A “CHALLENGING QUESTION” OF BJORNER FROM
1976: EVERY INFINITE GEOMETRIC LATTICE OF
FINITE RANK HAS A MATCHING

JONATHAN DAVID FARLEY

ABSTRACT. It is proven that every geometric lattice of finite rank greater
than 1 has a matching between the points and hyperplanes. This an-
swers a question of Pdélya Prize-winner Anders Bjorner from the 1981
Banff Conference on Ordered Sets, which he raised as a “challenging
question” in 1976.

At the famous 1981 Banff Conference on Ordered Sets—such luminar-
ies as Erdés, Professor Garrett Birkhoff, Dilworth, Turing Award-winner D.
S. Scott, Daykin, A. Garsia, R. L. Graham, C. Greene, B. Jénsson, E. C.
Milner, and Oxford’s H. A. Priestley attended—Bjorner asked (with MIT’s
Richard Stanley asking a question immediately afterwards, judging from the
proceedings) if every geometric lattice L of finite rank [> 2] had a match-
ing [13, pp. xi, xii, and 799]. Greene had proven this for finite lattices [7,
Corollary 3]. Bjorner had proven this in special cases [4, Theorems 3 and
4]—for modular lattices and for “equicardinal lattices,” i.e., lattices whose
hyperplanes contained the same number of atoms. In 1976, Bjorner wrote,
“It would be interesting to know if the result of our theorems 3 and 4 can be
extended to all infinite geometric lattices, or at least to some classes of such
lattices other than the modular and the equicardinal.” In 1977, he proved it
for lattices of rank 3 and for lattices of cardinality less than X,,. The Pélya
Prize-winner went on to ask at the Banff Conference if there exists a family
M of pairwise disjoint maximal chains in L \ {0,1} whose union contains
the set of atoms, saying, “I showed this is true for modular L, and J. Mason
showed it to be true for finite L.” He conjectured this in 1977 ([5, p. 18],
[4, p. 10]), writing in 1976 that “[a]nother challenging question, related to
the existence of matchings, is whether maximal families of pairwise disjoint
maximal proper chains do exist in infinite geometric lattices (cf. [11]).”

We answer Bjorner’s 1976 question about matchings.

We selectively use some of the notation and terminology from [6] and
, apter 11, an apter .
3, Ch II, §8 and Ch v
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Let P be a poset. Let x,y € P be such that x < y. The closed interval
[z,y]is {z € P:x <z <y} If|z,y]| =2, wesay z is a lower cover of y
and y is an upper cover of x and denote it x < y.

Let P be a poset with least element 0. An atom or point is a cover of
0. The set of atoms is A(P). If P is a poset with greatest element 1, a co-
atom, co-point, or hyperplane is a lower cover of 1. The set of hyperplanes

is H(P).

A poset is semimodular if, for all a,b,c € P, a < b,c and b # ¢ imply
there exists d € P such that b,c < d. A geometric lattice of finite height is
a semimodular lattice L with no infinite chains (totally ordered subsets)—
implying L has a 0 and a 1-—such that every element is a join of a subset of
atoms. It is known [12, Theorem 9.4] that such an L is a complete lattice
with a finite maximal chain and all maximal chains have the same size r+1,
where 7 is the height or rank of L. Moreover, every element is a join of a
finite set of atoms and a meet of a subset of H(L) (see [4, Lemma 1]). Every
interval is a geometric lattice [15, §3.3, Lemma]. The rank of | x := [0, z] is
the rank r(z) of z € L. For z,y € L, r(x Vy) +r(z Ay) <r(z)+r(y) [12,
Theorem 9.5]. For z € L, let z := A(L)N | z and let T := H(L) N [z, 1].

The following is a basic fact (see [4, p. 3]).

