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Zero forcing and its variants

Zero forcing is a coloring game in which each vertex is initially blue
or white and the goal is to color all vertices blue.

I The standard color change rule for zero forcing on a graph G
is that a blue vertex v can change the color of a white vertex
w to blue if w is the only white neighbor of v in G .

I There are many variants of zero forcing, each of which uses a
different color change rule.

Applications:

I Mathematical physics (control of quantum sytems).
I Power domination:

I A minimum power dominating set gives the optimal placement
of monitoring units in an electric network.

I Power domination is zero forcing applied to the set of initial
vertices and their neighbors.

I Combinatorial matrix theory - illustrated in these slides.
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Matrices and Graphs

Matrices are real. The matrix A = [aij ] is symmetric if aji = aij and
skew symmetric if aji = −aij . Most matrices discussed are
symmetric; some are skew symmetric.
Sn(R) is the set of n × n real symmetric matrices.

The graph G(A) = (V ,E ) of n × n symmetric or skew matrix A is

I V = {1, ..., n},
I E = {ij : aij 6= 0 and i 6= j}.
I Diagonal of A is ignored.

Example

G(A)

A =


2 −1 3 5
−1 0 0 0

3 0 −3 0
5 0 0 0


1 2

34
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Inverse Eigenvalue Problem of a Graph (IEP-G )

The family of symmetric matrices described by a graph G is

S(G ) = {A ∈ Sn(R) : G(A) = G}.

The Inverse Eigenvalue Problem of a Graph (IEPG) is to determine
all possible spectra (multisets of eigenvalues) of matrices in S(G ).

Example

A matrix in S(P3) is of the form

A =

 x a 0
a y b
0 b z

 where a, b 6= 0.

The possible spectra of matrices in S(P3) are all sets of 3 distinct
real numbers.
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Maximum multiplicity and minimum rank

Due to the difficulty of the IEPG, a simpler form called the
maximum multiplicity, maximum nullity, or minimum rank problem
has been studied.

The maximum multiplicity or maximum nullity of graph G is

M(G ) = max{multA(λ) : A ∈ S(G ), λ ∈ spec(A)}.
= max{nullA : A ∈ S(G )}.

The minimum rank of graph G is

mr(G ) = min{rankA : A ∈ S(G )}.
By using nullity,

M(G ) + mr(G ) = |V (G )|.

The Maximum Nullity Problem (or Minimum Rank Problem) for a
graph G is to determine M(G ) (or mr(G )).
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Zero forcing and maximum nullity

I Zero forcing starts with blue vertices (representing zeros in a
null vector of a matrix) and successively colors other vertices
blue.

I The zero forcing number is the minimum size of a zero forcing
set.

Theorem (BBBCCFGHHMNPSSSvdHVM 2008)

For every graph G , M(G ) ≤ Z(G ).

I G a graph with V (G ) = {1, . . . , n} and A ∈ S(G ),

I x ∈ Rn, Ax = 0, and xk = 0 for all k ∈ B ⊆ V (G ),

I i ∈ B, j 6∈ B, and j is the only vertex k such that ik ∈ E (G )
and k 6∈ B.

imply
xj = 0

because equating the ith entries in Ax = 0 yields aijxj = 0.
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(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B = B [0])
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(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B [1])
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(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B [2])

Leslie Hogben (Iowa State University and American Institute of Mathematics) 10 of 53



(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B [3]: Z(T ) = 4)
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Example: Why is Z(T ) = 4

We just showed Z(T ) ≤ 4

For trees, there is an algorithm for finding a minimum path cover
and thus a minimum zero forcing set.
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Variants of zero forcing

I Each type of zero forcing is a coloring game on a graph in
which each vertex is initially blue or white.

I A color change rule allows white vertices to be colored blue
under certain conditions.

Let R be a color change rule.

I The set of initially blue vertices is B [0] = B.

I The set of blue vertices B [t] after round t or time step t
(under R) is the set of blue vertices in G after the color
change rule is applied in B [t−1] to every white vertex
independently.

I An initial set of blue vertices B = B [0] is an R zero forcing set
if there exists a t such that B [t] = V (G ) using the R color
change rule.

I Minimum size of an R zero forcing set is the R forcing
number.
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Maximum PSD nullity

A real matrix is positive semidefinite matrices (PSD) if A is
symmetric and every eignevalue is nonnegative.

The family of PSD described by a graph G is

S+(G ) = {A ∈ Sn(R) : G(A) = G and A is PSD}.

The maximum PSD nullity of graph G is

M+(G ) = max{nullA : A ∈ S+(G )}.

The PSD zero forcing number is Z+(G ).

