Zero forcing, propagation time, and throttling on a graph

Leslie Hogben

Iowa State University and American Institute of Mathematics

New York Combinatorics Seminar August 28, 2020

Leslie Hogben (Iowa State University and American Institute of Mathematics)

Outline

Zero forcing and its variants

Matrices and graphs Standard zero forcing Z(G)PSD zero forcing $Z_+(G)$ Skew zero forcing $Z_-(G)$ Zero forcing numbers of families of graphs

Propagation time

Standard propagation time pt(G)PSD propagation time $pt_+(G)$ Skew propagation time $pt_-(G)$ Propagation time of families of graphs

Throttling

Throttling numbers th(G), $th_+(G)$, $th_-(G)$ Throttling numbers of families of graphs Other topics

Computation

Leslie Hogben (Iowa State University and American Institute of Mathematics)

Zero forcing is a coloring game in which each vertex is initially blue or white and the goal is to color all vertices blue.

- The standard color change rule for zero forcing on a graph G is that a blue vertex v can change the color of a white vertex w to blue if w is the only white neighbor of v in G.
- There are many variants of zero forcing, each of which uses a different color change rule.

Applications:

- Mathematical physics (control of quantum sytems).
- Power domination:
 - ► A minimum power dominating set gives the optimal placement of monitoring units in an electric network.
 - Power domination is zero forcing applied to the set of initial vertices and their neighbors.
- Combinatorial matrix theory illustrated in these slides.

Matrices and Graphs

Matrices are real. The matrix $A = [a_{ij}]$ is symmetric if $a_{ji} = a_{ij}$ and skew symmetric if $a_{ji} = -a_{ij}$. Most matrices discussed are symmetric; some are skew symmetric. $S_n(\mathbb{R})$ is the set of $n \times n$ real symmetric matrices.

The graph $\mathcal{G}(A) = (V, E)$ of $n \times n$ symmetric or skew matrix A is

▶
$$V = \{1, ..., n\},$$

•
$$E = \{ij : a_{ij} \neq 0 \text{ and } i \neq j\}$$

Diagonal of A is ignored.

Example

Leslie Hogben (Iowa State University and American Institute of Mathematics)

Inverse Eigenvalue Problem of a Graph (IEP-G)

The family of symmetric matrices described by a graph G is

 $\mathcal{S}(G) = \{A \in S_n(\mathbb{R}) : \mathcal{G}(A) = G\}.$

The Inverse Eigenvalue Problem of a Graph (IEPG) is to determine all possible spectra (multisets of eigenvalues) of matrices in S(G).

Example A matrix in $S(P_3)$ is of the form $A = \begin{bmatrix} x & a & 0 \\ a & y & b \\ 0 & b & z \end{bmatrix}$ where $a, b \neq 0$. The possible spectra of matrices in $S(P_3)$ are all sets of 3 distinct real numbers.

Maximum multiplicity and minimum rank

Due to the difficulty of the IEPG, a simpler form called the maximum multiplicity, maximum nullity, or minimum rank problem has been studied.

The maximum multiplicity or maximum nullity of graph G is

$$\begin{split} \mathsf{M}(G) &= \max\{ \mathsf{mult}_{\mathcal{A}}(\lambda) : \mathcal{A} \in \mathcal{S}(G), \ \lambda \in \mathsf{spec}(\mathcal{A}) \}. \\ &= \max\{ \mathsf{null} \ \mathcal{A} : \mathcal{A} \in \mathcal{S}(G) \}. \end{split}$$

The minimum rank of graph G is

 $mr(G) = min\{rank A : A \in \mathcal{S}(G)\}.$

By using nullity,

$$\mathsf{M}(G) + \mathsf{mr}(G) = |V(G)|.$$

The Maximum Nullity Problem (or Minimum Rank Problem) for a graph G is to determine M(G) (or mr(G)).

Zero forcing and maximum nullity

- Zero forcing starts with blue vertices (representing zeros in a null vector of a matrix) and successively colors other vertices blue.
- The zero forcing number is the minimum size of a zero forcing set.

Theorem (BBBCCFGHHMNPSSSvdHVM 2008)

For every graph G, $M(G) \leq Z(G)$.

- G a graph with $V(G) = \{1, \ldots, n\}$ and $A \in \mathcal{S}(G)$,
- $x \in \mathbb{R}^n$, Ax = 0, and $x_k = 0$ for all $k \in B \subseteq V(G)$,
- ▶ $i \in B$, $j \notin B$, and j is the only vertex k such that $ik \in E(G)$ and $k \notin B$.

imply

$$x_j = 0$$

because equating the *i*th entries in Ax = 0 yields $a_{ij}x_j = 0$.

