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Outline

• Background: What is an Online Problem?
• Analyzing Online Algorithms: Competitive Analysis
• Online Dial a Ride Problem
• Related Open Problems
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Classical Computer Science Problems

• Sorting

• Closest Points

• Shortest Paths
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All input known         
in advance –
Offline Problems
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Classical Computer Science Problems
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Online problem -
input arrives over time
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Ski Rental Problem
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Ski Rental Problem

7

Ski Rental Problem
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Ski Rental Problem

Rent or Buy?
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Offline Ski Rental Problem

• Ski resort – cheap but owner often shuts down in the middle of 
the season to go to Florida…

• Cost to Rent: $1 /day, Cost to Buy: $10
• Input: d = number of days resort will stay open

• Goal: Decide whether to Rent or Buy to achieve cheapest cost

Alg-Check_d(input: d):
if (d < 10)
Rent (Cost = d)

else
Buy (Cost = 10)

Optimal Algorithm
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Online Ski Rental Problem

Everyday for a ski season, you decide:
Rent – or – Buy?

Input (# days open) arrives over time

Need a “good” Online Algorithm
11

Outline

• Background: What is an Online Problem?
• Analyzing Online Algorithms: Competitive Analysis
• Online Dial a Ride Problem
• Related Open Problems
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Optimistic Algorithm for Ski Rental

Worst input?
Ø Resort closes on Day 2

Optimist-Alg:
If open on first 
day: BUY

Day 1 Day 2 … Day 90 Total Cost
Optimist-Alg (ON) $10 X X X $10
OPT $1 X X X $1
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Pessimistic Algorithm for Ski Rental

Worst input?
Ø Resort stays open all 

season 

Day 1 Day 2 … Day 90 Total Cost
Pessimist-Alg (ON) $1 $1 $1 $1 $90
OPT $10 - - - $10

Pessimist-Alg:
while (open): 

RENT

14

Cautious-Optimist for Ski Rental

Worst input?
Ø Resort closes on Day 5

Day 1 Day 2 Day 3 Day 4 Day 5 … Day 90 Total 
Cost

Cautious-Alg (ON) $1 $1 $1 $10 X X X $13
OPT $1 $1 $1 $1 X X X $4

Pessimist-Alg:
while (open): 

RENT

Cautious-Optimist:

For the first 3 
days: RENT

If still open on     
day 4, BUY
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How to Analyze an Online Algorithm?

• Compare its cost to the optimal offline cost, 
given the worst possible input.
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• Compare its cost to the optimal offline cost, 
given the worst possible input.

• Compare using ratio: !"#$(&')!"#$(&)*)

• If  !"#$(&')!"#$(&)*) ≤ , then ON is ,-competitive

competitive ratio

Competitive Analysis

How to Analyze an Online Algorithm?

17

Optimist Competitive Ratio

Worst input?
Ø Resort closes on Day 2

Optimist-Alg:
If open on first 
day: BUY

Day 1 Day 2 … Day 90 Total Cost
Optimist-Alg (ON) $10 X X X $10
OPT $1 X X X $1

!"#$(&')
!"#$(&)*) =

10
1

18
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Pessimist Competitive Ratio

Worst input?
Ø Resort stays open all 

season 

Day 1 Day 2 … Day 90 Total Cost
Pessimist-Alg (ON) $1 $1 $1 $1 $90
OPT $10 - - - $10

Pessimist-Alg:
while (open): 

RENT

!"#$(&')
!"#$(&)*) =

90
10
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Cautious-Optimist Competitive Ratio

Worst input?
Ø Resort closes on Day 5

Day 1 Day 2 Day 3 Day 4 Day 5 … Day 
90

Total 
Cost

Cautious-Alg (ON) $1 $1 $1 $10 X X X $13
OPT $1 $1 $1 $1 X X X $4

Pessimist-Alg:
while (open): 

RENT

Cautious-Optimist:

For the first 3 
days: RENT

If still open on     
day 4, BUY

!"#$(&')
!"#$(&)*) =

13
4 = 3.25

20

Day 1 Day 2 … Day 9 Day 10 Day 
11

… Day 
90

Total 
Cost

New-Cautious (ON) $1 $1 $1 $1 $10 X X - $19
OPT $10 - - - - X X - $10

New-Cautious-Optimist Competitive Ratio

New-Cautious-Optimist:

For the first 9
days, RENT

If open on the 10th
day, BUY

!"#$(&')
!"#$(&)*) =

19
10 = 1.9

Worst input?
Ø Resort closes on Day 11
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Generalized Competitive Ratio

Generalized-Algorithm:
Let b = cost to buy skis
For the first b-1 days, 

RENT

If open on the bth day, 
BUY

For any !: "#$%('()"#$%('*+) < 2
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Day 
1