Theorem (BBFHHSvdDvdH 2010)

For every graph G , M+(G ) ≤ Z+(G ).
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B+ = B
[0]
+ )
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[1]
+ )

Leslie Hogben (Iowa State University and American Institute of Mathematics) 16 of 53



PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[2]
+ )
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[3]
+ )
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PSD color change rule

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[4]
+ : Z+(T ) = 1)
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Skew and hollow symmetric maximum nullity

I A matrix is hollow if A is symmetric and every diagonal entry
is 0.

I A hollow matrix described by a graph G is a weighted
adjacency matrix of G .

I A matrix is skew symmetric if AT = −A.

S0(G ) = {A ∈ Sn(R) : G(A) = G and A is hollow}.
S−(G ) = {A ∈ Rn×n : G(A) = G and AT = −A}.

The maximum hollow nullity and maximum skew nullity of graph
G are

M0(G ) = max{nullA : A ∈ S0(G )}.
M−(G ) = max{nullA : A ∈ S−(G )}.
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Skew forcing and maximum nullity

Theorem (ABDeADDeLGGHIKNPSSW 2010 and
GHHHJKMcC 2014)

For every graph G , M−(G ) ≤ Z−(G ) and M0(G ) ≤ Z−(G ).

I G a graph with V (G ) = {1, . . . , n} and A ∈ S−(G ) or
A ∈ S0(G ),

I x ∈ Rn, Ax = 0, and xk = 0 for all k ∈ B ⊆ V (G ),

I j 6∈ B and j is the only vertex k such that ik ∈ E (G ) and
k 6∈ B.

imply
xj = 0

because equating the ith entries in Ax = 0 yields aijxj = 0.
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Skew zero forcing color change rule

Skew color change rule: Let W be the set of (currently) white
vertices. A vertex v can change the color of vertex w ∈W to blue
if

NG (v) ∩W = {w}.

Example (B− = B
[0]
− )

Leslie Hogben (Iowa State University and American Institute of Mathematics) 22 of 53



Skew zero forcing color change rule

Skew color change rule: Let W be the set of (currently) white
vertices. A vertex v can change the color of vertex w ∈W to blue
if

NG (v) ∩W = {w}.

Example (B
[1]
− )
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Skew zero forcing color change rule

Skew color change rule: Let W be the set of (currently) white
vertices. A vertex v can change the color of vertex w ∈W to blue
if

NG (v) ∩W = {w}.

Example (B
[2]
− : Z−(T ) = 2)
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Maximum nullities and zero forcing numbers for families

Theorem (four papers previously cited)

I For n ≥ 2, Z(Kn) = M(Kn) = Z+(Kn) = M+(Kn) = n− 1 and
Z−(Kn) = M−(Kn) = M0(Kn) = n − 2.

I For n ≥ 1, Z(Kn) = M(Kn) = Z+(Kn) = M+(Kn) =
Z−(Kn) = M−(Kn) = n.

I For n ≥ 3, Z(Kr ,n−r ) = M(Kr ,n−r ) = Z−(Kr ,n−r ) =
M−(Kr ,n−r ) = M0(Kr ,n−r ) = n − 2 and
Z+(Kr ,n−r ) = M+(Kr ,n−r ) = min(r , n − r).

I For n ≥ 2, Z(Pn) = M(Pn) = Z+(Pn) = M+(Pn) = 1.
For even n, Z−(Pn) = M−(Pn) = M0(Pn) = 0 and for odd n,
Z−(Pn) = M−(Pn) = M0(Pn) = 1.

I For n ≥ 3, Z(Cn) = M(Cn) = Z+(Cn) = M+(Cn) = 2.
For even n ≥ 4, Z−(Cn) = M−(Cn) = M0(Cn) = 2. For odd
n ≥ 3, Z−(Cn) = M−(Cn) = 1 and M0(Cn) = 0.
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Propagation time for zero forcing variants

Let R be a color change rule.

I The R-propagation time for a set B = B [0] of vertices,
ptR(G ,B), is the smallest t such that B [t] = V (G ) using the
R color change rule (and is infinity if this never happens).

I This is also called the number of times steps or rounds to
color the graph.

I The R-propagation time of G is

ptR(G ) = min{ptR(G ,B) : B is a minimum R-forcing set.}
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(Standard) propagation time pt(G )

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B = B [0])
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(Standard) propagation time pt(G )

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B [1])
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(Standard) propagation time pt(G )

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B [2])

Leslie Hogben (Iowa State University and American Institute of Mathematics) 29 of 53



(Standard) propagation time pt(G )

Standard color change rule: Let W be the set of (currently) white
vertices. A blue vertex v can change the color of vertex w ∈W to
blue if

NG (v) ∩W = {w}.

