Znamenskiy V.S., Kobrak M.N.
Simulation of the polarization response of room-temperature ionic liquids
225th ACS National Meeting
New Orleans, LA
March 23-27, 2003

Mark N. Kobrak
Brooklyn College, CUNY
What are Room-Temperature Ionic Liquids?

- Salts that are molten at room-temperature
- Recent interest spurred by the discovery of RTILs that are stable under ambient conditions

Common Cations:

\[
\begin{align*}
&\begin{array}{c}
R_1 \\
N^+ \\
R_4 \\
N \\
R_3 \\
R_2
\end{array} \\
&\begin{array}{c}
R_1 \\
N \\
R_2
\end{array}
\]

Common Anions:

\[
\begin{align*}
&PF_6^- \\
&BF_4^- \\
&Cl^- \\
&NO_3^-
\end{align*}
\]
Properties of RTILs

Physical Properties:
- Nonvolatile
- Nonflammable
- Nontoxic(?)
- Wide Liquidus Temperature Range

\[\text{Good properties for synthesis and separations} \]

- Conductive
- Wide Electrochemical Window

\[\text{Good properties for electrochemistry} \]

Solvation Properties:
- RTILs behave as moderately polar organic solvents
Applications of RTILs

Synthesis:
- “Classic” organic chemistry
 - Diels-Alder, Heck, Suzuki, *etc.*
- Novel reactions
 - (*e.g.* Synthesis of an extended coordination network, Jin *et al.* Chem. Comm. 2872 (2002))

Separations and Analysis:
- Liquid-liquid extractions
 - (simple, crown-ether, solvent-optimized)
- MALDI matrix for mass spectrometry
- Continuous loop bioreactor (membrane)

Electrochemistry:
- Electroplating
- Voltaic cells
Structural Features of RTILs

- Most known species monovalent
- Cation/anion sizes mismatched
- Charge asymmetrically distributed in cation
- Both ions highly polarizable

1-butyl-3-methylimidazolium hexafluorophosphate (BMIM[PF₆])
Polarity of molecular solvents is connected to molecular structure by the dipole moment.
Polarity of ionic solvents is not understood.

Match Game
Identify which solute is most soluble in each solvent

<table>
<thead>
<tr>
<th>Solute</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>Water</td>
</tr>
<tr>
<td>Phenol</td>
<td>1-propanol</td>
</tr>
<tr>
<td>Napthalene</td>
<td>Benzene</td>
</tr>
<tr>
<td></td>
<td>BMIM[Pf$_6$]</td>
</tr>
</tbody>
</table>
Mechanism of Solvation

Molecular Liquids:
- **Specific interactions:** Hydrogen-bonding
- **Nonspecific interactions:** Electrostatic effects

What can we say about RTILs?
The Chemical Environment of Fused Salts

- Most models based on a "solid lattice with holes" model
 - Temkin model
 - Quasi-lattice model
 - Crystallite Model
 - Hole Model
 - Liquid Free-volume Model
 - Significant structure Model
- Experimental NMR and optical measurements support this view

Spontaneous Ionization in a Metal-Fused Salt Solution
Stillinger et al. (JCP 32 1837 (1960)): Ion in a fused salt is surrounded by alternating layers of positive and negative charge

Cation-cation and cation-anion radial distribution functions for a model fused salt

Characterizing the Polarity of RTILs

- Theoretical definition of polarity: None
- Empirical scales for polarity:
 - Dielectric constant
 - Partitioning between bilayers
 - Solvatochromism of probe molecules
Partitioning of Solute Species

- Simple solubility experiments
- Reverse-phase chromatography

Comparison of partition coefficients for organic compounds in biphasic BMIM[PF$_6$]/H$_2$O and octan-1-ol/H$_2$O systems (from Huddleston et al. Chem. Comm. 1765 (1998))
Solvatochromism

- Based on the difference in dipole moment between chromophore electronic states
- Polarity scales and linear free energy relationships built on specific molecules
Solvent Polarity from Simulation

- Need to connect polarity to ionic behavior
- Must simulate an empirical measure of polarity

Simulate the solvatochromism of betaine-30 in BMIM[PF$_6$]
Solute and Solvent Structures
Simulation Details

- Force Field
 - Short-ranged forces: OPLS
 - Coulomb forces: Ewald summation
 - United atom treatment of CH\textsubscript{n}
- 200 ion pairs/1 betaine-30
- ~700 ps equilibration time
- NPT ensemble
Calculation of the Absorption Spectrum

\[
Z = \Delta E_s - \Delta E_v = V_{SS}^e - V_{SS}^o
\]
Time-Dependence of The Spectral Shift

Z vs. Time for Four Trajectories

Z vs. Time for Four Trajectories (Averaged Over 5 ps Intervals)
Time-Averaged Z-distribution

Distribution of Z for Betaine–30 in BMIM[PF₆]

Relative Probability (arb.)

