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Change-point detection of two-sided alternatives

in the Brownian motion model and its connection

to the gambler’s ruin problem with relative

wealth perception

Olympia Hadjiliadis

This thesis addresses the problem of change-point detection in the Brownian motion

model with multiple alternatives. Attention is drawn to the 2-CUSUM stopping

time and its properties as a means of detecting a two-sided change. It is shown that

the 2-CUSUM stopping rule is second-order asymptotically optimal as the frequency

of false alarms tends to infinity. The above problem can be related to the gambler’s

ruin problem in which gamblers make their decisions to quit the game based on the

relative change in their wealth. Probabilities of exiting after a significant upward

rally in the gambler’s wealth (or a significant downward fall) are worked out both

in the discrete time framework and in the continuous time framework.
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Chapter 1

Introduction

This thesis is a collection of two related works. The first work falls under the broader

topic of statistical surveillance. The second work is a study of the gambler’s ruin

problem as examined from a different point of view on the investor’s behavior.

The need for statistical surveillance has been noted in many different areas.

Applications include:

• Statistical quality control

Historically the need for quality control was noted in Shewhart (see [33]).

The topic continued being of great interest in the 50’s and 60’s when we

see the more systematic construction of online detection schemes (see [25,

30, 34]). Statistical quality control consists of the generation of alarms for

the attention of the operator after which the technological process has to

be stopped, checked and repaired, if necessary. The purpose is the on-line

detection of changes in the parameters of the model used to describe the raw

input or the production material (see for example [47, 3]).
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• Epidemiology (see for example [46, 39, 29, 19, 37]).

An example is when the number of cases of a disease is recorded sequentially

with the aim of detecting an increased incidence. In this case, a decision

concerning whether the incident has increased or not must be made on the

basis of the data collected so far.

• Medicine (see for example [11, 13]).

An example is the monitoring of adverse drug reactions (ADR) after its ap-

proval for distribution in the market. The post-marketing surveillance system

functions as a crucial medium for providing additional safety information that

cannot realistically be obtained before the approval of each drug.

• Biomedical signal processing (see for example [3, 7])

The need for online detection algorithms in this area, has been motivated by

the automatic processing of biomedical signals such as Electroencephalogram

(EEC) and Electrocardiogram (ECG).

• Finance (see for example [1])

An example includes detecting change points in business cycles such as a peak

or a trough in the economy through the means of prospective analysis base

on data of a leading economical indicator.

• Fault detection in navigational systems (see for example [3])

The purpose is to extract the useful signal (geodesic coordinates, velocity)

and isolate the faulty sensors as soon as possible.

• Seismology (see [3] for details)
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Traditionally, Shewhart’s (see [33]) x̄ charts with various modifications dat-

ing back to 1931 have been very popular for this problem. The above chart is based

on the fact that it is expected that the average of the observations will dramatically

change as soon as the process goes out of control. This procedure, however, was

found to be somewhat inefficient in detecting small shifts. To overcome this short-

coming several stopping rules have been introduced during the past few decades.

One of the most popular techniques has been the CUSUM stopping rule first intro-

duced by Page in 1954 (see [25]). The CUSUM rule is defined to be the difference

of the log of the Radon Nikodym derivative of the change from its running min-

imum. It is characterized by two parameters, namely the drift parameter of the

change and the threshold parameter. Its properties have been thoroughly stud-

ied by Van Dobben de Bruyn in 1968 (see [44]). The problem of determining its

distribution has also been studied by Zacks in 1981 (see [52]). These results were

later generalized by Woodall in 1983 (see [48, 49]) and Yaschin in 1985 (see [51])

where the distribution of the two-sided CUSUM (2-CUSUM) was studied, all in

the discrete time setting. In the continuous time setting one can find the exact

computation of the Laplace transform of the one-sided CUSUM in Taylor (1975,

see [43]) and Lehoczky (1977, see [18]). Lorden in 1971 (see [20]) proved that the

one-sided CUSUM stopping rule is first-order asymptotically optimal for a specific

min-max performance measure with the assumption that τ is an unknown param-

eter. Roberts in 1959 (see [30]) proposed the EWMA rule. Later, Shiryaev in

1963 (see [34]) and Roberts in 1966 (see [31]) independently proposed what be-

came known as the Shiryaev-Roberts rule. This rule has been employed when τ is

assumed to be a random variable with a given prior distribution.