Example (B [3]: pt(T ) = 3)
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PSD propagation time pt+(G )

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B+ = B
[0]
+ )
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PSD propagation time pt+(G )

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[1]
+ )
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PSD propagation time pt+(G )

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[2]
+ )
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PSD propagation time pt+(G )

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[3]
+ )
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PSD propagation time pt+(G )

PSD color change rule: Delete the currently blue vertices from the
graph G and determine the components of the resulting graph; let
Wi be the set of vertices of the ith component. A blue vertex v
can change the color of a white vertex w to blue if

NG (v) ∩Wi = {w}.

Example (B
[4]
+ : pt+(T ) = 4)
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Skew propagation time pt−(G )

Skew color change rule: Let W be the set of (currently) white
vertices. A vertex v can change the color of vertex w ∈W to blue
if

NG (v) ∩W = {w}.

Example (B− = B
[0]
− )
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Skew propagation time pt−(G )

Skew color change rule: Let W be the set of (currently) white
vertices. A vertex v can change the color of vertex w ∈W to blue
if

NG (v) ∩W = {w}.

Example (B
[1]
− )
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Skew propagation time pt−(G )

Skew color change rule: Let W be the set of (currently) white
vertices. A vertex v can change the color of vertex w ∈W to blue
if

NG (v) ∩W = {w}.

Example (B
[2]
− : pt−(T ) = 2)
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Propagation time of complete graphs and paths

Theorem (HHKMWY 2012, W 2015, K 2015)

I For n ≥ 2, pt(Kn) = pt+(Kn) = pt−(Kn) = 1.

I For n ≥ 1, pt(Kn) = pt+(Kn) = pt−(Kn) = 0.

I pt(K1,n−1) = 2 and for 2 ≤ r ≤ n − 2, pt(Kr ,n−r ) = 1.
For 1 ≤ r ≤ n − 1, pt+(Kr ,n−r ) = pt−(Kr ,n−r ) = 1.

I For n ≥ 2, pt(Pn) = n − 1 and pt+(Pn) =
⌈
n−1
2

⌉
.

pt−(Pn) = n
2 for even n and pt−(Pn) =

⌊
n+1
4

⌋
for odd n.

I For n ≥ 3, pt(Cn) =
⌈
n−2
2

⌉
and pt+(Cn) =

⌈
n−2
4

⌉
.

pt−(Cn) =


n−1
2 if n is odd

n
4 if n ≡ 0 mod 4
n−2
4 if n ≡ 2 mod 4

.
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Throttling

Throttling involves minimizing the sum of the number of resources
used to accomplish a task (e.g., blue vertices) and the time needed
to accomplish the task (e.g., propagation time).

Unlike propagation time of a graph, which starts with a minimum
set of blue vertices, throttling often uses more blue vertices to
reduce time.

Let R be a color change rule.

I The R-propagation time for a set B = B [0] of vertices,
ptR(G ,B), is the smallest t such that B [t] = V (G ) using the
R color change rule (and is infinity if this never happens).

I The R-throttling number of a set B of vertices,
thR(G ;B) = |B|+ ptR(G ,B), is the sum of the number
vertices in B and the R-propagation of B.

I The R-throttling number of G is
thR(G ) = min

B⊆V (G)
thR(G ;B) = min

B⊆V (G)
(|B|+ ptR(G ,B)).
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(Standard) throttling

I The propagation time for a set B = B [0] of vertices, pt(G ,B),
is the smallest t such that B [t] = V (G ) using the (standard)
zero forcing color change rule.

I The throttling number of G for zero forcing is
th(G ) = minB⊆V (G)(|B|+ pt(G ,B)).

Example (Z(T ) = 4, pt(T ) = 3, th(T ) = 7)

1

1 1

2

2
2

33
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PSD throttling

I The PSD propagation time for a set B = B [0] of vertices,
pt+(G ,B), is the smallest t such that B [t] = V (G ) using the
PSD color change rule.

I The PSD throttling number of G for zero forcing is the
th+(G ) = minB⊆V (G)(|B|+ pt+(G ,B)).

Example

Z+(T ) = 1 and pt+(T ) = 4. Using a PSD zero forcing set B of 2
vertices, pt+(G ,B) = 2 and th+(T ) = 2 + 2 = 4.

1

1 1

1

1

2

2

2

2

2
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Skew throttling

I The skew propagation time for a set B = B [0] of vertices,
pt−(G ,B), is the smallest t such that B [t] = V (G ) using the
skew forcing color change rule.

I The skew throttling number of G for zero forcing is
th−(G ) = minB⊆V (G)(|B|+ pt−(G ,B)).

Example (Z−(T ) = 2, pt−(T ) = 2, th−(T ) = 4)

1

1111 2

2
2

2

2
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Throttling numbers of families of graphs

Theorem (BY 2013, CHKLRSVM 2019, CGH 2020)

I For n ≥ 1, th(Kn) = th+(Kn) = n. For n ≥ 2,
th−(Kn) = n − 1.

I For n ≥ 1, th(Kn) = th+(Kn) = th−(Kn) = n.