Δ E_s (kcal/mol)
Calculated and Experimental Absorption Spectra

Absorption Spectrum of Betaine–30 in BMIM[PF₆]
Local Structure About Betaine-30 Oxygen Atom

O (Betaine–30) – [BMIM]
Radial Distribution Function

![Graph showing radial distribution function with peaks at different radii.]

\[
g(r) = C \int_{0}^{1} \rho(r') \rho(r-r') dr'
\]

Where:
- \(g(r) \) is the radial distribution function.
- \(C \) is a constant.
- \(\rho(r) \) is the density at \(r \).
- \(r \) is the distance from the center of mass.

Different components:
- Center of Mass
- Ring
- Side–Chain

\[r (\text{Å}) \]

\[g(r) \]

20
Local Structure About Betaine-30 Oxygen Atom
Z-Component of O-Solvent Interaction

Mente and Maroncelli: Z-Contributions from Specific Betaine O-Solvent Interactions
Extremal Z-Component Spectra For Betaine-Solvent Interaction

Z–Contribution Spectra of Extremal BMIM$^+$ and PF$_6^-$

![Graph showing relative probability versus Z (kcal/mol)]
Sample Configuration of Largest Z-Contributors
Z-Components of Extremal Betaine-Solvent Interactions

Z–Contribution Spectra of Extremal Ions

![Graph showing relative probability vs. Z (kcal/mol)]
Spatial Distribution of Extremal Z-Contributors
Contribution to Z as a Function of Solute-Solvent Distance
Contribution to Z as a Function of Solute-Solvent Distance
Hypothesis:
- Large fraction of polarization due to reorganization of ions neighboring chromophore
- Long-range contribution to polarization less significant
 - Individual interactions very strong
 - Collective solute-solvent interactions cancel out on average (statistical effect)
- Concept of “solvation shell” applies to RTILs, but arises from different effects
Time-Resolved Fluorescence

- Fluorescence spectrum is difference between ground and excited state energies when solvent is equilibrated to the excited state configuration.
- If system is excited by an ultrashort pulse, fluorescence spectrum changes in time until equilibrium is reached.

\[\Delta G \]

Fluorescence

Absorption

\[Z \]

\[e \]

\[o \]
Time-Resolved Fluorescence in Molecular Liquids

- Response occurs on two timescales
- Timescales correspond roughly to rotational and translational motion of solvent

How does this work in Ionic Liquids?
Experimental Time-Resolved Fluorescence in Ionic Liquids

Results from Ingram et al. (Maroncelli group)

Studied t.r. fluorescence of 4-aminophthalimide in BMIM[PF₆]

0, 50, 100, 200 ps
.5, 1, 2, 5, 10 ns
Experimental Observations

- Two timescales observed
- Widely separated (sub-picosecond vs. nanosecond)

Can get at solvent motion via simulation. (Caveat: Betaine-30 does not fluoresce)
Time-Resolved Fluorescence Data

Fluorescence Response for Four Trajectories

![Graph showing time-resolved fluorescence data with four trajectories.](image-url)
Time-Resolved Fluorescence Data

Fluorescence Response for Four Trajectories
Calculated vs. Theoretical Decay Constants

Fit to Fluorescence Response
Experiment and Theory

Experimental Data from Ingram et al. on 4-aminophthalimide (~50 kcal/mol)

\[Z_{\text{max}} = Z_{\text{inf}} + A \exp[-(t/B)^c] \]
Nature of Time-Resolved Response

Hypothesis:
- Short-time response due to local motion of ions about chromophore
- Long-time response due to collective reorganization of solvent
 - Involves relatively large distances
 - Occurs slowly by weakly-biased random walk
Conclusions

- Solvation shell concept applies to RTILs, but arises from statistical cancellations at large distances
- Time-resolved fluorescence response consists of rapid response by inner shell, followed by slow diffusion of other ions (weakly driven by solute dipole)
Acknowledgements

Research Group:
➢ Dr. Vasily Znamenskiy

Collaborators:
➢ Prof. Robert Engel, Queens College
➢ Prof. Mark Maroncelli, PSU
➢ Prof. Charles Muldoon, Strathclyde

Funding:
➢ Professional Staff Congress--CUNY