Papers and Preprints

  1. D. Aulicino, Frederik Benirschke, and Chaya Norton, A Zero Lyapunov Exponent in Genus 3 Implies the Eierlegende Wollmilchsau. arXiv:2203.00841, (Submitted). Preprint: 1-30 (2022).
  2. Jayadev S. Athreya, D. Aulicino, and Harry Richman, Counting Tripods on the Torus. arXiv:2111.01891, (Accepted. To appear in Arnold Math. J.). Preprint: 1-15 (2021).
  3. D. Aulicino, and Chaya Norton, Shimura-Teichmüller Curves in Genus 5. J. Mod. Dyn. 16 (2020), 255–288. arXiv:1904.01625
    Sage Notebooks for viewing
    Sage Files for download (.zip)
  4. D. Aulicino, A new approach to the automorphism group of a Platonic surface. Rocky Mountain J. Math. 50 (2020), no. 1, 9–23. arXiv:1811.07052.
    Sage Notebook for viewing
    Sage Notebook for download
  5. Jayadev S. Athreya, D. Aulicino, W. Patrick Hooper and with an appendix by Anja Randecker (2022) Platonic Solids and High Genus Covers of Lattice Surfaces, Experimental Mathematics, 31:3, 847-877. arXiv:1811.04131
    Website with Auxiliary Files
  6. Jayadev S. Athreya and D. Aulicino, A Trajectory from a Vertex to Itself on the Dodecahedron. The American Mathematical Monthly, 126:2, 161-162 (2019). arXiv:1802.00811
  7. D. Aulicino and Duc-Manh Nguyen, Rank 2 Affine Manifolds in Genus 3. J. Differential Geom. 116 (2020), no. 2, 205-280. arXiv:1612.06970
  8. D. Aulicino, The Cantor–Bendixson Rank of Certain Bridgeland–Smith Stability Conditions. Comm. Math. Phys. 357 (2018), no. 2, 791–809. arXiv:1512.02336
  9. D. Aulicino and Duc-Manh Nguyen, Rank two affine submanifolds in \( \mathcal{H}(2,2)\) and \(\mathcal{H}(3,1)\). Geom. Topol. 20 (2016), no. 5, 2837-2904. arXiv:1501.03303
  10. D. Aulicino, Affine Manifolds and Zero Lyapunov Exponents in Genus 3. Geometric and Functional Analysis 25 (2015), no. 5, 1333-1370. arXiv:1409.5180
  11. D. Aulicino, Duc-Manh Nguyen, and Alex Wright, Classification of higher rank orbit closures in \(\mathcal{H}^{odd}(4)\). J. Eur. Math. Soc. (JEMS) 18 (2016), no. 8, 1855-1872. arXiv:1308.5879
  12. D. Aulicino, Affine Invariant Submanifolds with Completely Degenerate Kontsevich-Zorich Spectrum. Ergodic Theory Dynam. Systems 38 (2018), no. 1, 10-33. arXiv:1302.0913
  13. D. Aulicino, Teichmüller Discs with Completely Degenerate Kontsevich-Zorich Spectrum. Commentarii Mathematici Helvetici 90 (2015), no. 3, 573-643. arXiv:1205.2359