I pt(K1,n−1) = 2 and for 2 ≤ r ≤ n − 2, pt(Kr ,n−r ) = 1.
For 1 ≤ r ≤ n − 1, pt+(Kr ,n−r ) = pt−(Kr ,n−r ) = 1.

I For n ≥ 2, th(Pn) =
⌈
2
√
n − 1

⌉
, th+(Pn) =

⌈√
2n − 1

2

⌉
, and

th−(Pn) =
⌈√

2(n + 1)− 3
2

⌉
.

I For n ≥ 3, th(Cn) =

{
d2
√
n − 1e unless n = (2k + 1)2

2
√
n if n = (2k + 1)2

.

th+(Cn) =
⌈√

2n − 1
2

⌉
.

th−(Cn) =
⌈√

2n − 1
2

⌉
.
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Relationships: standard, PSD, and skew throttling

Observation

Let B ⊆ V (G ) be a zero forcing set. Then,

I B is a PSD forcing set and a skew forcing set.

I Z+(G ) ≤ Z(G ) and Z−(G ) ≤ Z(G )

I pt+(G ,B) ≤ pt(G ,B) and pt−(G ,B) ≤ pt(G ,B)

I th+(G ;B) ≤ th(G ;B) and th−(G ;B) ≤ th(G ;B).

I th+(G ) ≤ th(G ) and th−(G ) ≤ th(G ).

I th+(G ) and th−(G ) are noncomparable.

I pt+(G ), pt−(G ), and pt(G ) are noncomparable (minimum
values can differ).
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Lower bound on th(G )

Theorem (Butler, Young, 2013)

Let G be a graph of order n. Then

th(G ) ≥
⌈
2
√
n − 1

⌉
and this bound is tight.

PSD and skew are very different

I th+(K1,n−1) = 2.

I For any G with a component of order ≥ 2,

Z−(G ◦ K1) = 0, pt−(G ◦ K1) = 2, th−(G ◦ K1) = 2.
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Extreme values for th(G )⌈
2
√
n − 1

⌉
≤ th(G ) implies the number of graphs having

th(G ) = k is finite.

Remark

All the graphs having th(G ) ≤ 3 are listed below.

1) th(G ) = 1 if and only if |V (G )| = 1.

2) th(G ) = 2 if and only if |V (G )| = 2.

3) th(G ) = 3 if and only if |V (G )| = 3 or G = 2K2, P4, or C4.

Theorem (CK 2020+)

Let G be a graph of order n. The following are equivalent:

1) th(G ) = n.

2) G is a threshold graph.

3) G does not have P4,C4, or 2K2 as an induced subgraph.
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Extreme values for th+(G )

Theorem (CHKLRSVM 2019)

Let G be a connected graph of order n.

1) th+(G ) = n if and only if G = Kn.

2) th+(G ) = n − 1 if and only if α(G ) = 2 and G does not have
an induced C5, house, or double diamond subgraph.

C5 house double diamond
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Extreme values for th+(G )

Theorem (CHKLRSVM 2019)

Let G be a graph of order n.

1) th+(G ) = 1 if and only if n = 1.

2) th+(G ) = 2 if and only if G = K1,n−1 or G = 2K1.

3) For a graph G , th+(G ) = 3 if and only if at least one of the
following is true:
3.1 G is disconnected and exactly of the following holds:

3.1.1 G is 3K1, or
3.1.2 G has two components, each component is a copy of K1,n−1

or K1, and at least one component has order greater than one.

3.2 G is a tree with diameter three or four, or
3.3 G is connected and there exist v , u ∈ V (G ) such that:

3.3.1 G has a cycle, or G is a tree with diam G = 5,
3.3.2 N(u) ∪ N(v) = V (G),
3.3.3 deg(w) ≤ 2 for all w 6∈ {v , u}, and
3.3.4 if w1,w2 ∈ N(u) or w1,w2 ∈ N(v), then w1 is not adjacent to

w2.
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Extreme values for th−(G )

Theorem (CGH 2020)

Let G be a graph of order n.

1) th−(G ) = 1 if and only if G = K1 or G = rK2 for r ≥ 1.

2) A graph G has th−(G ) = 2 if and only if G is one of 2K1,
H(s, t) t rK2 with r + s + t ≥ 1, or

(
G̃ ◦ K1

)
t rK2 where

each component of G̃ has an edge.

3) th−(G ) = n if and only if G = nK1.

4) th−(G ) = n − 1 if and only if G is a cograph, does not have
an induced 2K2, and has at least one edge.

The graph H(2, 3)
Leslie Hogben (Iowa State University and American Institute of Mathematics) 50 of 53



Computation

There is Sage software that computes

I Z(G ),Z+(G ),Z−(G ),

I pt(G ), pt+(G ), pt−(G ),

I th(G ), th+(G ), th−(G )

for “small” graphs.
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