Lemma 1. Let L be a geometric lattice of finite height. Let a,b € L be such
thata <b. Then any x € [a,b] has a modular complement in [a, b], i.e., there
exists y € [a,b] such that x Ny = a, xVy =10b, and r(z) +r(y) = r(a) +r(b).

Proof. f x =cp<cp<---<cp =0, find a; € A(L)N{ ¢\ | ¢i—1 for
i=1,...,k Lety=aVaV---Vag. Clearly r(y) —r(a) =k =r(b) —r(x),
xVy=>b,and x ANy >a. Asr(a) <r(zAy) <r(x)+rly) —r(xVy) =
r(a) +r(b) —r(b) =r(a), we have z Ay = a. O

See [8, Chapters 2, 3, 5 and 8] and [9, Appendix 2, §3] for basic facts
about ordinals and cardinals. If k is a regular cardinal, a subset 2 C & is
closed in k if for every non-empty subset A C €}, the supremum of A is k or
in ; it is unbounded in k if the supremum of (2 is ; it is a club in & if it is
both. A subset Q C k is stationary in « if it intersects every club in x; note
that |Q| = k.

We take our notation from [2, §§2, 4, and 6]. A society is a triple
A = (Mp, Wy, Kp) where My N Wy = 0 and Kpn C My x Wp. If A C My
and X C Wy, then Kp[A] := {w € W} : (a,w) € K, for some a € A}, and
A[A, X] == (A, X,Kx N (A x X)) is a subsociety of A. If B C My, then
A—B = A[Mp\ B, W,]. If I is a subsociety, then A/II := A[Mp \ My, Wi\
Wii]. We call a subsociety II of A saturated if Kx[My] C Wi and we denote
this situation by IT <1 A.
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An espousal for A is an injective function E : My — W)y such that
E C Kj. A society is critical if it has an espousal and every espousal is
surjective.

If Iis aset and II = (II; : 4 € I) is a family of subsocieties of A,
then JII := (U;e; M, Uiy Wity Ujes Kii,). Assume I is an ordinal. If
6 < I, then IIy denotes (II; : i < 6). The sequence II is non-descending if
IL; is a subsociety of II; whenever ¢ < j < I; it is continuous if, in addition,
Uy = Iy for every limit ordinal § < I. If [ = J+1, Il is a J-tower in A if T
is a continuous family of saturated subsocieties of A such that Iy = (0,0, D).

Let II be a subsociety of A. Assume 1 < k < Ny. Then II is a &-
obstruction in A if II <« A and II — A is critical for some A C Mj such that
|A| = k.

Now assume r is a regular, uncountable cardinal. A k-tower X in
A is obstructive if, for each o < K, ¥o41/% is either (a) a p-obstruction
in A/%, for some pu < k or (b) (0,w,0) for some w € Wy, and {a <
k : (a) holds at o} is stationary in k. We say II is a k-obstruction in A if
II = X for an obstructive x-tower 3 in A; by [2, Lemmas 4.2 and 4.3],
IM<A.

For a society A, 6(A) is the minimum of {|B| : B C My such that A —
B has an espousal}.

We will use the following theorems of Aharoni, Nash-Williams, and
Shelah:

Theorem 2. (from [2, Lemma 4.2 and Corollary 4.9a]) If1I is a k-obstruction,
then 6(I1) = k. O

Theorem 3. [2, Theorem 5.1] A society A has an espousal if and only if it
has no obstruction. O

We will say that a geometric lattice of finite rank » > 3 has a matching
if the society (A(L),’H(L), < N(A(L) x ’H(L))) has an espousal. (Since

A(L) = H(L) in geometric lattices of rank 2, we could say they also have a
matching.)

Greene proved:
Theorem 4. [7, Corollary 3| Every finite geometric lattice of rank at least
2 has a matching. O
Bjorner proved:
Theorem 5. [5, Theorems 3 and 6] Every geometric lattice of rank 3, or of

finite height and cardinality less than R,,, has a matching. ([

We use the following results of Bjorner:



