Zero forcing, propagation time, and throttling on a graph

Leslie Hogben

Iowa State University and American Institute of Mathematics

New York Combinatorics Seminar
August 28, 2020

Outline

Zero forcing and its variantsMatrices and graphs
Standard zero forcing $\mathrm{Z}(G)$
PSD zero forcing $Z_{+}(G)$
Skew zero forcing $Z_{-}(G)$
Zero forcing numbers of families of graphs
Propagation time
Standard propagation time $\operatorname{pt}(G)$
PSD propagation time $\mathrm{pt}_{+}(G)$
Skew propagation time pt_(G)
Propagation time of families of graphs
ThrottlingThrottling numbers $\operatorname{th}(G)$, th $_{+}(G)$, th $h_{-}(G)$
Throttling numbers of families of graphsOther topics
Computation

Zero forcing and its variants

Zero forcing is a coloring game in which each vertex is initially blue or white and the goal is to color all vertices blue.

- The standard color change rule for zero forcing on a graph G is that a blue vertex v can change the color of a white vertex w to blue if w is the only white neighbor of v in G.
- There are many variants of zero forcing, each of which uses a different color change rule.
Applications:
- Mathematical physics (control of quantum sytems).
- Power domination:
- A minimum power dominating set gives the optimal placement of monitoring units in an electric network.
- Power domination is zero forcing applied to the set of initial vertices and their neighbors.
- Combinatorial matrix theory - illustrated in these slides.

Matrices and Graphs

Matrices are real. The matrix $A=\left[a_{i j}\right]$ is symmetric if $a_{j i}=a_{i j}$ and skew symmetric if $a_{j i}=-a_{i j}$. Most matrices discussed are symmetric; some are skew symmetric. $S_{n}(\mathbb{R})$ is the set of $n \times n$ real symmetric matrices.
The graph $\mathcal{G}(A)=(V, E)$ of $n \times n$ symmetric or skew matrix A is

- $V=\{1, \ldots, n\}$,
- $E=\left\{i j: a_{i j} \neq 0\right.$ and $\left.i \neq j\right\}$.
- Diagonal of A is ignored.

Example

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 3 & 5 \\
-1 & 0 & 0 & 0 \\
3 & 0 & -3 & 0 \\
5 & 0 & 0 & 0
\end{array}\right]
$$

Inverse Eigenvalue Problem of a Graph (IEP-G)

The family of symmetric matrices described by a graph G is

$$
\mathcal{S}(G)=\left\{A \in S_{n}(\mathbb{R}): \mathcal{G}(A)=G\right\} .
$$

The Inverse Eigenvalue Problem of a Graph (IEPG) is to determine all possible spectra (multisets of eigenvalues) of matrices in $\mathcal{S}(G)$.

Example

A matrix in $\mathcal{S}\left(P_{3}\right)$ is of the form
$A=\left[\begin{array}{lll}x & a & 0 \\ a & y & b \\ 0 & b & z\end{array}\right]$ where $a, b \neq 0$.
The possible spectra of matrices in $\mathcal{S}\left(P_{3}\right)$ are all sets of 3 distinct real numbers.

Maximum multiplicity and minimum rank

Due to the difficulty of the IEPG, a simpler form called the maximum multiplicity, maximum nullity, or minimum rank problem has been studied.

The maximum multiplicity or maximum nullity of graph G is

$$
\begin{aligned}
\mathrm{M}(G) & =\max \left\{\operatorname{mult}_{A}(\lambda): A \in \mathcal{S}(G), \lambda \in \operatorname{spec}(A)\right\} \\
& =\max \{\text { null } A: A \in \mathcal{S}(G)\}
\end{aligned}
$$

The minimum rank of graph G is

$$
\operatorname{mr}(G)=\min \{\operatorname{rank} A: A \in \mathcal{S}(G)\}
$$

By using nullity,

$$
\mathrm{M}(G)+\operatorname{mr}(G)=|V(G)| .
$$

The Maximum Nullity Problem (or Minimum Rank Problem) for a graph G is to determine $\mathrm{M}(G)$ (or $\operatorname{mr}(G)$).

Zero forcing and maximum nullity

- Zero forcing starts with blue vertices (representing zeros in a null vector of a matrix) and successively colors other vertices blue.
- The zero forcing number is the minimum size of a zero forcing set.

