\space |
| Matroids | Books | Surveys | Bibliography | Software | People |
- Ingleton, A. W. (1959). A note on independence functions and rank. J, Lindon Math. Soc. 34, 49-56.
- Ingleton, A. W. (1971). Conditions for representability and tranversality of matroids. In Théorie des matröides, Lecture Notes in Math., Vol. 211, Springer, Berlin.
- Ingleton, A. W. (1971). Representation of matroids. In Combinatorial mathematics and its applications (ed. Welsh, D. J. A.), pp. 149-167. Academic Pess, London.
- Ingleton, A. W. (1971). A geometric characterization of transversal independence structures. Bull. London Math. Soc. 3, 47-51.
- Ingleton, A. W. (1976). Non-base-orderable matroids. In Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, pp. 355-359. Utilitas Math., Winnipeg, Man.
- Ingleton, A. W. (1977). Transversal matroids and related structures. In Higher combinatorics (ed. Aigner, M.), pp. 117-131. Reidel, Dordrecht.
- Ingleton, A. W. and Main, R. A. (1975). Non-algebraic matroids exist. Bull. London Math. Soc. 7, 144-146.
- Ingleton, A. W. and Piff, M. J. (1973). Gammoids and transversal matroids. J. Combin. Theory Ser. B 15, 51-68.
- Inukai, T. and Weinburg, L. (1978). Theorems on matroid connectivity. Discrete Math. 22, 311-312.
- Inukai, T. and Weinburg, L. (1981). Whitney connectivity of matroids. SIAM J. Alg. Disc. Methods 2, 108-120.
- Jackson, B. (1980). Removable cycles in 2-connected graphs of minimum degree at least four. J. London Math. Soc. (2) 21, 385-392.
- Jacobson, N. (1953). Lectures in abstract algebra. Volume II. Linear algebra. Van Nostrand, Princeton.
- Jaeger, F., Vertigan D. L. and Welsh, D. J. A. (1990). On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Camb. Phil. Soc. 108, 35-53.
- Jensen, P. M. (1978). Binary fundamental matroids. In Algebraic methods in graph theory (eds. Lovasz, L. and Sos, V. T.), Colloq. Math. Soc. Janos Bolyai 25, pp. 281-296. North-Holland, Amsterdam.
- Jensen, P. M. and Korte, B. (1982). Complexity of matroid property algorithms. SIAM J. Comput. 11, 184-190.
- Johnson, K. G. (1961). A theorem on abstract linear dependence relations. Publ. Math. Debrecen 8, 64-67.
- Kahn, J. (1982). Characteristic sets of matroids. J. London Math. Soc. (2) 26, 207-217.
- Kahn, J. (1984). A geometric approach to forbidden minors for GF(3). J. Combin. Theory Ser. A 37, 1-12.
- Kahn, J. (1985). A problem of P. Seymour on nonbinary matroids. Combinatorica 5, 319-323.
- Kahn, J. (1988). On the uniqueness of matroid representations over GF(4). Bull. London Math. Soc. 20, 5-10.
- Kahn, J. and Seymour, P. D. (1988). On forbidden minors for GF(3). Proc. Amer. Math. Soc. 102, 437-440.
- Kajitani, Y. (1970). On the realizability of fundamental circuit matrices. J. Franklin Inst. 290, 355-363.
- Kantor, W. (1975). Envelopes of geometric lattices. J. Combin. Theory Ser. A 18, 12-26.
- Kantor, W. M. (1974). Dimension and embedding theorems for geometric lattices. J. Combinatorial Theory Ser. A 17, 173-195.
- Kelly, D. and Rota, G. -C. (1973). Some problems in combinatorial geometry. In A survey of combinatorial theory (eds. Srivastava, J. N. et al), pp. 309-312. North-Holland, Amsterdam.
- Kelly, P. J. (1942). On isometric transformations. Ph. D. thesis, University of Wisconsin.
- Kingan, S. R. (1994). Structural results for binary matroids. Ph. D. Thesis, Louisiana State University.
- Kingan, S. R. (1996). Binary matroids without prisms, prism duals and cubes. Discrete Math. 152, 211-224.