4

For the Bayesian setting, in which the change point τ is assumed to have a

prior distribution that is assumed to be exponential (in the continuous time model)

and geometric (in the discrete time model) and the magnitude of the change is

known a priori, it is shown in [34] that the Shiryaev-Roberts procedure is the

optimal stopping rule in minimizing the Bayes risk. This measure penalizes the

probability of false alarms and the detection delay of the change point by a given

constant c per time unit. In other words, the objective is to find a stopping rule that

minimizes the sum of the probability that {T < τ} and c times the expected value

of T − τ . The solution consists of computing the posterior density of the change

point τ and stopping the first time it exceeds a given threshold that depends on

the constant c. The proof is subsequently simplified by Beibel in 1996 (see [6]), a

paper which also demonstrates the relationship between the posterior density of the

change point τ and the CUSUM stopping rule. The later work of Karatzas in 2002

(see [14]) should also be mentioned, where the performance measure is replaced by

an expected miss criterion which is equal to the expected absolute deviation of the

stopping rule T from the change point τ . In this setting, it is shown that the optimal

stopping rule is the first time that the conditional odds-ratio exceeds a threshold h

that depends on the exponential parameter of the change point τ . Later, Karatzas

in 2003 addressed the adaptive problem of also estimating the magnitude of the

change with a more general performance measure. In this paper (see [15]), it is

shown that a closed form solution involving a two-dimensional sufficient statistic

for the change point τ exists only when the distribution of the random variable

representing the magnitude of the change is a symmetric Bernoulli. A first adaptive

problem of estimation of the mean parameter of a normal distribution which is
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subjected to changes in time and where observations are taken in discrete time,

appears in Chernoff & Zacks (1964, see [8]).

A comparison of the CUSUM and the Shiryaev-Roberts rules for detecting

one-sided alternatives in the Brownian motion was conducted by Pollak & Siegmund

in 1985 (see [27]). This comparison was based on the conditional average delay time

in detecting the change point, given no false alarm was made, and is also based

on the extreme assumptions that the change point is either equal to 0 or ∞. The

results were that the Shiryaev-Roberts rule is as powerful as the CUSUM rule.

Later, Srivastava & Wu in 1993 (see [40]) compared the Shiryaev-Roberts and

CUSUM rules with the EWMA rule. The comparison was based on a performance

measure called SADT (Stationary Average Delay Time) first advocated by Shiryaev

in [34]. SADT is the limiting value of ADT, that is defined as the expected value

of the time until the first actual detection of a change point. The SADT is also

shown to be equal to a weighted average of the CADT (Conditional Average Delay

Time) also first advocated by Shiryaev in [34]. Shiryaev in [34] suggested that

SADT is preferable as a performance measure when the change point rarely occurs

or when the cost of false alarms is relatively small compared to the loss due to

delay in detection. The asymptotic properties of the three were examined as the

in-control ARL(or the mean time between false alarms) tends to infinity in the

above mentioned work of Srivastava & Wu. The results were that the EWMA is

less efficient than the other two. The mean time between false alarms is nothing

but the expected value of T when the observed process does not change. This is

referred to in the literature as the ”in-control Average Run Length (ARL)” (see [9,

50, 35]) , since the process is considered to be in-control when the change has not



6

occurred.

