivity function. Discrete Math. 220, 131-143.
  87. Lemos, M. and Oxley, J. G., T. J. Reid (2000). On the 3-connected matroids that are minimal having a fixed restriction. Graphs and Combinatorics 16, 285-318.
  88. Lemos, M. and Oxley, J. G. (to appear). A sharp bound on the size of a connected matroid. Trans. of the Amer. Math. Soc.
  89. Lemos, M. and Junior, B. M. (to appear). Matroids having small circumference. Combinatorics, Probrobability, and Computing
  90. Lesieur, L. (1970). Géométries combinatories. Enseignement Math. (2) 16, 185-193.
  91. Lewin, M. (1970). Essential coverings of matrices. Proc. Camb. Phil. Soc. 67, 263-267.
  92. Li, Weixuan (1983). On matroids of the greatest W-connectivity. J. Combin. Theory Ser. B 35, 20-27.
  93. Lindström, B. (1973). On the vector representation of induced matroids. Bull. London Math. Soc. 5, 85-90.
  94. Lindström, B. (1983). The non-Pappus matroid is algebraic. Ars Combinatoria 16B, 95-96.
  95. Lindström, B. (1984). On binary identically self-dual matroids. European J. Combin. 5, 55-58.
  96. Lindström, B. (1984). A simple non-algebraic matroid of rank three. Utilitas Math. 25, 95-97.
  97. Lindström, B. (1985). A desarguesian theorem for algebraic combinatorial geometries. Combinatorica. 5, 237-239.
  98. Lindström, B. (1985). On the algebraic characteristic set for a class of matroids. Proc. Amer. Math. Soc. 95, 147-151.
  99. Lindström, B. (1985). On the algebraic representations of dual matroids. Dept. of Math., Univ. of Stockholm, Reports, No. 5.
  100. Lindström, B. (1985). More on algebraic representations of matroids. Dept. of Math., Univ. of Stockholm, Reports, No. 10.
  101. Lindström, B. (1986). A non-linear algebraic matroid with infinite characteristic set. Discrete Math. 59, 319-320.
  102. Lindström, B. (1986). The non-Papus matroid is algebraic over any finite field. Utilitas Math. 30, 53-55.
  103. Lindström, B. (1987). A class of non-algebraic matroids of rank three. Geom. Dedicata 23, 255-258.
  104. Lindström, B. (1987). A reduction of algebraic representation of matroids. Proc. Amer. Math. Soc. 100, 388-389.
  105. Lindström, B. (1987). An elementary proof in matroid theory using Tutte's coordinatization theorem. Utilitas Math. 31, 189-190.
  106. Lindström, B. (1988). Matroids, algebraic and non-algebraic. In Algebraic, extremal and metric combinatorics (1986) (eds. Deza, M. -M. et al), London Math. Soc. Lecture Notes, 131, pp. 166-174. Cambridge University press, Cambridge.
  107. Lindström, B. (1988). A generalization of the Ingleton-Main lemma and a class of non-algebraic matroids. Combinatorica 8, 87-90.
  108. Lindström, B. (1989). Matroids algebraic over F(t) are algebraic over F. Combinatorica 9, 107-109.
  109. Lomonosov, M. V. (1974). A Bernoulli scheme with closure. (Russian) Problemy Peredaci Informacii 10, no. 1, 91-101.
  110. Lorea, M. (1975). Hypergraphs et matroides. Colloque sur las Théorie des Graphes (Paris, 1974). Cahiers Center Études Recherche Opér. 17, no. 2-3-4, 289-291.
  111. Lovász, L. (1972). A brief survey of matroid theory. Mat. Lapok 22, 249-267.
  112. Lovász, L. (1977). Matroids and geometric graphs. In Combinatorial surveys: Proceedings of the sixth British combinatorial conference (ed. Cameron, P. J.), pp. 45-86. Academic Press, London.
  113. Lovász, L. and Plummer, M. D (1986). Matching theory. North-Holland, Amsterdam.
  114. Lovász, L. and Recski, A. (1973). On the sum of matroids. Acta Math. Acad. Sci. Hungar. 24, 329-333.
  115. Lucas, D. (1974). Properties of rank preserving weak maps. Bull. Amer. Math. Soc. 80, 127-131.
  116. Lucas, D. (1975). Weak maps of combinatorial geometries. Trans. Amer. Math. Soc. 206, 247-279.
  117. A - D E - H I J K L M - P Q - T U - Z

    | Matroids | Books | Surveys | Bibliography | Software | People |