17. Rational Root Theorem and Fundamental Theorem of Algebra

Rational Root Theorem

Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) be a polynomial function with integer coefficients.

If \(f(x) \) has a rational root, then the rational root has the form \(\frac{p}{q} \) where \(p \) is a factor of the constant \(a_0 \) and \(p \) is a factor of the leading coefficient \(a_n \).

Note: The Rational Root Theorem does not guarantee existence of a rational root. All it is saying is that if a rational root exists then it has that particular format.

1) Use the rational root test to list all possible rational zeros of the following functions.

a) \(f(x) = x^3 + x^2 - 5x + 3 \)

b) \(f(x) = x^5 - 4x^3 + 3x^2 - x + 6 \)

c) \(f(x) = x^3 + x^2 - 8 \)

d) \(f(x) = 4x^3 + x^2 - 3 \)

e) \(f(x) = 4x^3 + x^2 - 6 \)

f) \(f(x) = -2x^3 + x^2 + 1 \)

2) Use the rational root test to solve the equations.

a) \(x^3 + x^2 - 5x + 3 = 0 \)

b) \(x^3 - 6x^2 + 11x - 6 = 0 \)

c) \(x^3 - 7x^2 - 6 = 0 \)

d) \(x^3 - 4x^2 - x + 4 = 0 \)

e) \(x^3 - 9x^2 + 20x - 12 = 0 \)

f) \(-2x^3 + x^2 + 1 = 0 \)

Fundamental Theorem of Algebra

Let \(f(x) \) be a polynomial function with complex coefficients. Then there exists at least one root for \(f(x) \) in the set of complex numbers.

Corollary

Let \(f(x) \) be a polynomial function of degree \(n \) with complex coefficients. Then \(f(x) \) has at most \(n \) roots in the set of complex numbers.

4) Write polynomial functions that have the following zeros of multiplicity 1.

a) \(0, 1, -5 \)

b) \(2 + \sqrt{3}, 2 - \sqrt{3} \)

c) \(2i, -2i \)

d) \(4 + 3i, 4 - 3i \)

e) \(2, -2, 3i, -3i \)