Leslie Hogben (Iowa State University and American Institute of Mathematics)

$$N_G(v) \cap W = \{w\}.$$

We just showed $Z(T) \leq 4$

For trees, there is an algorithm for finding a minimum path cover and thus a minimum zero forcing set.

Variants of zero forcing

- Each type of zero forcing is a coloring game on a graph in which each vertex is initially blue or white.
- A color change rule allows white vertices to be colored blue under certain conditions.
- Let R be a color change rule.
 - The set of initially blue vertices is $B^{[0]} = B$.
 - ► The set of blue vertices B^[t] after round t or time step t (under R) is the set of blue vertices in G after the color change rule is applied in B^[t-1] to every white vertex independently.
 - An initial set of blue vertices B = B^[0] is an R zero forcing set if there exists a t such that B^[t] = V(G) using the R color change rule.
 - Minimum size of an R zero forcing set is the R forcing number.

A real matrix is positive semidefinite matrices (PSD) if A is symmetric and every eignevalue is nonnegative.

The family of PSD described by a graph G is

 $\mathcal{S}_+(G) = \{A \in S_n(\mathbb{R}) : \mathcal{G}(A) = G \text{ and } A \text{ is PSD}\}.$

The maximum PSD nullity of graph G is

 $\mathsf{M}_+(G) = \max\{\mathsf{null}\, A : A \in \mathcal{S}_+(G)\}.$

The PSD zero forcing number is $Z_+(G)$.

Theorem (BBFHHSvdDvdH 2010) For every graph G, $M_+(G) \le Z_+(G)$.

$$N_G(v) \cap W_i = \{w\}.$$

Skew and hollow symmetric maximum nullity

- ► A matrix is hollow if A is symmetric and every diagonal entry is 0.
- ► A hollow matrix described by a graph *G* is a weighted adjacency matrix of *G*.
- A matrix is skew symmetric if $A^T = -A$.

$$\begin{aligned} \mathcal{S}_0(G) &= \{A \in \mathcal{S}_n(\mathbb{R}) : \mathcal{G}(A) = G \text{ and } A \text{ is hollow}\}, \\ \mathcal{S}_-(G) &= \{A \in \mathbb{R}^{n \times n} : \mathcal{G}(A) = G \text{ and } A^T = -A\}. \end{aligned}$$

The maximum hollow nullity and maximum skew nullity of graph G are $M_0(G) = \max\{ \text{null } A : A \in S_0(G) \}.$ $M_-(G) = \max\{ \text{null } A : A \in S_-(G) \}.$ Theorem (ABDeADDeLGGHIKNPSSW 2010 and GHHHJKMcC 2014)

For every graph G, $M_{-}(G) \leq Z_{-}(G)$ and $M_{0}(G) \leq Z_{-}(G)$.

- G a graph with $V(G) = \{1, ..., n\}$ and $A \in S_{-}(G)$ or $A \in S_{0}(G)$,
- $x \in \mathbb{R}^n$, Ax = 0, and $x_k = 0$ for all $k \in B \subseteq V(G)$,
- ▶ $j \notin B$ and j is the only vertex k such that $ik \in E(G)$ and $k \notin B$.

imply

$$x_j = 0$$

because equating the *i*th entries in Ax = 0 yields $a_{ij}x_j = 0$.

$$N_G(v) \cap W = \{w\}.$$

$$N_G(v) \cap W = \{w\}.$$

$$N_G(v) \cap W = \{w\}.$$

Maximum nullities and zero forcing numbers for families

Theorem (four papers previously cited)

- ► For $n \ge 2$, $Z(K_n) = M(K_n) = Z_+(K_n) = M_+(K_n) = n 1$ and $Z_-(K_n) = M_-(K_n) = M_0(K_n) = n 2$.
- ► For $n \ge 1$, $Z(\overline{K_n}) = M(\overline{K_n}) = Z_+(\overline{K_n}) = M_+(\overline{K_n}) = Z_-(\overline{K_n}) = M_-(\overline{K_n}) = n$.
- ► For $n \ge 3$, $Z(K_{r,n-r}) = M(K_{r,n-r}) = Z_{-}(K_{r,n-r}) = M_{-}(K_{r,n-r}) = M_{0}(K_{r,n-r}) = n-2$ and $Z_{+}(K_{r,n-r}) = M_{+}(K_{r,n-r}) = \min(r, n-r).$
- ► For $n \ge 2$, $Z(P_n) = M(P_n) = Z_+(P_n) = M_+(P_n) = 1$. For even n, $Z_-(P_n) = M_-(P_n) = M_0(P_n) = 0$ and for odd n, $Z_-(P_n) = M_-(P_n) = M_0(P_n) = 1$.