In the work that appears in Chapters 2 and 3, the change point τ is assumed

to be an unknown parameter and multiple alternatives exist after the change. To-

day it is known that the CUSUM rule (see [35], [6]), with Lorden’s criterion (see

[20]), in the single alternative case where the change is a known constant, is op-

timal. This criterion considers the worst detection delay over all possible paths

and all possible change-points as a performance measure. This result was extended

by Tartakovsky in 1995 (see [41]), where the drift assumed after the change is a

deterministic function of time. The result was further extended by Moustakides in

2004 (see [24]), where the drift assumed after the change is a measurable function

of the observations, and the performance measure used is an alternative to Lorden’s

criterion, namely the Kullback-Leibler divergence. In discrete time it is known that

for a single alternative and with an independence assumption before and after the

change, the CUSUM is also optimal (see [23]) even when an exponential penalty

for delay is used as a performance measure(see [28]).

The first one to suggest the cumulative sum tests for two-sided alternatives

was Barnard in 1959 (see [2]). Later the problem of multiple alternatives in the dis-

crete time exponential family model was examined by Lorden in 1971 (see [20]). He

proposed that the generalized CUSUM be used in the case where the magnitude of

the assumed drift after the change is unknown, and proved that for two-sided alter-

natives, as the in-control ARL tends to infinity, the procedure is first-order asymp-

totically optimal. Dragalin in 1994 (see [10]) improved on this result and showed

that the generalized CUSUM stopping rule, for a specific choice of threshold, as

the in-control ARL tends to infinity, is second-order asymptotically optimal. The
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problem of multiple alternatives was subsequently addressed by Tartakovsky in 1994

(see [42]). His objective was to find a rule that would not only detect the change

but that would also specifically point it out. With supτ Ei
τ [T − τ | T > τ ] ∀ i as

a performance measure, he found that the N-CUSUM stopping rule is first-order

asymptotically optimal as the in-control ARL tends to infinity. The N-CUSUM con-

sists of running N one-sided CUSUM schemes in parallel, each designed to detect the

respective changes. The 2-CUSUM stopping rule was proposed as an alternative to

the generalized CUSUM by Dragalin in 1997 (see [9]). Although he only considered

one-sided alternatives in the discrete time exponential family model (in which the

magnitude of the drift assumed after the change is unknown) he used a min-max

type of criterion for the performance measure subject to the usual constraint on

the in-control ARL.

The first two chapters are concerned with the problem of change-point de-

tection in the Brownian motion model with multiple alternatives. In other words,

both chapters employ the Brownian motion model in which observations are taken

sequentially. The objective is to detect a change in the constant drift by means of a

stopping rule when there are multiple but known possibilities for such a change. As

a performance measure an extended Lorden criterion is proposed. In other words,

the worst detection delay over all paths, over all change-points and over all possible

changes, is considered. The goal is to minimize the worst case detection delay,

subject to a constraint in the frequency of false alarms. First in Chapter 2, it is

shown that, when the drifts have the same sign, the CUSUM rule designed to detect

the smallest in absolute value drift, is the optimal stopping rule. If the drifts have

opposite signs of known magnitude the rule traditionally suggested in the litera-
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ture (see for example [36, 42, 2, 9]) is the 2-CUSUM rule that consists of running

two one-sided CUSUM schemes in parallel, each designed to detect the respective

changes. In this case, a specific 2-CUSUM rule is shown to be asymptotically opti-

mal as the frequency of false alarms tends to infinity. In particular it is shown that,

when the drifts are equal in absolute value, the difference in performance between

the unknown optimal rule and the proposed scheme remains uniformly bounded

although both quantities tend to infinity. For unequal in absolute value drifts the

asymptotic optimality is even stronger since the corresponding difference tends to

zero. Note that this is a clear improvement of what exists in the literature (see for

example [42]) where it is only shown that the ratio of the above performances tends

to a constant. The work that appears in Chapter 3 is a closer examination of the

proposed scheme in the case of two-sided alternatives. More specifically, attention

is drawn to a class of 2-CUSUM stopping rules that exhibit a property which allows

for the exact computation of their expectations. These 2-CUSUM rules are called

the harmonic mean 2-CUSUM rules. The proposed scheme is drawn from a special

class of 2-CUSUM stopping rules amongst this category, called drift equalizer rules.

