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Abstract. In 1984, Grothendieck observed that any hand-drawn, “connect-the-dots” pic-
ture (he called them “child’s drawings” or dessins d’enfants) determines a unique algebraic
curve (a.k.a. Riemann surface). As a consequence of a theorem of Bely̆ı (1979), the curve is
defined over a finite extension of the rationals, i.e., an algebraic number field. Conversely,
any curve defined over a number field carries a canonical imbedded dessin. It follows that
there is a faithful action of the absolute Galois group on dessins, but that is a story for
another day.

Dessins have a purely combinatorial description in terms of permutation groups; they also
have a purely algebraic description in terms of “triangle groups” – abstract (usually infinite)
groups generated by three elements of finite order whose product is the identity. I’ll give
both descriptions, and an (abridged) dictionary between them. I’ll also give an indication
of the proof of Bely̆ı’s theorem, and its relevance to dessins.

The most convenient model of a dessin is a bipartite graph imbedded on a compact
surface so that the complement of the graph consists of simply connected regions. I’ll
quickly specialize to dessins having a single “black” vertex, and all “white” vertices of
valence 2. I’ll show how this highly restricted class of dessins is sufficient to recover some
well-known algebraic curves, such as Wiman’s family of curves of genus g > 1, admitting
automorphisms of maximal order 4g + 2, and Klein’s quartic of genus g = 3, admitting
84(g − 1) automorphisms.
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