Day 
2

… Day 
b-1

Day 
b

Day 
b+1

… Day 
90

Total Cost

Generalized (ON) $1 $1 $1 $1 $b X X X $(b-1) + b
OPT $b - - - - X X X $b

Worst input?
Ø Resort closes on Day b+1

Generalized Competitive Ratio

!"#$ %& = ( − 1 + ( = 2( − 1
!"#$ %-. = (
!"#$(%&)
!"#$ %-. < 2 − 1

(

%& is:  (2 − 234 – competitive

Best ratio for any online algorithm!
(no other number of rental days 
yields a better ratio)
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Day 
1

Day 
2

… Day 
b-1

Day 
b

Day 
b+1

… Day 
90

Total Cost

Generalized (ON) $1 $1 $1 $1 $b X X X $(b-1) + b
OPT $b - - - - X X X $b

Outline

• Background: What is an Online Problem?
• Analyzing Online Algorithms: Competitive Analysis
• Online Dial a Ride Problem
• Related Open Problems
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Offline Dial-A-Ride
source-1 destination-1

source-2

destination-2

driver

source-3

destination-3

[N. Wilson; Joint Automatic Control Conference, 1971]
26

Online Dial-A-Ride
source-1 destination-1

source-2

destination-2

source-3

destination-3

revenue1 = $10

revenue2 = $30

revenue3 = $50

Goal: Serve requests to 
maximize total revenue 
within time limit

[N. Ascheuer, S. Krumke, and J. Rambau; STACS 2000]

Time Limit = 24

27

Applications

29

OFFline vs ONline
OFFline ~ “Reservation Service”: 
Receives all requests in advance

Source Destination Time Revenue
Oak Street Airport 9am $15

Maple Ave Grocery 3pm $10

Pine Street Airport 12pm $5

Elm Rd. 2nd Street 2:30pm $50

1st Street Main Street 6:30pm $12

30

OFFline vs ONline
ONline ~ Uber:  Receives each request only when it is released

Revenue = $15

32

OFFline vs ONline
ONline ~ Uber:  Receives each request only when it is released

Revenue = $15 $12

5 min

33
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OFFline vs ONline
ONline ~ Uber:  Receives each request only when it is released

Revenue = $15 $12 $17

5 min 7 min

Accept
34

OFFline vs ONline
ONline ~ Uber:  Receives each request only when it is released

Revenue = $15 $12 $17 $100

5 min 7 min 7 min

Accept
35

Online-Dial-A-Ride

Node (Location)

Edge (Road)

a

b c

d e

Model with a complete weighted Graph

36

Online-Dial-A-Ride with Revenue
Input:
• Complete Weighted Graph
• Initial Location of Server (origin)
• Requests: (source, destination, release time, revenue)
• Time Limit (T)

origin Time Limit T = 24

Goal: 
Serve requests to Maximize Total Revenue
within T

Offline version is NP-hard1

a

b
c

d e

$11 

$15 
$12 

$20 

37
1. Christman, Chung, Jaczko, Westvold [ATMOS 2017]

Worst Input?

• Every request takes a long time to serve

• After each request we serve, we have to move for a long time

38

V
max

(where max is the maximum edge 
weight in the graph)

V
maxa

b
c

d e

$11 $20 

MOVE
SERVE Alternate between 

moving and serving, each 
for max time

Segmented-Best-Path (SBP) Algorithm1

1. Let max be the maximum edge weight in the graph.

2. Split the total time T into T/max “segments”, 
each of length max.

3. While there is still time remaining:
Alternate between:

a) Find the request set with the highest 
revenue that can be served within time max; 
let S denote this set. Move to the source of 
the first request in S.
(Wait until the end of the time segment)

b) Serve the requests in set S.
(Wait until the end of the time segment) 39

takes time          
≤ max

1. Christman, Chung, Jaczko, Li, Westvold, Xu, Yuen [IWOCA 2020]
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SBP Example
origin

a

b c

d e

T = 24, max = 6

$11 

MOVE
SERVE

5

2

5
$10 

4 4
1

5

t=0

t=6
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SBP Example
origin

a

b c

d e

T = 24, max = 6

$11 

MOVE
SERVE

4 4

5

2

5
$10 

1

5

t=12

Revenue earned = $11 
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SBP Example
origin

a

b c

d e

T = 24, max = 6 MOVE
SERVE

2

$10 

$6 

5 55

4 4
1

$11 

t=12

Revenue earned = $11 
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SBP Example
origin

a

b c

d e

T = 24, max = 6 MOVE
SERVE

2

$10 

$6 

5 55

4 4
1

$11 

t=18

Revenue earned = $11 
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SBP Example
origin

a

b c

d e

T = 24, max = 6 MOVE
SERVE

2

$10 

$6 

5 55

4 4
1

$11 
Revenue earned = $11 + $6 

44

SBP Example
origin

a

b c

d e

T = 24, max = 6 MOVE
SERVE

2

$10 

$6 

5 55

4 4
1

$11 

t=24

Revenue earned = $11 + $6 + $11 
= $28

45
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SBP Example
origin

a

b c

d e

T = 24, max = 6 MOVE
SERVE

2

$10 

$6 

5 55

4 4
1

$11 

t=24

Revenue earned = $11 + $6 + $11 
= $28

OPT = $11 + $6 + $11 + $10
= $38
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SBP is 1/5-Competitive Proof

