FINITE CONVEX GEOMETRIES OF POINT CONFIGURATIONS

KIRA ADARICHEVA YESHIVA UNIVERSITY, NEW YORK

A closure system $\mathbf{A} = (A, -)$, i.e. a set A with a closure operator $-: 2^A \to 2^A$ defined on A, is called a *convex geometry*, if it satisfies the anti-exchange axiom, i.e.,

$$x \in \overline{X \cup \{y\}}$$
 and $x \notin X$ imply that $y \notin \overline{X \cup \{x\}}$
for all $x \neq y$ in A and all closed $X \subseteq A$.

For convex geometries \mathbf{A} and \mathbf{B} , one says that \mathbf{A} is a sub-geometry of \mathbf{B} , if the lattice of closed subsets of \mathbf{A} is a sublattice of the lattice of closed sets of \mathbf{B} .

Given a set of points A in Euclidean *n*-dimensional space \mathbb{R}^n , one defines a closure operator $-: 2^A \to 2^A$ on A as follows: for any $Y \subseteq A$, $\overline{Y} = ch(Y) \cap A$, where *ch* stands for *the convex hull*. One easily verifies that such an operator satisfies the anti-exchange axiom. Thus, (A, -) is a convex geometry, which we will call *a geometry of relatively convex sets* (assuming that these are convex sets "relative" to A).

It remains to be an open problem whether every finite convex geometry is a subgeometry of finite geometry of relatively convex sets (K.Adaricheva, V.Gorbunov and V.Tumanov, "Join-semidistributive lattices and convex geometries", Adv. Math. 173(2003), 1-49.)

We give a survey of results associated with this problem. We then provide a more detailed account of the most recent paper (http://arxiv.org/abs/1101.1539)

It follows one of the approaches to the solution that studies sub-geometries of geometries of finite points configurations in n-dimensional space, for some fixed n.

We prove that such sub-geometries satisfy the *n*-Carousel Rule, which is the strengthening of the *n*-Carathéodory property. We also find another property, that is similar to the simplex partition property and does not follow from 2-Carusel Rule. We show that it holds in sub-geometries of geometries of points configurations on a plane.

 $E\text{-}mail \ address: \texttt{adariche@yu.edu}$