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Why approximation methods?

Speed is money
Fastest MC/PDE is often too slow

Real time calibration and pricing
CVA calculations in which prices per path at each future point
need to be computed. Nested MC is a nightmare

Analytic study adds understanding
Super-hedge
Asymptotic behavior
Price properties such as convexity, continuity, monotonicity, etc
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Approximation methods

Perturbation, usually through PDE

Probabilistic approach, e.g., moment matching, linear
projection

Lower and upper bounds, interpolation

Other heuristic approach
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Perturbation

PDE from Feynman-Kac. Or perturb an expectation

In physics, small/large parameter could be interaction strength
λ, number of particles in a system (1/N-approximation in
QCD), the dimension of space (ε-approximation in QFT),
Plank constant (WKB approximation)

In finance: volatility, volatility of volatility, interest rates, time,
correlation, relative initial prices in a spread option, strike price

In systems with no apparent small parameters, searching for
one takes effort. Li, Deng and Zhou (2008, 2010)
approximate the price of spread options using the curvature of
the exercise boundary hyper-surface

regular/singular. Li (2010) expands the transition density of a
diffusion using small t (singular, expands around a Dirac-δ)
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Probabilistic approach

Widely used in finance industry

Approximate densities as normal, bivariate-normal, lognormal,
or other tractable ones

Moment matching for Asian options
Gaussian copula for credit derivatives
Mixed lognormal for matching volatility smile/skew

Project random variable X as a linear function of Y with
some normal noise
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Lower and upper bounds

Sometimes we cannot price a derivative. But we can get lower
and upper bounds by no-arbitrage considerations. For
example, (S1 + S2 − K )+ ≤ (S1 − K1)

+ + (S1 − K2)
+

Sometimes relies on inequalities such as GM-AM inequality,
comonotonicity, Hölder’s inequality, Young’s inequality. For
example, arithmetic-mean price Asian option is more
expensive than geometric-mean price Asian

Results often useful for super-hedge considerations

Bounds can sometimes be very tight. American option pricing

Li (2010) considers writing American option price as a linear
combination of two simple bounds, and solves the combination
coefficient approximately through the PDE it satisfies
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Other heuristic approach

Often different approaches are mixed together.
Approximations within approximations

Consider different regions. Pasting approximations together
(need to be careful with Greeks)

In LMM, drift freezing is frequently used

Li and Mercurio (2013) approximate finite-maturity timer
option price as a linear combination of plain-vanilla price and
perpetual timer option price based on the spirit of matched
asymptotic expansion

Not completely rigorous, but better than the alternative of
doing nothing
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Timer Options

Realized variance is defined as

N∑
i=1

[
log

(
Sti

Sti−1

)]2
(1)

A timer option contract has a pre-specified variance
budget B . Perpetual timer options are similar to
plain-vanilla options, except that they are only exercisable
at random time τB when B is first reached

Finite-maturity timer options are exercisable at time
τ := min(τB ,T ), where T is a maximum maturity
specified in the contract
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Our model

One-factor time-homogenous stochastic volatility model:

dSu = (r − δ)Su du +
√
VuSu dW

S
u (2)

dVu = a(Vu)du + ηb(Vu)dW
V
u (3)

Constant correlation ρ between the two Brownian motions

ξu = ξ +

∫ u

0
Vs ds, τB := inf {u > 0 : ξu = B} (4)

We want to compute

Cperp = E
[
e−rτB (SτB − K )+

]
, Cfin = E

[
e−rτ (Sτ − K )+

]
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Existing methods

Monte Carlo. Can be extremely time-consuming, although
Bernard and Cui (2011) made improvements

Multi-dimensional numerical integration as in Lee (2008),
Li (2013), and Liang, Lemmens and Temepere (2011).
Only works for specific models. Assumed δ = 0, or even
r = 0

PDE approach. Could be slow (3+1 dimensions)

Analytic approximation as in Saunders (2010). However,
not very accurate even under extremely large κ
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Perpetual timer options

