Forbidden intersection patterns in the families of subsets

Gyula O.H. Katona Rényi Institute Budapest, Hungary ohkatona@renyi.hu

Let $[n] = \{1, 2, ..., n\}$ be a finite set, families \mathcal{F} of its subsets will be investigated. Sperner's theorem says that if there is no inclusion among the members of \mathcal{F} then the largest family under this condition is the one containing all $\lfloor \frac{n}{2} \rfloor$ -element subsets of [n]. The present lecture surveys certain generalizations of this theorem. The maximum size of \mathcal{F} is to be found under the condition that a certain configuration is excluded. The configuration here is always described by inclusions. More formally, let P be a poset. The maximum size of a family $\mathcal{F} \subset 2^{[n]}$ which does not contain P as a (nonnecessarily induced) subposet is denoted by $\operatorname{La}(n, P)$. We will give account of the newest developments in this theory, among others we will show the surprisingly easy proof for the butterfly (a < c, a < d, b < c, b < d) by Burcsi and D.T. Nagy.