Algorithmic aspects of finite dualities

January 15, 2013

Abstract

Let \mathcal{K} be a set partially ordered by a relation ' \leq '. A finite duality on \mathcal{K} is a pair (U, \mathcal{F}) , where $U \in \mathcal{K}$, and \mathcal{F} is a finite set, such that for all $H \in \mathcal{K}$, $H \leq U$ if and only if $F \not\leq U$, for all $F \in \mathcal{F}$. We are interested in finite dualities due to the fact that certain problems believed to be intractable (classified as NP-complete) become efficiently solvable, when we restrict our input to be from \mathcal{K} , provided that we have a finite duality (U, \mathcal{F}) on \mathcal{K} . An efficient algorithm is achieved via the finite list of elements in \mathcal{F} that witness whether or not $H \leq U$, for any $H \in \mathcal{K}$. That is, $|\mathcal{F}|$ is a fixed size, and hence the running time is polynomial in |H|, rather than being exponential in |H|. We shall give some well known examples to make this clear, and present some recent results.