ALGEBRAICALLY DEFINED DIRECTED GRAPHS

ALEX KODESS

Let q be a prime power, \mathbb{F}_q denote the finite field of q elements. Let $f_i: \mathbb{F}_q^2 \to \mathbb{F}_q$ be arbitrary functions, $1 \leq i \leq l$. The digraph $D = D(q; \mathbf{f})$, where $\mathbf{f} = (f_1, \ldots, f_l): \mathbb{F}_q^2 \to \mathbb{F}_q^l$, is defined as follows. The vertex set V of D is \mathbb{F}_q^{l+1} . There is an arc from $(x_1, \ldots, x_{l+1}) \in V$ to $(y_1, \ldots, y_{l+1}) \in V$ if and only if $x_i + y_i = f_{i-1}(x_1, y_1)$ for all $i, 2 \leq i \leq l+1$.

When l = 1 and $f = f_1$ can be represented by the polynomial $f(X_1, X_2) = X_1^m X_2^n$, the corresponding digraph D = D(q; m, n) is called a *monomial* digraph.

The digraphs $D(q; \mathbf{f})$ are directed analogues of a well studied class of algebraically defined undirected bipartite graphs $B\Gamma(q; f)$ (proposed by Lazebnik and Woldar) having many applications, most noticeably in extremal graph theory supplying a lower bound of the best magnitude on some $ex(\nu, C_{2l})$.

We present a number of results on the strong connectivity of the general algebraic digraph $D(q; \mathbf{f})$ and the diameters of monomial digraphs. We also discuss the isomorphism problem for all monomial digraphs for a fixed q.