- Kingan, S. R. (1996). On binary matroids with a K33-minor. In Matroid theory: Proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference (eds. Bonin, J., Oxley, J. G. and Servatius, B.), American Mathematical Society, Providence, RI.
- Kingan, S. R. and Oxley, J. G. (1996). On the matroids in which all hyperplanes are binary. Discrete Math. 160, 265-271.
- Kingan, S. R. (1997). A generalization of a graph result of D. W. Hall. Discrete Math. 173, 129-135.
- Kingan, S. R. (1999). On the intersections of circuits and cocircuits in binary matroids. Discrete Math. 195, 157-165.
- Kirkpatrick, P. B. (1975). On homologies in finite combinatorial geometries. Bull. Austral. Math. Soc. 13, no. 1, 85-99.
- Klee, V. (1971). The greedy algorithm for finitary and cofinitary matroids. In Combinatorics (Proc. Sympos. Pure Math., Vol XIX, Univ. California, Los Angeles, CA, 1968), pp. 137-152. American Mathematical Society, Providence, RI.
- Klein-Barmen, F. (1937). Birkhoffsche und harmonische Verbände. Math. Zeitschrift 42, 58-81.
- Knuth, D. E. (1974). The asymptotic number of geometries. J. Combin. Theory Ser. A 17, 398-401.
- Korte, B., Lovasz, L and Schrader, R. (1991). Greedoids. Springer-Verlag, Berlin.
- Krogdahl, S. (1977). The dependence graph for bases in matroids. Discrete Math. 19, 47-59.
- Kruskal, J. B. (1956). On the shortest spanning tree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7, 48-50.
- Kundu, S. and Lawler, E. L. (1973). A matroid generalization of a theorem of Mendelsohn and Dulmage. Discrete Math. 4, 159-163.
- Kung J. P. S. (1995). The geometric approach to matroid theory. In Gian-Carlo Rota on combinatorics: Introductory papers and commentaries (ed. Kung, J. P. S.) pp. 604-622. Birkhauser, Basel and Boston.
- Kung, J. P. S. (1977). The core extraction algorithm for combinatorial geometries. Discrete Math. 19, 167-175.
- Kung, J. P. S. (1978). The alpha function of a matroid - I. Transversal matroids. Studies in Appl. Math. 58, 263-275.
- Kung, J. P. S. (1986). A source book in matroid theory. Birkhauser, Boston.
- Kung, J. P. S. (1987). Excluding the cycle geometries of the Kuratowski graphs from binary geometries. Proc. London Math. Soc. (3) 55, 209-242.
- Kung, J. P. S. (1990). Combinatorial geometries representable over GF(3) and GF(q). I. The number of points. Discrete Comput. Geom. 5, 83-95.
- Kung, J. P. S. (1992). Extremal matroid theory. In Graph structure theory (eds. Robertson N. and Seymour, P.D.), pp. 21-61. American Mathematical Society, Providence, RI.
- Kung, J. P. S. (1993). The Radon transforms of a combinatorial geometry. II. Partition latices. Adv. in Math. 101, 114-132.
- Kung, J. P. S. (1993). Sign-coherent identities for characteristic polynomials of representable matroids. Combinatorics, Probability and Computing 2, 33-51.
- Kung, J. P. S. (1993). Flags and Whitney numbers of matroids. J. Combin. Theory Ser. B 59, 85-88.
- Kung, J. P. S. (1995). Matroids. In Handbook of algebra (ed. Hazewinkel), pp. 157-184. North-Holland, Amsterdam and New York.
- Kung, J. P. S. (1996). Critical problems. In Matroid theory: Proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference (eds. Bonin, J., Oxley, J. G. and Servatius, B.), American Mathematical Society, Providence, RI.
- Kung, J. P. S. and Oxley, J. G. (1988). Combinatorial geometries representable over GF(3) and GF(q). II. Dowling geometries. Graphs Combin. 4, 323-332.
- Kung, J. P. S., ed. (1995). Gian-Carlo Rota on combinatorics: Introductory papers and commentaries. Birkhauser, Basel and Boston.
- Kuratowski, K. (1930). Sur le probleme des courbes gauches en topologie. Fund. Math. 15, 271-283.
- Löfgren, L. (1959). Irredundant and redundant boolean branch-networks. IRE Transactions on Circuit Theory CT-6, Special Supplement 158-175.
- Lageweg, B. J. (1973). An algorithm for a maximum weighted common partial transversal. Mathematisch Centrum, Afdeling Mathematische Besliskunde, BW 25/73. Mathematisch Centrum, Amsterdam.
- Lang, S. (1965). Algebra. Addison-Wesley, Reading, MA.
- Las Vergnas, M. (1970). Sur un théoréme de Rado. C. R. Acad. Sci. Paris Sér. A-B 270, A733-A735.
- Las Vergnas, M. (1970). Sur la dualité en théorie des matroides. C.R. Acad. Sci. Paris Sér. A-B 270, A804-A806.
- Las Vergnas, M. (1970). Sur les systemes de representants distincts d'une famille d'ensembles. C. R. Acad. Sci. Paris Ser. A-B 270, A501-A503.
- Las Vergnas, M. (1971). Sur la dualité en théorie des matroïdes. In Théorie des matroïdes (Rencontre Franco-Britannique, Brest, 1970), Lecture Notes in Math., Vol. 211, pp. 67-85. Springer, Berlin.
- Las Vergnas, M. (1975). Matroides orientables. (English summary) C. R. Acad. Sci. Paris Sér. A-B 280, A61-A64.
- Las Vergnas, M. (1975). Sur les extensions principales d'un matroide. C. R. Acad. Sci. Paris Sér. A-B 280, A187-A190.
- Las Vergnas, M. (1980). Fundamental circuits and a characteristic of binary matroids. Discrete Math. 31, 327.
- Lawler, E. (1976). Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, New York.
- Lawler, E. L. (1973). Polynomial-bounded and (apparently) non-polynomial-bounded matroid computations. In Combinatorial Algorithms (Courant Comput. Sci. Sympos., No. 9), pp. 49-57. Algorithmics Press, NY.
- Lawler, E. L. (1975). Matroid intersection algorithms. Math. Programming 9, no.1, 31-56.
- Laywine, C., Mullen, G. and Whittle, G (1995). d-dimensional hypercubes and Euler and MacNiesh conjectures. Monatshefte fur Mathematik 119, 223-238.
- Lazarson, T. (1958). The representation problem for independent functions. J. London Math. Soc. 33, 21-25.
- Lehman, A. (1964). A solution of the Shannon switching game. J. Soc. Indust. Appl. Math. 12, 687-725.
- Lemos, M. (1985). On Seymour's question about packing and covering with matroid circuits. Ars Combinatoria 20B, 27-34.
- Lemos, M. (1988). An extension of Lindstrom's result about characteristic sets of matroids. Discrete Math. 68, 85-101.
- Lemos, M. (1989). On 3-connected matroids. Discrete Math. 73, 273-283.
- Lemos, M. (1991). K-Elimination property for circuits of matroids. J. Combin. Theory. Ser. B 51, 211-226.
- Lemos, M. (1994). Matroids having the same conectivity function. Discrete Math. , 131, 153-161.
- Lemos, M. (1994). Non-binary matroids having at most three non-binary elements. Combinatorics, Probability and Computing 3, 355-369.
- Lemos, M. (1997). Non-binary matroids having four non-binary elements. Ars Combinatoria 46, 97-117.
- Lemos, M. and Oxley, J. G. (1998). On packing minors into connected matroids. Discrete Math. 189 283-289.
- Lemos, M. and Oxley, J. G. (1999). Removable circuits in graphs and matroids. J. of Graph Theory 30, 51-66.
- Lemos, M. and Oxley, J. G. (2000). On size, circumference and circuit removal in 3-connected matroids. Discrete Math. 220, 145-157.
- Lemos, M. and Oxley, J. G. (2000). On the 3-connected matroids that are minimal having a fixed spanning restriction. Discrete Math. 218, 131-165.
- Lemos, M. and Mota, S. (2000). The reconstruction of a matroid from its connectivity function. Discrete Math. 220, 131-143.
- Lemos, M. and Oxley, J. G., T. J. Reid (2000). On the 3-connected matroids that are minimal having a fixed restriction. Graphs and Combinatorics 16, 285-318.
- Lemos, M. and Oxley, J. G. (to appear). A sharp bound on the size of a connected matroid. Trans. of the Amer. Math. Soc.
- Lemos, M. and Junior, B. M. (to appear). Matroids having small circumference. Combinatorics, Probrobability, and Computing
- Lesieur, L. (1970). Géométries combinatories. Enseignement Math. (2) 16, 185-193.
- Lewin, M. (1970). Essential coverings of matrices. Proc. Camb. Phil. Soc. 67, 263-267.
- Li, Weixuan (1983). On matroids of the greatest W-connectivity. J. Combin. Theory Ser. B 35, 20-27.
- Lindström, B. (1973). On the vector representation of induced matroids. Bull. London Math. Soc. 5, 85-90.
- Lindström, B. (1983). The non-Pappus matroid is algebraic. Ars Combinatoria 16B, 95-96.
- Lindström, B. (1984). On binary identically self-dual matroids. European J. Combin. 5, 55-58.
- Lindström, B. (1984). A simple non-algebraic matroid of rank three. Utilitas Math. 25, 95-97.
- Lindström, B. (1985). A desarguesian theorem for algebraic combinatorial geometries. Combinatorica. 5, 237-239.
- Lindström, B. (1985). On the algebraic characteristic set for a class of matroids. Proc. Amer. Math. Soc. 95, 147-151.
- Lindström, B. (1985). On the algebraic representations of dual matroids. Dept. of Math., Univ. of Stockholm, Reports, No. 5.
- Lindström, B. (1985). More on algebraic representations of matroids. Dept. of Math., Univ. of Stockholm, Reports, No. 10.
- Lindström, B. (1986). A non-linear algebraic matroid with infinite characteristic set. Discrete Math. 59, 319-320.
- Lindström, B. (1986). The non-Papus matroid is algebraic over any finite field. Utilitas Math. 30, 53-55.
- Lindström, B. (1987). A class of non-algebraic matroids of rank three. Geom. Dedicata 23, 255-258.
- Lindström, B. (1987). A reduction of algebraic representation of matroids. Proc. Amer. Math. Soc. 100, 388-389.
- Lindström, B. (1987). An elementary proof in matroid theory using Tutte's coordinatization theorem. Utilitas Math. 31, 189-190.
- Lindström, B. (1988). Matroids, algebraic and non-algebraic. In Algebraic, extremal and metric combinatorics (1986) (eds. Deza, M. -M. et al), London Math. Soc. Lecture Notes, 131, pp. 166-174. Cambridge University press, Cambridge.
- Lindström, B. (1988). A generalization of the Ingleton-Main lemma and a class of non-algebraic matroids. Combinatorica 8, 87-90.
- Lindström, B. (1989). Matroids algebraic over F(t) are algebraic over F. Combinatorica 9, 107-109.
- Lomonosov, M. V. (1974). A Bernoulli scheme with closure. (Russian) Problemy Peredaci Informacii 10, no. 1, 91-101.
- Lorea, M. (1975). Hypergraphs et matroides. Colloque sur las Théorie des Graphes (Paris, 1974). Cahiers Center Études Recherche Opér. 17, no. 2-3-4, 289-291.
- Lovász, L. (1972). A brief survey of matroid theory. Mat. Lapok 22, 249-267.
- Lovász, L. (1977). Matroids and geometric graphs. In Combinatorial surveys: Proceedings of the sixth British combinatorial conference (ed. Cameron, P. J.), pp. 45-86. Academic Press, London.
- Lovász, L. and Plummer, M. D (1986). Matching theory. North-Holland, Amsterdam.
- Lovász, L. and Recski, A. (1973). On the sum of matroids. Acta Math. Acad. Sci. Hungar. 24, 329-333.
- Lucas, D. (1974). Properties of rank preserving weak maps. Bull. Amer. Math. Soc. 80, 127-131.
- Lucas, D. (1975). Weak maps of combinatorial geometries. Trans. Amer. Math. Soc. 206, 247-279.
| Matroids | Books | Surveys | Bibliography | Software | People |
|