▶ For
$$n \ge 3$$
, $Z(C_n) = M(C_n) = Z_+(C_n) = M_+(C_n) = 2$.
For even $n \ge 4$, $Z_-(C_n) = M_-(C_n) = M_0(C_n) = 2$. For odd $n \ge 3$, $Z_-(C_n) = M_-(C_n) = 1$ and $M_0(C_n) = 0$.

Let R be a color change rule.

- ► The *R*-propagation time for a set *B* = *B*^[0] of vertices, pt_R(*G*, *B*), is the smallest *t* such that *B*^[t] = *V*(*G*) using the *R* color change rule (and is infinity if this never happens).
- This is also called the number of times steps or rounds to color the graph.
- ► The *R*-propagation time of *G* is

 $pt_R(G) = min\{pt_R(G, B) : B \text{ is a minimum } R\text{-forcing set.}\}$

$$N_G(v) \cap W = \{w\}.$$

$$N_G(v) \cap W_i = \{w\}.$$

Skew propagation time $pt_{-}(G)$

$$N_G(v) \cap W = \{w\}.$$

Skew propagation time $pt_{-}(G)$

$$N_G(v) \cap W = \{w\}.$$

Skew propagation time $pt_{-}(G)$

$$N_G(v) \cap W = \{w\}.$$

Propagation time of complete graphs and paths

Theorem (HHKMWY 2012, W 2015, K 2015)

For
$$n \ge 2$$
, $pt(K_n) = pt_+(K_n) = pt_-(K_n) = 1$.

For
$$n \ge 1$$
, $\operatorname{pt}(\overline{K_n}) = \operatorname{pt}_+(\overline{K_n}) = \operatorname{pt}_-(\overline{K_n}) = 0$.

▶
$$pt(K_{1,n-1}) = 2$$
 and for $2 \le r \le n-2$, $pt(K_{r,n-r}) = 1$.
For $1 \le r \le n-1$, $pt_+(K_{r,n-r}) = pt_-(K_{r,n-r}) = 1$.

▶ For
$$n \ge 2$$
, $pt(P_n) = n - 1$ and $pt_+(P_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$.
 $pt_-(P_n) = \frac{n}{2}$ for even n and $pt_-(P_n) = \lfloor \frac{n+1}{4} \rfloor$ for odd n .

For
$$n \ge 3$$
, $\operatorname{pt}(C_n) = \left|\frac{n-2}{2}\right|$ and $\operatorname{pt}_+(C_n) = \left|\frac{n-2}{4}\right|$.
 $\operatorname{pt}_-(C_n) = \begin{cases} \frac{n-1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{4} & \text{if } n \equiv 0 \mod 4 \\ \frac{n-2}{4} & \text{if } n \equiv 2 \mod 4 \end{cases}$

Throttling

Throttling involves minimizing the sum of the number of resources used to accomplish a task (e.g., blue vertices) and the time needed to accomplish the task (e.g., propagation time).

Unlike propagation time of a graph, which starts with a minimum set of blue vertices, throttling often uses more blue vertices to reduce time.

Let R be a color change rule.

- ► The *R*-propagation time for a set *B* = *B*^[0] of vertices, pt_R(*G*, *B*), is the smallest *t* such that *B*^[t] = *V*(*G*) using the *R* color change rule (and is infinity if this never happens).
- ► The *R*-throttling number of a set *B* of vertices, th_R(G; B) = |B| + pt_R(G, B), is the sum of the number vertices in *B* and the *R*-propagation of *B*.

► The *R*-throttling number of *G* is

$$th_R(G) = \min_{B \subseteq V(G)} th_R(G; B) = \min_{B \subseteq V(G)} (|B| + pt_R(G, B)).$$

Leslie Hogben (Iowa State University and American Institute of Mathematics)

(Standard) throttling

- ► The propagation time for a set B = B^[0] of vertices, pt(G, B), is the smallest t such that B^[t] = V(G) using the (standard) zero forcing color change rule.
- ► The throttling number of G for zero forcing is th(G) = min_{B⊆V(G)}(|B| + pt(G, B)).

PSD throttling

- ► The PSD propagation time for a set B = B^[0] of vertices, pt₊(G, B), is the smallest t such that B^[t] = V(G) using the PSD color change rule.
- The PSD throttling number of G for zero forcing is the th₊(G) = min_{B⊆V(G)}(|B| + pt₊(G, B)).

