Nanoscale viscosity of confined polyethylene oxide, Z. Zhang, J. Ding, B. M. Ocko, A. Fluerasu, L. Wiegart, Y. Zhang, M. Kobrak, Y. Tian, H. Zhang, J. Lhermitte, C.-H. Choi, F. T. Fisher, K. G. Yager, and C. T. Black, Phys. Rev. E 100 062503 (2019).
System and method for extracting ions without utilizing ion exchange, M. N. Kobrak and F. Picchioni,
Patent No WO2019152774, (2019).
Extraction of Acids and Bases from Aqueous Phase to a Pseudoprotic Ionic Liquid, N. Patsos, K.
Lewis, F. Picchioni, and M. N. Kobrak, Molecules 24 894-904 (2019); invited contribution to special
issue, “Ionic Liquids in Chemical Separations: Promise and Prospects”.
X-Ray Scattering and Physicochemical Studies of Trialkylamine/Carboxylic Acid Mixtures: Nanoscale
Structure in Pseudoprotic Ionic Liquids and Related Solutions, M. N. Kobrak and K. G. Yager, Phys. Chem. Chem. Phys. 20 18639-18646 (2018).
Laboratory Manual in General Chemistry, 4th ed. Mark N. Kobrak, ed., Kendall-Hunt, Dubuque, IA 2017.
Copper Extraction Using Protic Ionic Liquids: Evidence of the Hofmeister Effect, C. H. C. Janssen, N. A. Macias-Ruvalcaba, M. Aguilar-Martinez, and M. N. Kobrak, Sep. Pur. Tech. 168 275-283 (2016).
Laboratory Manual: General Chemistry for the Health Professions Mark N. Kobrak, ed., Kendall-Hunt, Dubuque, IA 2016.
Metal extraction to ionic liquids: the relationship between structure, mechanism and application, Janssen, C. H. C., N. A. Macias-Ruvalcaba, M. A. Aguilar-Martinez and M. N. Kobrak, Int. Rev. Phys. Chem. 34 591-622 (2015).
Selective extraction of metal ions from aqueous phase to ionic liquids: A novel thermodynamic approach to separations, Janssen, C.H., A. Sanchez and M.N. Kobrak, ChemPhysChem 15 3536-43 (2014).
Application of a Thermodynamic Model for Charged Interfaces to Lipid Membranes, Kobrak, M.N. and K. Babatunde, ECS Transactions 61 31-43 (2014).
An Improved Model of the Grand Canonical Ensemble Description of an Electrolyte Confined in a
Mesoscale Pore, M. N. Kobrak, ECS Transactions 58 73-80 (2014).
Selective extraction of metal ions from aqueous
phase to ionic liquids: A novel thermodynamic approach to separations,
C. H. Janssen, C.H., A. Sanchez and M.N. Kobrak, ChemPhysChem 15 3536-43 (2014).
Application of a Thermodynamic Model for Charged
Interfaces to Lipid Membranes, M. N. Kobrak and K. Babatunde, ECS Transactions 61 31-43,
(2014).
A Novel Mechanism for the Extraction of Metals from Water to Ionic Liquids,
C. H. C. Janssen, A. Sanchez, G.-J. Witkamp and M. N. Kobrak, ChemPhysChem 14 3806-3813 (2013).
A Proposed Voltage Dependence of the Ionic Strength of a Confined Electrolyte Based on a Grand Canonical
Ensemble Model, M. N. Kobrak, J. Phys: Cond. Matt. 25 095006 (2013).
Laboratory Manual in General Chemistry, 3rd ed. Mark N. Kobrak, ed., Kendall-Hunt, Dubuque, IA 2012.
Instantaneous Normal Mode Analysis of a Series of Model Molten Salts, H. Li and M. N. Kobrak,
ChemPhysChem 13 1934 (2012).
The Influence of Charge Distribution on Ion Diffusion in Molten Salts, H. Li and M. N. Kobrak,
ECS Transactions 41 13 (2012).
Notes on the Application of the Kornyshev Model for Capacitance in Ionic Liquids, M. N. Kobrak,
ECS Transactions 33 411 (2010).
Laboratory Manual in General Chemistry, 2nd ed. Mark N. Kobrak, ed., Kendall-Hunt, Dubuque, IA 2010.
Electrostatic Interactions in Ionic Liquids: The Dangers of Dipole and Dielectric Descriptions, M. N. Kobrak and H. Li,
Phys. Chem. and Chem. Phys. 12 1922 (2010).
A Molecular Dynamics Study of the Influence of Ionic Charge Distribution on the Dynamics of a Molten Salt, H. Li and M. N. Kobrak,
J. Chem. Phys. 131 194507 (2009).
The Chemical Environment of Ionic Liquids: Links between Liquid Structure, Dynamics and Solvation, M. N. Kobrak,
Adv. Chem. Phys. 139 85 (2008).
Coupled Ion Complexation and Exchange between Aqueous and Ionic Liquid Phases: A Thermodynamic Interpretation, M. N. Kobrak,
Solv. Extr. Ion Exch. 26 735 (2008).