Theorem (BBBCCFGHHMNPSSSvdHVM 2008)

For every graph $G, \mathrm{M}(G) \leq \mathrm{Z}(G)$.

- G a graph with $V(G)=\{1, \ldots, n\}$ and $A \in \mathcal{S}(G)$,
- $\mathrm{x} \in \mathbb{R}^{n}, A \mathrm{x}=0$, and $x_{k}=0$ for all $k \in B \subseteq V(G)$,
- $i \in B, j \notin B$, and j is the only vertex k such that ik $\in E(G)$ and $k \notin B$.
imply

$$
x_{j}=0
$$

because equating the i th entries in $A x=0$ yields $a_{i j} x_{j}=0$.

(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B=B^{[0]}\right)$

(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B^{[1]}\right)$

(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B^{[2]}\right)$

(Standard) zero forcing color change rule

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B^{[3]}: Z(T)=4\right)$

Example: Why is $Z(T)=4$

We just showed $Z(T) \leq 4$

For trees, there is an algorithm for finding a minimum path cover and thus a minimum zero forcing set.

Variants of zero forcing

- Each type of zero forcing is a coloring game on a graph in which each vertex is initially blue or white.
- A color change rule allows white vertices to be colored blue under certain conditions.

Let R be a color change rule.

- The set of initially blue vertices is $B^{[0]}=B$.
- The set of blue vertices $B^{[t]}$ after round t or time step t (under R) is the set of blue vertices in G after the color change rule is applied in $B^{[t-1]}$ to every white vertex independently.
- An initial set of blue vertices $B=B^{[0]}$ is an R zero forcing set if there exists a t such that $B^{[t]}=V(G)$ using the R color change rule.
- Minimum size of an R zero forcing set is the R forcing number.

Maximum PSD nullity

A real matrix is positive semidefinite matrices (PSD) if A is symmetric and every eignevalue is nonnegative.

The family of PSD described by a graph G is

$$
\mathcal{S}_{+}(G)=\left\{A \in S_{n}(\mathbb{R}): \mathcal{G}(A)=G \text { and } A \text { is PSD }\right\}
$$

The maximum PSD nullity of graph G is

$$
\mathrm{M}_{+}(G)=\max \left\{\text { null } A: A \in \mathcal{S}_{+}(G)\right\} .
$$

The PSD zero forcing number is $Z_{+}(G)$.

Theorem (BBFHHSvdDvdH 2010)

For every graph $G, \mathrm{M}_{+}(G) \leq \mathrm{Z}_{+}(G)$.

PSD color change rule

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}=B_{+}^{[0]}\right)$

PSD color change rule

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example ($B_{+}^{[1]}$)

PSD color change rule

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}^{[2]}\right)$

PSD color change rule

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}^{[3]}\right)$

PSD color change rule

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}^{[4]}: Z_{+}(T)=1\right)$

Skew and hollow symmetric maximum nullity

- A matrix is hollow if A is symmetric and every diagonal entry is 0 .
- A hollow matrix described by a graph G is a weighted adjacency matrix of G.
- A matrix is skew symmetric if $A^{T}=-A$.

$$
\begin{aligned}
\mathcal{S}_{0}(G) & =\left\{A \in S_{n}(\mathbb{R}): \mathcal{G}(A)=G \text { and } A \text { is hollow }\right\} . \\
\mathcal{S}_{-}(G) & =\left\{A \in \mathbb{R}^{n \times n}: \mathcal{G}(A)=G \text { and } A^{T}=-A\right\} .
\end{aligned}
$$

The maximum hollow nullity and maximum skew nullity of graph
G are

$$
\begin{aligned}
M_{0}(G) & =\max \left\{\text { null } A: A \in \mathcal{S}_{0}(G)\right\} \\
M_{-}(G) & =\max \left\{\text { null } A: A \in \mathcal{S}_{-}(G)\right\}
\end{aligned}
$$

Skew forcing and maximum nullity

Theorem (ABDeADDeLGGHIKNPSSW 2010 and GHHHJKMcC 2014)

For every graph $G, \mathrm{M}_{-}(G) \leq \mathrm{Z}_{-}(G)$ and $\mathrm{M}_{0}(G) \leq \mathrm{Z}_{-}(G)$.