Example

 $Z_+(T) = 1$ and $pt_+(T) = 4$. Using a PSD zero forcing set B of 2 vertices, $pt_+(G, B) = 2$ and $th_+(T) = 2 + 2 = 4$.

Skew throttling

- ► The skew propagation time for a set B = B^[0] of vertices, pt_(G, B), is the smallest t such that B^[t] = V(G) using the skew forcing color change rule.
- The skew throttling number of G for zero forcing is th_(G) = min_{B⊆V(G)}(|B| + pt_(G, B)).

Throttling numbers of families of graphs

Theorem (BY 2013, CHKLRSVM 2019, CGH 2020)

▶ For
$$n \ge 1$$
, $th(K_n) = th_+(K_n) = n$. For $n \ge 2$,
 $th_-(K_n) = n - 1$.

For
$$n \ge 1$$
, $\operatorname{th}(\overline{K_n}) = \operatorname{th}_+(\overline{K_n}) = \operatorname{th}_-(\overline{K_n}) = n$.

▶
$$pt(K_{1,n-1}) = 2$$
 and for $2 \le r \le n-2$, $pt(K_{r,n-r}) = 1$.
For $1 \le r \le n-1$, $pt_+(K_{r,n-r}) = pt_-(K_{r,n-r}) = 1$.

► For
$$n \ge 2$$
, $\operatorname{th}(P_n) = \lceil 2\sqrt{n} - 1 \rceil$, $\operatorname{th}_+(P_n) = \lceil \sqrt{2n} - \frac{1}{2} \rceil$, and $\operatorname{th}_-(P_n) = \lceil \sqrt{2(n+1)} - \frac{3}{2} \rceil$.

► For
$$n \ge 3$$
, th $(C_n) = \begin{cases} \lceil 2\sqrt{n} - 1 \rceil & \text{unless } n = (2k+1)^2 \\ 2\sqrt{n} & \text{if } n = (2k+1)^2 \end{cases}$
th₊ $(C_n) = \lceil \sqrt{2n} - \frac{1}{2} \rceil$.
th₋ $(C_n) = \lceil \sqrt{2n} - \frac{1}{2} \rceil$.

Leslie Hogben (Iowa State University and American Institute of Mathematics)

Observation

Let $B \subseteq V(G)$ be a zero forcing set. Then,

- B is a PSD forcing set and a skew forcing set.
- $Z_+(G) \leq Z(G)$ and $Z_-(G) \leq Z(G)$
- $pt_+(G,B) \leq pt(G,B)$ and $pt_-(G,B) \leq pt(G,B)$
- $\operatorname{th}_+(G; B) \leq \operatorname{th}(G; B)$ and $\operatorname{th}_-(G; B) \leq \operatorname{th}(G; B)$.
- $\operatorname{th}_+(G) \leq \operatorname{th}(G)$ and $\operatorname{th}_-(G) \leq \operatorname{th}(G)$.
- ▶ th₊(G) and th₋(G) are noncomparable.
- pt₊(G), pt₋(G), and pt(G) are noncomparable (minimum values can differ).

Theorem (Butler, Young, 2013)

Let G be a graph of order n. Then

$$\mathsf{th}(G) \ge \left\lceil 2\sqrt{n} - 1 \right\rceil$$

and this bound is tight.

PSD and skew are very different

▶
$$th_+(K_{1,n-1}) = 2.$$

• For any G with a component of order ≥ 2 ,

$$\mathsf{Z}_{-}(G \circ K_1) = 0, \mathsf{pt}_{-}(G \circ K_1) = 2, \mathsf{th}_{-}(G \circ K_1) = 2.$$

Extreme values for th(G)

 $\lceil 2\sqrt{n} - 1 \rceil \le th(G)$ implies the number of graphs having th(G) = k is finite.

Remark

All the graphs having $th(G) \leq 3$ are listed below.

- 1) th(G) = 1 if and only if |V(G)| = 1.
- 2) th(G) = 2 if and only if |V(G)| = 2.
- 3) th(G) = 3 if and only if |V(G)| = 3 or $G = 2K_2$, P_4 , or C_4 .

Theorem (CK 2020+)

Let G be a graph of order n. The following are equivalent:

1)
$$th(G) = n$$
.

- 2) G is a threshold graph.
- 3) G does not have P_4 , C_4 , or $2K_2$ as an induced subgraph.

Theorem (CHKLRSVM 2019)

Let G be a connected graph of order n.

- 1) $th_+(G) = n$ if and only if $G = K_n$.
- 2) th₊(G) = n 1 if and only if $\alpha(G) = 2$ and G does not have an induced C₅, house, or double diamond subgraph.