Pricing PDE with boundary condition C (S ,B,V ) = (S −K )+:

VCξ + a(V )CV +
1

2
η2b2(V )CVV (5)

+ (r − δ)SCS +
1

2
VS2CSS + ρη

√
Vb(V )SCSV − rC = 0

Existing measures Q′, Q̂ and Q̂′ such that

C (S , ξ,V ) = EQ
[
e−rτSτ 1Sτ>K

]− K EQ
[
e−rτ 1Sτ>K

]

= S EQ
′
e−δτ · EQ̂′[

1Sτ>K

]− K EQe−rτ · EQ̂[ 1Sτ>K

]

:= Se−δT ′
N(d+)− Ke−rT N(d−) (6)

If r = δ = 0 or η = 0, we have exact forms for d±
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Perpetual timer options

It’s true that T = T (ξ,V ) and T ′ = T ′(ξ,V ). We write:

d± := d±(S , T , T ′,Σ) =
log(S/K ) + rT − δT ′

Σ
± 1

2
Σ

where we postulate Σ = Σ(ξ,V )

Plugging the solution C = Se−δT ′
N(d+)− Ke−rT N(d−)

into the PDE, and collecting the N(d+), N(d−) and
n(d+) terms, we get three interconnected PDEs for T , T ′

and Σ

We assume small η and solve those PDEs using
perturbation
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Perpetual timer options

Under η = 0,

C (S , ξ,V ) = Se−δT N(d+)− Ke−rT N(d−) (7)

with

d± =
log(Se(r−δ)T /K )√

B − ξ
± 1

2

√
B − ξ (8)

Here T = T (ξ,V ) is the solution of the first-order PDE

VTξ + a(V )TV + 1 = 0 (9)

with the boundary condition T (B,V ) = 0
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Perpetual timer options

For nonzero η, to lowest orders in η, we get

VTξ + a(V )TV +
1

2
η2b2(V )

[T0,VV − r(T0,V )2
]
+ 1 = o(η2)

VT ′
ξ + a′(V )T ′

V +
1

2
η2b2(V )

[T ′
0,VV − δ(T ′

0,V )
2
]
+ 1 = o(η2)

with a′(V ) := a(V ) + ηρ
√
Vb(V ), and

V (Σ2)ξ + a(V )(Σ2)V + V + 2ηρ(r − δ)
√
Vb(V )T0,V = O(η2)

All three first-order PDEs can be solved exactly using method
of characteristics
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Perpetual timer options

Write

T (ξ,V ) ≈ T0(ξ,V ) + η2(H0(ξ,V )− rH1(ξ,V ))

T ′(ξ,V ) ≈ T ′
0 (ξ,V ) + η2(H′

0(ξ,V )− δH′
1(ξ,V ))

and

Σ2(ξ,V ) = B − ξ + 2ηρ(r − δ)G (ξ,V )

The functions needed above can be worked out for many
models in our general class, including Heston and
3/2-models
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Perpetual timer options

For example, in Heston, we have (T ′
0 , H′

0 and H′
1 are similar)

T0 =1

κ
logR

H0 =
(R − 1)

[
2R2z2 + R(2− 5z − 2z2)− 2− z

]

4κ2R2(1 + z)3θ
+

3z logR

2κ2(1 + z)3θ

H1 =
(R − 1)(1 + 2R2z + R(2z − 3))

4κ3R2(1 + z)2θ
− (2z − 1) logR

2κ3(1 + z)2θ

G =
(1− R)(Rz − 1) + R(z − 1) logR

κ2R(1 + z)

with

R := ez−z0+κB
θ , z0 :=

V0 − θ

θ
, z := W

(
z0e

z0 e−κB
θ

)
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Perpetual timer options - Numerical results

r = 1.5%, δ = 3%, S = 100,
V0 = B = 0.087, θ = 0.09, κ = 2, η = 0.375.

K ρ MC η = 0 Error Approx Error

90 −0.5 15.265 15.605 2.23% 15.261 −0.03%
0 15.444 15.605 1.04% 15.435 −0.06%

0.5 15.599 15.605 0.03% 15.601 0.01%

100 −0.5 10.466 10.763 2.84% 10.465 −0.01%
0 10.637 10.763 1.18% 10.632 −0.06%

0.5 10.796 10.763 −0.30% 10.792 −0.04%

110 −0.5 6.973 7.221 3.56% 6.975 0.03%
0 7.125 7.221 1.35% 7.123 −0.03%

0.5 7.271 7.221 −0.68% 7.267 −0.06%
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Perpetual timer options

The form C = Se−δT ′
N(d+)− Ke−rT N(d−) has many

attractive features:

Black-Scholes like, easy to interpret quantities
Easy Greek computation, such as Delta and Gamma, since

Se−δT ′
n(d+)− Ke−rT n(d−) = 0

For example, ∆ = e−δT ′
N(d+)

Reduces to exact formulas in special cases
Put timer is consistently approximated as

P = Ke−rT N(−d−)− Se−δT ′
N(−d+)

We also approximated the joint moment generating function
of (SτB , τ

B)
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Finite-maturity timer options

It can be shown that for small η, τB is approximately normal:

µ(B) = T0 + η2H0, σ2(B) = 2η2H1 (10)

The approximation is in the following sense

MτB (λ) ≡ Eeλτ
B
= eλ(T0+η2H0)+λ2η2H1 + o(η2) (11)

Derivation is through a perturbation for Π(ξ,V ) := MτB (λ)

VΠξ + a(V )ΠV +
1

2
η2b2(V )ΠVV + λΠ = 0 (12)

Distribution of ξT can be approximated through duality

{τ x > T} = {ξT < x} (13)
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Finite-maturity timer options
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Finite-maturity timer options

PDE approach is difficult. We switch to a probabilistic
approach. We first work with ρ = 0

Assume ρ = 0. We can write Cfin = CB
fin + CT

fin, where

CB
fin = E

[
CBS(S ,K , r , δ, τB ,B) 1{τB<T}

]
(14)

CT
fin = E

[
CBS(S ,K , r , δ,T , ξT ) 1{ξT<B}

]
(15)

Given the distribution of τB (and hence that of ξT by
duality), we can evaluate the above integrals numerically (one
is actually in closed form)
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Finite-maturity timer options (ρ = 0)

CB
fin ≈ S I

(
a+, b,−δ, µ(B), σ(B)

)− K I
(
a−, b,−r , µ(B), σ(B)

)

where

a± =
log(S/K )√

B
±

√
B

2
, b =

r − δ√
B

and I(a, b, s,m,Σ) is given by

I = ems+Σ2s2/2 N2

(
T − (m + sΣ2)

Σ
,
a+ b(m + sΣ2)√

1 + b2Σ2
;− bΣ√

1 + b2Σ2

)

CT
fin ≈ CBS(S ,K , r , δ,T ,B) F̃ξT (B)− Se−δT

∫ √
B

0

n
(
d1(T , y2)

)
F̃ξT (y

2) dy
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Finite-maturity timer options (ρ = 0)

η = 0.125 η = 0.250 η = 0.375

T K Approx MC Error Approx MC Error Approx MC Error

0.5 90 13.267 13.265 0.01 13.230 13.235 −0.04 13.117 13.180 −0.47

100 7.885 7.884 0.02 7.832 7.838 −0.08 7.684 7.756 −0.92
110 4.352 4.351 0.03 4.312 4.319 −0.15 4.186 4.260 −1.73

1.0 90 15.418 15.417 0.01 15.156 15.164 −0.05 14.856 14.889 −0.22
100 10.544 10.542 0.01 10.240 10.247 −0.06 9.897 9.928 −0.31
110 7.000 6.999 0.02 6.702 6.709 −0.10 6.370 6.402 −0.51