- G a graph with $V(G)=\{1, \ldots, n\}$ and $A \in \mathcal{S}_{-}(G)$ or $A \in \mathcal{S}_{0}(G)$,
- $\mathrm{x} \in \mathbb{R}^{n}, A \mathrm{x}=0$, and $x_{k}=0$ for all $k \in B \subseteq V(G)$,
- $j \notin B$ and j is the only vertex k such that $i k \in E(G)$ and $k \notin B$.
imply

$$
x_{j}=0
$$

because equating the i th entries in $A x=0$ yields $a_{i j} x_{j}=0$.

Skew zero forcing color change rule

Skew color change rule: Let W be the set of (currently) white vertices. A vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B_{-}=B_{-}^{[0]}\right)$

Skew zero forcing color change rule

Skew color change rule: Let W be the set of (currently) white vertices. A vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example ($B_{-}^{[1]}$)

Skew zero forcing color change rule

Skew color change rule: Let W be the set of (currently) white vertices. A vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B_{-}^{[2]}: Z_{-}(T)=2\right)$

Maximum nullities and zero forcing numbers for families

Theorem (four papers previously cited)

- For $n \geq 2, \mathrm{Z}\left(K_{n}\right)=\mathrm{M}\left(K_{n}\right)=\mathrm{Z}_{+}\left(K_{n}\right)=\mathrm{M}_{+}\left(K_{n}\right)=n-1$ and $\mathrm{Z}_{-}\left(K_{n}\right)=\mathrm{M}_{-}\left(K_{n}\right)=\mathrm{M}_{0}\left(K_{n}\right)=n-2$.
- For $n \geq 1, \mathrm{Z}\left(\overline{K_{n}}\right)=\mathrm{M}\left(\overline{K_{n}}\right)=\mathrm{Z}_{+}\left(\overline{K_{n}}\right)=\mathrm{M}_{+}\left(\overline{K_{n}}\right)=$ $\mathrm{Z}_{-}\left(\overline{K_{n}}\right)=\mathrm{M}_{-}\left(\overline{K_{n}}\right)=n$.
- For $n \geq 3, \mathrm{Z}\left(K_{r, n-r}\right)=\mathrm{M}\left(K_{r, n-r}\right)=Z_{-}\left(K_{r, n-r}\right)=$ $\mathrm{M}_{-}\left(K_{r, n-r}\right)=\mathrm{M}_{0}\left(K_{r, n-r}\right)=n-2$ and
$\mathrm{Z}_{+}\left(K_{r, n-r}\right)=\mathrm{M}_{+}\left(K_{r, n-r}\right)=\min (r, n-r)$.
- For $n \geq 2, \mathrm{Z}\left(P_{n}\right)=\mathrm{M}\left(P_{n}\right)=\mathrm{Z}_{+}\left(P_{n}\right)=\mathrm{M}_{+}\left(P_{n}\right)=1$.

For even $n, \mathrm{Z}_{-}\left(P_{n}\right)=\mathrm{M}_{-}\left(P_{n}\right)=\mathrm{M}_{0}\left(P_{n}\right)=0$ and for odd n, $\mathrm{Z}_{-}\left(P_{n}\right)=\mathrm{M}_{-}\left(P_{n}\right)=\mathrm{M}_{0}\left(P_{n}\right)=1$.

- For $n \geq 3, \mathrm{Z}\left(C_{n}\right)=\mathrm{M}\left(C_{n}\right)=\mathrm{Z}_{+}\left(C_{n}\right)=\mathrm{M}_{+}\left(C_{n}\right)=2$.

For even $n \geq 4, Z_{-}\left(C_{n}\right)=\mathrm{M}_{-}\left(C_{n}\right)=\mathrm{M}_{0}\left(C_{n}\right)=2$. For odd $n \geq 3, \mathrm{Z}_{-}\left(C_{n}\right)=\mathrm{M}_{-}\left(C_{n}\right)=1$ and $\mathrm{M}_{0}\left(C_{n}\right)=0$.

Propagation time for zero forcing variants

Let R be a color change rule.