Theorem (CHKLRSVM 2019)

Let G be a graph of order n.

1)
$$th_+(G) = 1$$
 if and only if $n = 1$.

2) th₊(G) = 2 if and only if $G = K_{1,n-1}$ or $G = 2K_1$.

- 3) For a graph G, $th_+(G) = 3$ if and only if at least one of the following is true:
 - 3.1 G is disconnected and exactly of the following holds:

3.1.1 G is $3K_1$, or

- 3.1.2 *G* has two components, each component is a copy of $K_{1,n-1}$ or K_1 , and at least one component has order greater than one.
- 3.2 G is a tree with diameter three or four, or
- 3.3 G is connected and there exist $v, u \in V(G)$ such that:

3.3.1 G has a cycle, or G is a tree with diam
$$G = 5$$
,

3.3.2
$$N(u) \cup N(v) = V(G)$$

- 3.3.3 deg(w) ≤ 2 for all $w \notin \{v, u\}$, and
- 3.3.4 if $w_1, w_2 \in N(u)$ or $w_1, w_2 \in N(v)$, then w_1 is not adjacent to

W2.

Theorem (CGH 2020)

Let G be a graph of order n.

- 1) th₋(G) = 1 if and only if $G = K_1$ or $G = rK_2$ for $r \ge 1$.
- 2) A graph G has th_(G) = 2 if and only if G is one of $2K_1$, $H(s,t) \sqcup rK_2$ with $r + s + t \ge 1$, or $(\widetilde{G} \circ K_1) \sqcup rK_2$ where each component of \widetilde{G} has an edge.
- 3) $th_{-}(G) = n$ if and only if $G = nK_1$.
- 4) $th_{-}(G) = n 1$ if and only if G is a cograph, does not have an induced $2K_2$, and has at least one edge.

The graph H(2,3)

Leslie Hogben (Iowa State University and American Institute of Mathematics)

There is Sage software that computes

$$\blacktriangleright$$
 Z(G), Z₊(G), Z₋(G),

•
$$pt(G), pt_+(G), pt_-(G)$$

▶ th(G), th₊(G), th₋(G)

for "small" graphs.

References

- M. Allison, E. Bodine, L.M. DeAlba, J. Debnath, L. DeLoss, C. Garnett, J. Grout, L. Hogben, B. Im, H. Kim, R. Nair, O. Pryporova, K. Savage, B. Shader, A.W. Wehe (IMA-ISU research group on minimum rank). Minimum rank of skew-symmetric matrices described by a graph. *Lin. Alg. Appl.*, 432: 2457–2472, 2010.
- F. Barioli, W. Barrett, S. Butler, S.M. Cioaba, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen, and A. Wangsness Wehe (AIM Minimum Rank – Special Graphs Work Group). Zero forcing sets and the minimum rank of graphs. *Lin. Alg. Appl.*, 428: 1628–1648, 2008.
- - F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, and H. van der Holst. Zero forcing parameters and minimum rank problems. *Lin. Alg. Appl.*, 433 (2010), 401–411.
- S. Butler, M. Young. Throttling zero forcing propagation speed on graphs. *Australas. J. Combin.*, 57 (2013), 65–71.

Leslie Hogben (Iowa State University and American Institute of Mathematics)

References

- J. Carlson, L. Hogben, J. Kritschgau, K. Lorenzen, M.S. Ross, V. Valle Martinez. Throttling positive semidefinite zero forcing propagation time on graphs. *Discrete Appl. Math.*, 254 (2019), 33–46.
- J. Carlson and J. Kritschgau. Various characterizations of throttling numbers. https://arxiv.org/pdf/1909.07952.pdf
- E. Curl, J. Geneson, L. Hogben. Skew throttling. *Australas. J . Combin.*, 78 (2020), 117–190.
- C. Grood, J.A. Harmse, L. Hogben, T. Hunter, B. Jacob, A. Klimas, S. McCathern, Minimum rank of zero-diagonal matrices described by a graph. *Electron. J. Linear Algebra*, 27 (2014), 458-477.
- L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker, and M. Young. Propagation time for zero forcing on a graph. *Discrete Applied Math*, 160 (2012), 1994–2005.
- - N.F. Kingsley. Skew propagation time. Dissertation (Ph.D.), Iowa State University, 2015.

N. Warnberg. Positive semidefinite propagation time. *Discrete Appl. Math.*, 198 (2016) 274–290.

Leslie Hogben (Iowa State University and American Institute of Mathematics)