47

…
SBP

T

…
OPT

T

• Consider the segments where SBP earns less than OPT

SBP is 1/5-Competitive Proof
Time segment
(length =  max)

• Compare schedules of SBP and OPT, one segment at a time:

…
SBP

T

…
OPT

T

48

• Consider the segments where SBP earns less than OPT

• Create a modified schedule SBP (initially SBP = SBP) that will contain additional copies of requests

• For now: assume all requests served by OPT during a segment are available to SBP 

SBP is 1/5-Competitive Proof

Time segment

(length =  max)

• Compare schedules of SBP and OPT, one segment at a time:

…
SBP

T

…

OPT
T

49

• SBP serves in only every other time segment, OPT may serve the entire time

• For a pair of consecutive segments, SBP misses at most ½ OPT’s revenue

• Initially: revenue(SBP)     revenue(SBP) 

≤ 2 revenue(SBP) 

SBP is 1/5-competitive

OPT

…

…

SBP

· 2

T

T

50

≤=

• SBP does not serve any requests that overlap 
time segments 

SBP is 1/5-Competitive Proof

OPT

…

…

SBP
T

T

51
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Overlapping Request

OPT

r*

• Both r* and R can separately be served within a time segment 
• So SBP will serve a set with revenue at least max(r*, R)

• So SBP misses at most ½ OPT

R

52

à revenue(SBP) ≥ max(r*, R) ≥ ½ (r* + R) ≥ ½ revenue(OPT)

Overlapping Request

OPT

r*

• Both r* and R can separately be served within a time segment 
• So SBP will serve a set with revenue at least max(r*, R)

• So SBP misses at most ½ OPT

• So far: revenue(SBP)    2 revenue(SBP)

≤ 4 revenue(SBP)

R

· 2
53

à revenue(SBP) ≥ max(r*, R) ≥ ½ (r* + R) ≥ ½ revenue(OPT)

≤

SBP is 1/5-competitive

• Recall: we assumed all requests served by OPT 
during a segment are available to SBP 

• Need another factor of revenue(SBP) to 
compensate when this assumption is removed

revenue(SBP) ≤ 4 revenue(SBP) + revenue(SBP)
≤ 5 revenue(SBP)

54

SBP is 1/5-competitive

• Recall: we assumed all requests served by OPT 
during a segment are available to SBP 

• Need another factor of revenue(SBP) to 
compensate when this assumption is removed

revenue(SBP) ≤ 4 revenue(SBP) + revenue(SBP)
≤ 5 revenue(SBP)

And:
revenue(SBP) ≥ revenue(OPT)

So:
revenue(SBP) ≥ 1/5 revenue(OPT) 
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Uniform Revenue

• Useful when all requests have equal priority

• SBP is 1/4-competitive

56

Bipartite Graphs

SBP is k –competitive, where k is the ratio between the minimum and 
maximum edge weights in the input graph

sources destinations

57
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Outline

• Background: What is an Online Problem?
• Analyzing Online Algorithms: Competitive Analysis
• Online Dial a Ride Problem
• Related Open Problems
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Summary of Results + Open Problems

Uniform Revenue Nonuniform Revenue
Weighted General Graphs 1/4 1/5
Weighted Bipartite 
Graphs

⌈ k ⌉* ⌈ k ⌉*

Competitive ratio of SBP for OLDARP 

*k is a fraction used to bound the minimum edge weight in the input graph
60

Can we achieve better ratios? 

Segmented-Best-Path (SBP) Algorithm1

1. Let max be the maximum edge weight in the graph.

2. Split the total time T into T/max “segments”, 
each of length max.

3. While there is still time remaining:
Alternate between:

a) Find the request set with the highest 
revenue that can be served within time max; 
let S denote this set. Move to the source of 
the first request in S.
(Wait until the end of the time segment)

b) Serve the requests in set S.
(Wait until the end of the time segment) 61

1. Christman, Chung, Jaczko, Li, Westvold, Xu, Yuen [IWOCA 2020]

Running time is exponential in the number of available requests

Tradeoff? Efficiency vs. performance

Many Open Problems…

Serve all requests while minimizing route complexity

A fleet of Uber drivers Ride-sharing
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