- The R-propagation time for a set $B=B^{[0]}$ of vertices, $\mathrm{pt}_{R}(G, B)$, is the smallest t such that $B^{[t]}=V(G)$ using the R color change rule (and is infinity if this never happens).
- This is also called the number of times steps or rounds to color the graph.
- The R-propagation time of G is

$$
\mathrm{pt}_{R}(G)=\min \left\{\mathrm{pt}_{R}(G, B): B \text { is a minimum } R \text {-forcing set. }\right\}
$$

(Standard) propagation time pt(G)

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B=B^{[0]}\right)$

(Standard) propagation time pt(G)

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example ($B^{[1]}$)

(Standard) propagation time pt(G)

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B^{[2]}\right)$

(Standard) propagation time pt(G)

Standard color change rule: Let W be the set of (currently) white vertices. A blue vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B^{[3]}: \operatorname{pt}(T)=3\right)$

PSD propagation time $\mathrm{pt}_{+}(G)$

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}=B_{+}^{[0]}\right)$

PSD propagation time $\mathrm{pt}_{+}(G)$

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example ($B_{+}^{[1]}$)

PSD propagation time $\mathrm{pt}_{+}(G)$

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}^{[2]}\right)$

PSD propagation time $\mathrm{pt}_{+}(G)$

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}^{[3]}\right)$

PSD propagation time $\mathrm{pt}_{+}(G)$

PSD color change rule: Delete the currently blue vertices from the graph G and determine the components of the resulting graph; let W_{i} be the set of vertices of the i th component. A blue vertex v can change the color of a white vertex w to blue if

$$
N_{G}(v) \cap W_{i}=\{w\} .
$$

Example $\left(B_{+}^{[4]}: \mathrm{pt}_{+}(T)=4\right)$

Skew propagation time pt_(G)

Skew color change rule: Let W be the set of (currently) white vertices. A vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B_{-}=B_{-}^{[0]}\right)$

Skew propagation time pt_(G)

Skew color change rule: Let W be the set of (currently) white vertices. A vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example ($B_{-}^{[1]}$)

Skew propagation time pt_(G)

Skew color change rule: Let W be the set of (currently) white vertices. A vertex v can change the color of vertex $w \in W$ to blue if

$$
N_{G}(v) \cap W=\{w\} .
$$

Example $\left(B_{-}^{[2]}: \mathrm{pt}_{-}(T)=2\right)$

Propagation time of complete graphs and paths

Theorem (HHKMWY 2012, W 2015, K 2015)

- For $n \geq 2, \mathrm{pt}\left(K_{n}\right)=\mathrm{pt}_{+}\left(K_{n}\right)=\mathrm{pt}_{-}\left(K_{n}\right)=1$.
- For $n \geq 1, \mathrm{pt}\left(\overline{K_{n}}\right)=\mathrm{pt}_{+}\left(\overline{K_{n}}\right)=\mathrm{pt}_{-}\left(\overline{K_{n}}\right)=0$.
- $\operatorname{pt}\left(K_{1, n-1}\right)=2$ and for $2 \leq r \leq n-2, \operatorname{pt}\left(K_{r, n-r}\right)=1$. For $1 \leq r \leq n-1, \mathrm{pt}_{+}\left(K_{r, n-r}\right)=\mathrm{pt}_{-}\left(K_{r, n-r}\right)=1$.
- For $n \geq 2$, $\mathrm{pt}\left(P_{n}\right)=n-1$ and $\mathrm{pt}_{+}\left(P_{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil$. pt_$\left(P_{n}\right)=\frac{n}{2}$ for even n and $\mathrm{pt}_{-}\left(P_{n}\right)=\left\lfloor\frac{n+1}{4}\right\rfloor$ for odd n.
- For $n \geq 3, \operatorname{pt}\left(C_{n}\right)=\left\lceil\frac{n-2}{2}\right\rceil$ and $\mathrm{pt}_{+}\left(C_{n}\right)=\left\lceil\frac{n-2}{4}\right\rceil$.

$$
\mathrm{pt}_{-}\left(C_{n}\right)=\left\{\begin{array}{ll}
\frac{n-1}{2} & \text { if } n \text { is odd } \\
\frac{n}{4} & \text { if } n \equiv 0 \bmod 4 \\
\frac{n-2}{4} & \text { if } n \equiv 2 \bmod 4
\end{array} .\right.
$$

Throttling

Throttling involves minimizing the sum of the number of resources used to accomplish a task (e.g., blue vertices) and the time needed to accomplish the task (e.g., propagation time).
Unlike propagation time of a graph, which starts with a minimum set of blue vertices, throttling often uses more blue vertices to reduce time.

Let R be a color change rule.

- The R-propagation time for a set $B=B^{[0]}$ of vertices, $\mathrm{pt}_{R}(G, B)$, is the smallest t such that $B^{[t]}=V(G)$ using the R color change rule (and is infinity if this never happens).
- The R-throttling number of a set B of vertices, $\operatorname{th}_{R}(G ; B)=|B|+\mathrm{pt}_{R}(G, B)$, is the sum of the number vertices in B and the R-propagation of B.
- The R-throttling number of G is

$$
\operatorname{th}_{R}(G)=\min _{B \subseteq V(G)} \operatorname{th}_{R}(G ; B)=\min _{B \subseteq V(G)}\left(|B|+\mathrm{pt}_{R}(G, B)\right) .
$$

(Standard) throttling

- The propagation time for a set $B=B^{[0]}$ of vertices, $\operatorname{pt}(G, B)$, is the smallest t such that $B^{[t]}=V(G)$ using the (standard) zero forcing color change rule.
- The throttling number of G for zero forcing is $\operatorname{th}(G)=\min _{B \subseteq V(G)}(|B|+\operatorname{pt}(G, B))$.

Example $(Z(T)=4, \operatorname{pt}(T)=3, \operatorname{th}(T)=7)$

PSD throttling

- The PSD propagation time for a set $B=B^{[0]}$ of vertices, $\mathrm{pt}_{+}(G, B)$, is the smallest t such that $B^{[t]}=V(G)$ using the PSD color change rule.
- The PSD throttling number of G for zero forcing is the $\mathrm{th}_{+}(G)=\min _{B \subseteq V(G)}\left(|B|+\mathrm{pt}_{+}(G, B)\right)$.

Example

$\mathrm{Z}_{+}(T)=1$ and $\mathrm{pt}_{+}(T)=4$. Using a PSD zero forcing set B of 2 vertices, $\mathrm{pt}_{+}(G, B)=2$ and $\mathrm{th}_{+}(T)=2+2=4$.

Skew throttling

- The skew propagation time for a set $B=B^{[0]}$ of vertices, pt_ (G, B), is the smallest t such that $B^{[t]}=V(G)$ using the skew forcing color change rule.
- The skew throttling number of G for zero forcing is th ${ }_{-}(G)=\min _{B \subseteq V(G)}\left(|B|+\mathrm{pt}_{-}(G, B)\right)$.

Example $\left(\mathrm{Z}_{-}(T)=2, \mathrm{pt}_{-}(T)=2\right.$, th $\left._{-}(T)=4\right)$

Throttling numbers of families of graphs

Theorem (BY 2013, CHKLRSVM 2019, CGH 2020)

- For $n \geq 1, \operatorname{th}\left(K_{n}\right)=\operatorname{th}_{+}\left(K_{n}\right)=n$. For $n \geq 2$, th $-\left(K_{n}\right)=n-1$.
- For $n \geq 1, \operatorname{th}\left(\overline{K_{n}}\right)=$ th $_{+}\left(\overline{K_{n}}\right)=\operatorname{th}_{-}\left(\overline{K_{n}}\right)=n$.
- $\operatorname{pt}\left(K_{1, n-1}\right)=2$ and for $2 \leq r \leq n-2, \operatorname{pt}\left(K_{r, n-r}\right)=1$.

For $1 \leq r \leq n-1, \mathrm{pt}_{+}\left(K_{r, n-r}\right)=\mathrm{pt}_{-}\left(K_{r, n-r}\right)=1$.

- For $n \geq 2, \operatorname{th}\left(P_{n}\right)=\lceil 2 \sqrt{n}-1\rceil$, $\operatorname{th}_{+}\left(P_{n}\right)=\left\lceil\sqrt{2 n}-\frac{1}{2}\right\rceil$, and $\mathrm{th}_{-}\left(P_{n}\right)=\left\lceil\sqrt{2(n+1)}-\frac{3}{2}\right\rceil$.
- For $n \geq 3, \operatorname{th}\left(C_{n}\right)=\left\{\begin{array}{ll}\lceil 2 \sqrt{n}-1\rceil & \text { unless } n=(2 k+1)^{2} \\ 2 \sqrt{n} & \text { if } n=(2 k+1)^{2}\end{array}\right.$. $\mathrm{th}_{+}\left(C_{n}\right)=\left\lceil\sqrt{2 n}-\frac{1}{2}\right\rceil$.
th $_{-}\left(C_{n}\right)=\left\lceil\sqrt{2 n}-\frac{1}{2}\right\rceil$.

Relationships: standard, PSD, and skew throttling

Observation

Let $B \subseteq V(G)$ be a zero forcing set. Then,

- B is a PSD forcing set and a skew forcing set.
- $Z_{+}(G) \leq Z(G)$ and $Z_{-}(G) \leq Z(G)$
- $\mathrm{pt}_{+}(G, B) \leq \mathrm{pt}(G, B)$ and $\mathrm{pt}(G, B) \leq \mathrm{pt}(G, B)$
- $\mathrm{th}_{+}(G ; B) \leq \operatorname{th}(G ; B)$ and $\mathrm{th}_{-}(G ; B) \leq \operatorname{th}(G ; B)$.
- th ${ }_{+}(G) \leq \operatorname{th}(G)$ and th $(G) \leq \operatorname{th}(G)$.
- th $h_{+}(G)$ and th (G) are noncomparable.
- $\mathrm{pt}_{+}(G), \mathrm{pt}_{-}(G)$, and $\mathrm{pt}(G)$ are noncomparable (minimum values can differ).

Lower bound on th (G)

Theorem (Butler, Young, 2013)

Let G be a graph of order n. Then

$$
\operatorname{th}(G) \geq\lceil 2 \sqrt{n}-1\rceil
$$

and this bound is tight.
PSD and skew are very different

- $\mathrm{th}_{+}\left(K_{1, n-1}\right)=2$.
- For any G with a component of order ≥ 2,

$$
\mathrm{Z}_{-}\left(G \circ K_{1}\right)=0, \mathrm{pt}_{-}\left(G \circ K_{1}\right)=2, \mathrm{th}_{-}\left(G \circ K_{1}\right)=2 .
$$

Extreme values for th (G)

$\lceil 2 \sqrt{n}-1\rceil \leq \operatorname{th}(G)$ implies the number of graphs having $\operatorname{th}(G)=k$ is finite.

Remark

All the graphs having $\operatorname{th}(G) \leq 3$ are listed below.

1) $\operatorname{th}(G)=1$ if and only if $|V(G)|=1$.
2) $\operatorname{th}(G)=2$ if and only if $|V(G)|=2$.
3) $\operatorname{th}(G)=3$ if and only if $|V(G)|=3$ or $G=2 K_{2}, P_{4}$, or C_{4}.

Theorem (CK 2020+)

Let G be a graph of order n. The following are equivalent:

1) $\operatorname{th}(G)=n$.
2) G is a threshold graph.
3) G does not have P_{4}, C_{4}, or $2 K_{2}$ as an induced subgraph.

Extreme values for $\mathrm{th}_{+}(G)$

Theorem (CHKLRSVM 2019)

Let G be a connected graph of order n.

1) $\mathrm{th}_{+}(G)=n$ if and only if $G=K_{n}$.
2) $\mathrm{th}_{+}(G)=n-1$ if and only if $\alpha(G)=2$ and G does not have an induced C_{5}, house, or double diamond subgraph.

C_{5}

house

double diamond

Extreme values for $\mathrm{th}_{+}(G)$

Theorem (CHKLRSVM 2019)

Let G be a graph of order n.

1) $\mathrm{th}_{+}(G)=1$ if and only if $n=1$.
2) $\mathrm{th}_{+}(G)=2$ if and only if $G=K_{1, n-1}$ or $G=2 K_{1}$.
3) For a graph $G, \operatorname{th}_{+}(G)=3$ if and only if at least one of the following is true:
3.1 G is disconnected and exactly of the following holds:
3.1.1 G is $3 K_{1}$, or
3.1.2 G has two components, each component is a copy of $K_{1, n-1}$ or K_{1}, and at least one component has order greater than one.
3.2 G is a tree with diameter three or four, or
3.3 G is connected and there exist $v, u \in V(G)$ such that:
3.3.1 G has a cycle, or G is a tree with $\operatorname{diam} G=5$,
3.3.2 $N(u) \cup N(v)=V(G)$,
3.3.3 $\operatorname{deg}(w) \leq 2$ for all $w \notin\{v, u\}$, and
3.3.4 if $w_{1}, w_{2} \in N(u)$ or $w_{1}, w_{2} \in N(v)$, then w_{1} is not adjacent to w_{2}.