1.5 90 15.586 15.586 0.00 15.523 15.515 0.05 15.379 15.358 0.14
100 10.749 10.749 0.00 10.697 10.685 0.11 10.558 10.523 0.33
110 7.211 7.211 0.00 7.169 7.156 0.18 7.046 7.008 0.55

2.0 90 15.586 15.586 0.00 15.530 15.533 −0.02 15.435 15.445 −0.06
100 10.749 10.749 0.00 10.706 10.708 −0.02 10.631 10.635 −0.03
110 7.211 7.211 0.00 7.178 7.180 −0.02 7.123 7.122 0.01

10.0 90 15.586 15.586 0.00 15.530 15.530 0.00 15.437 15.444 −0.05
100 10.749 10.749 0.00 10.706 10.706 −0.01 10.634 10.637 −0.04
110 7.211 7.211 0.00 7.178 7.180 −0.02 7.125 7.125 0.00
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Finite-maturity timer options

For ρ 6= 0. We use

Cfin(ρ) ≈ Cperp(ρ)
CB
fin(0)

Cperp(0)
+ Cvanilla(ρ)

CT
fin(0)

Cvanilla(0)

The approximation uses the ρ dependence for perpetual
timer options when T is large, and uses the ρ dependence
for plain-vanilla options when B is large

Goes to right limits when T ¿ µ(B), or T À µ(B)

Exact when η = 0 or ρ = 0
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Finite-maturity timer options

η = 0.125 η = 0.250 η = 0.375

ρ K Approx MC Error Approx MC Error Approx MC Error

T = 0.5

−0.5 90 13.334 13.333 0.01 13.357 13.363 −0.04 13.287 13.373 −0.65
100 7.853 7.852 0.01 7.767 7.771 −0.05 7.587 7.663 −1.00
110 4.226 4.225 0.01 4.062 4.062 −0.01 3.832 3.877 −1.18

0.5 90 13.196 13.195 0.01 13.089 13.093 −0.03 12.915 12.963 −0.37
100 7.916 7.916 0.01 7.894 7.903 −0.12 7.775 7.850 −0.95
110 4.475 4.474 0.01 4.548 4.560 −0.28 4.508 4.614 −2.30

T = 1.0

−0.5 90 15.407 15.441 −0.22 15.148 15.223 −0.49 14.858 14.998 −0.94
100 10.481 10.517 −0.34 10.117 10.194 −0.75 9.716 9.836 −1.22
110 6.894 6.920 −0.38 6.482 6.534 −0.79 6.041 6.121 −1.30

0.5 90 15.426 15.448 −0.14 15.151 15.203 −0.34 14.822 14.920 −0.66
100 10.605 10.629 −0.23 10.356 10.414 −0.56 10.057 10.162 −1.03
110 7.104 7.123 −0.27 6.909 6.960 −0.74 6.669 6.762 −1.39

T = 1.5

−0.5 90 15.523 15.525 −0.02 15.405 15.415 −0.07 15.234 15.276 −0.28
100 10.689 10.691 −0.02 10.579 10.583 −0.04 10.379 10.407 −0.26
110 7.158 7.159 −0.01 7.059 7.055 0.06 6.854 6.853 0.01

0.5 90 15.648 15.647 0.01 15.637 15.639 −0.01 15.509 15.527 −0.12
100 10.808 10.806 0.02 10.811 10.811 0.01 10.725 10.734 −0.08
110 7.263 7.262 0.02 7.276 7.274 0.04 7.227 7.227 0.01
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Conclusion

Explicit formulas for perpetual and finite-maturity timer
options. Accurate and fast

Approximate distributions of τB and ξT . Can be used to
price other derivatives (Li, 2013)

Approximations for joint moment generating function of
(SτB , τ

B)

Possible future work:

Extending the class of models we consider
What if η is large?

Characterizing the measures Q̂ and Q̂′?
Other approaches?
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