The Relationship between Ionic Structure and Viscosity in Room-Temperature Ionic Liquids , H. Li, M. Ibrahim, I. Agberemi and M. N. Kobrak,
J. Chem. Phys. 129 124507 (2008).
Laboratory Manual in General Chemistry, Mark N. Kobrak, ed., Kendall-Hunt, Dubuque, IA 2008.
The Chemical Environment of Ionic Liquids: Links Between Liquid Structure, Dynamics and Solvation, M.N. Kobrak, Adv. Chem. Phys.
139 85 (2008).
The Relationship Between Solvent Polarity and Molar Volume in Room-Temperature Ionic Liquids, M.N. Kobrak, Green Chem.
9 80 (2008).
A Comparative Study of Solvation Dynamics in Room-Temperature Ionic Liquids, M.N. Kobrak, J. Chem. Phys. 127 184507 (2007).
SmartTutor: A Unified Approach for Enhancing Science Education, K. Harrow, R. Eckhardt, D. Kopec, M. Kobrak and P. Whitlock, J. Comp. Sci. in Coll. 22 29 (2007).
Lewis Structure Interpretation of Free Radicals Similar to ClO, W. Hirsch and M. Kobrak, J. Chem. Ed. 84 1360 (2007).
Electrostatic Interactions of a Neutral Dipolar Solute with a Fused Salt: A New Model for Solvation in Ionic Liquids, M.N. Kobrak, J. Phys. Chem. B 111 4755 (2007).
A Mathematical Proof that Nothing is True, M.N. Kobrak, J. Irrep. Results 50 22 (2006).
Characterization of the Solvation Dynamics of an Ionic Liquid via Molecular Dynamics Simulation, M.N. Kobrak, J. Chem. Phys. 125 064502 (2006).
Understanding Organic Processes in Ionic Liquids: Achievements So Far and Challenges Remaining, J.B. Harper and M.N. Kobrak, Mini-Rev. Org. Chem. 3 253 (2006).
An Electrostatic Interpretation of Structure-Property Relationships in Ionic Liquids, M. N. Kobrak and N. Sandalow, in "Molten Salts XIV," The Electrochemical Society, Pennington, NJ (2006).
(PDF)
Solvation Dynamics of Room-Temperature Ionic Liquids: Evidence for Collective Motion on sub-Picosecond Timescales M.N. Kobrak and V. Znamenskiy, Chem. Phys. Lett. 395 127 (2004).
A Molecular Dynamics Study of Polarity in Room-Temperature Ionic
Liquids, V. Znamenskiy and M.N. Kobrak, J. Phys. Chem. B 108 1072
(2004).
Error Estimation in Histogram-Based Free Energy Calculations, M.N.
Kobrak, J. Comp. Chem. 24 1437 (2003).
Doppler Shift and Energy Transfer to a Solar Sail, W. Hirsch and
M.N. Kobrak, Physics Ed. 37 422 (2002).
Molecular Dynamics Simulation of Proton-Coupled Electron Transfer in
Solution, M.N. Kobrak and S. Hammes-Schiffer, J. Phys. Chem. A 105
10435 (2001).
Reaction Path Hamiltonian Analysis of Dynamical Solvent Effects for a
Claisen Rearrangement and a Diels-Alder Reaction, H. Hu, M.N. Kobrak, C.
Xu, and S. Hammes-Schiffer, J. Phys. Chem. A 104
8058 (2000).
Quantum Simulations of Polaron Recombination Dynamics in Linear
Polyenes, E. R. Bittner and M. N. Kobrak, Synth. Metals, 121
1635 (2001).
A Quantum Molecular Dynamics Study of Polaron Recombination in
Conjugated Polymers, M. N. Kobrak and E. R. Bittner,
Phys. Rev. B 62 11473 (2000).
A Quantum Molecular Dynamics Study of Exciton Self-Trapping in
Conjugated Polymers: Temperature Dependence and Spectroscopy, M. N. Kobrak
and E. R. Bittner, J. Chem. Phys. 112 7684 (2000).
A Dynamic Model for Exciton Self-Trapping in Conjugated Polymers I:
Theory, M. N. Kobrak and E. R. Bittner J. Chem. Phys.
112 5399 (2000).
A Dynamic Model for Exciton Self-Trapping in Conjugated Polymers II:
Implementation, M. N. Kobrak and E. R. Bittner
J. Chem. Phys. 112 5410 (2000).
The Equivalence of Photoselective Adiabatic Passage and the Strong
Field Brumer-Shapiro Approach, M.N. Kobrak and S.A. Rice,
J. Chem. Phys. 109 1 (1998).
Selective Photochemistry via Adiabatic Passage: An Extension of StiRAP
for Degenerate Final States, M.N. Kobrak and S.A. Rice,
Phys. Rev. A 57 2885 (1998).
Coherent Population Transfer via a Resonant Intermediate State: The
Breakdown of Adiabatic Passage, M.N. Kobrak and S.A. Rice,
Phys. Rev. A 57 1158 (1998).
The Influence of High-Frequency Modes on Two Pulse Spectroscopy,
M.N. Kobrak and S.A. Rice, J. Chem. Phys. 107 4091
(1997).
The Influence of High-Frequency Modes on Ultrashort Pulse Absorption
Initiated Processes, M.N. Kobrak, E.M. Hiller, and S.A. Rice,
J. Chem. Phys. 105 9403 (1996).