Extreme values for th_ (G)

Theorem (CGH 2020)

Let G be a graph of order n.

1) th_ $(G)=1$ if and only if $G=K_{1}$ or $G=r K_{2}$ for $r \geq 1$.
2) A graph G has th_ $(G)=2$ if and only if G is one of $2 K_{1}$, $H(s, t) \sqcup r K_{2}$ with $r+s+t \geq 1$, or $\left(\widetilde{G} \circ K_{1}\right) \sqcup r K_{2}$ where each component of \widetilde{G} has an edge.
3) th $_{-}(G)=n$ if and only if $G=n K_{1}$.
4) th_ $(G)=n-1$ if and only if G is a cograph, does not have an induced $2 K_{2}$, and has at least one edge.

The graph $H(2,3)$

Computation

There is Sage software that computes

- $Z(G), Z_{+}(G), Z_{-}(G)$,
- $\operatorname{pt}(G), \mathrm{pt}_{+}(G), \mathrm{pt}_{-}(G)$,
- th($G), \mathrm{th}_{+}(G), \mathrm{th}_{-}(G)$
for "small" graphs.

References

嗇 M．Allison，E．Bodine，L．M．DeAlba，J．Debnath，L．DeLoss， C．Garnett，J．Grout，L．Hogben，B．Im，H．Kim，R．Nair， O．Pryporova，K．Savage，B．Shader，A．W．Wehe（IMA－ISU research group on minimum rank）．Minimum rank of skew－symmetric matrices described by a graph．Lin．Alg．Appl．，432：2457－2472， 2010.

围 F．Barioli，W．Barrett，S．Butler，S．M．Cioaba，D．Cvetković， S．M．Fallat，C．Godsil，W．Haemers，L．Hogben，R．Mikkelson， S．Narayan，O．Pryporova，I．Sciriha，W．So，D．Stevanović，H．van der Holst，K．Vander Meulen，and A．Wangsness Wehe（AIM Minimum Rank－Special Graphs Work Group）．Zero forcing sets and the minimum rank of graphs．Lin．Alg．Appl．，428：1628－1648， 2008.
國 F．Barioli，W．Barrett，S．Fallat，H．T．Hall，L．Hogben，B．Shader，P． van den Driessche，and H．van der Holst．Zero forcing parameters and minimum rank problems．Lin．Alg．Appl．， 433 （2010），401－411．
（ S．Butler，M．Young．Throttling zero forcing propagation speed on graphs．Australas．J．Combin．， 57 （2013），65－71．

References

圊 J．Carlson，L．Hogben，J．Kritschgau，K．Lorenzen，M．S．Ross， V．Valle Martinez．Throttling positive semidefinite zero forcing propagation time on graphs．Discrete Appl．Math．， 254 （2019）， 33－46．
圊 J．Carlson and J．Kritschgau．Various characterizations of throttling numbers．https：／／arxiv．org／pdf／1909．07952．pdf
輷 E．Curl，J．Geneson，L．Hogben．Skew throttling．Australas．J ． Combin．， 78 （2020），117－190．
嗇 C．Grood，J．A．Harmse，L．Hogben，T．Hunter，B．Jacob，A．Klimas， S．McCathern，Minimum rank of zero－diagonal matrices described by a graph．Electron．J．Linear Algebra， 27 （2014），458－477．
圕 L．Hogben，M．Huynh，N．Kingsley，S．Meyer，S．Walker，and M． Young．Propagation time for zero forcing on a graph．Discrete Applied Math， 160 （2012），1994－2005．
周
N．F．Kingsley．Skew propagation time．Dissertation（Ph．D．），lowa State University， 2015.

围
N．Warnberg．Positive semidefinite propagation time．Discrete Appl． Math．， 198 （2016）274－290．