Drift equalizer 2-CUSUM rules exhibit the exact detection delay under both the

positive and the negative change and are shown to have strictly better performance

than non-equalizer 2-CUSUM harmonic mean rules for the proposed performance

measure in Chapter 3. In other words, by allowing an extra degree of freedom on

the choice of the drift parameters of the 2-CUSUM we can get a strictly better

performance than for any of the 2-CUSUM rules that have been proposed in the

literature.

In the last Chapter, the gambler’s ruin problem is revisited. The gambler’s
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ruin problem is one of the well known problems in probability theory. In the

traditional setup a gambler quits once his or her wealth reaches some upper or

lower level for the first time. The evolution of the gambler’s wealth is assumed to

be a biased random walk in the discrete time model, and a Brownian motion with

non-positive drift in the continuous time model. In this setup, one can explicitly

compute the probability of stopping the game at the upper level in contrast to

stopping the game at the lower level. Reaching the upper bound can be viewed as

winning in the betting game, while reaching the lower bound as losing in the game.

Computing these probabilities is an easy consequence of the Optional Sampling

Theorem and we review this result in Appendix B.

However, people often make decisions based on relative change in contrast to

absolute change of their wealth. As a consequence, some gamblers (and investors in

general) may have a tendency to stop after their wealth makes a significant positive

or negative movement. In the last Chapter we consider this situation, i.e., the case

when the gambler decides to stop either when his or her current wealth is above a

certain level in comparison to the historical minimum of his or her wealth (upward

rally), or when his or her current wealth is below a certain level in comparison to the

historical maximum of his or her wealth (downward fall). The gambler would stop

as soon as either the upward rally or the downward fall reach some pre-specified

values. In other words, at each point in time, the gambler considers the following

two quantities:

• The difference between his or her current wealth and the running minimum

of it since he joined the game.

• The difference between the running maximum and the current value of his or
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her wealth.

The gambler stops the first time either of these quantities exceeds a given threshold.

Quitting on the downward fall can be perceived as losing in the game, while quitting

on the upward rally that can be perceived as winning in the game. The problem

is to determine the probability of quitting on the upward rally (or equivalently on

the downward fall). There is obviously a clear connection between this problem

and the 2-CUSUM stopping rule because of the properties of both of the quantities

introduced above, based upon which gamblers make their decisions. More specif-

ically, the 2-CUSUM is the minimum of its one-sided CUSUM branches each of

which declares a stop when the difference between the value of the Radon-Nikodym

derivative and its running minimum exceeds a given threshold. The gambler, equiv-

alently, decides to quit the game by comparing the value of his or her wealth to its

running minimum or running maximum and stopping the first time either of these

quantities exceeds a given threshold.

In the setting described above we compute the probabilities of quitting the

game on upward rally (or downward fall) are computed both in the discrete and

in the continuous time framework. The probabilities are computed by means of

the distribution function of the random variables Y +
T1(a) and Y −

T2(b), where Y +
T1(a)

represents the value of the upward rally when the downward fall reaches the level

a for the first time, and Y −
T2(b) represents the value of the downward fall when the

upward rally reaches the level b for the first time. Moreover, the expected value of

the minimum of the time it takes the downward fall of the wealth and the upward

rally of the wealth to reach their respective thresholds is computed.

In the discrete time framework, it is shown that the distribution of each of
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Y +
T1(a) and Y −

T2(b) is geometric with a parameter that is related to the gambler’s ruin

probability in the traditional setting, but with an additional mass at 0. The mass

at 0 is computed in terms of the expected values of the time it takes the downward

fall or the upward rally to reach their respective thresholds. This is achieved using

the method described by Siegmund (see [36]) in the computation of the expected

value of the one-sided CUSUM stopping time. As a side result one can also compute

the expected value of the minimum of the time it takes the downward fall of the

wealth and the upward rally of the wealth to reach their respective thresholds is

also computed. This stopping rule is a version of the 2-CUSUM stopping rule and

the explicit computation of its first moment in the case of different thresholds in

its one-sided CUSUM branches is a clear improvement of the existing result that

appears in [51]. Hence, it is worth noting that the usefulness of this result is also

seen in two-sided alternative change-point detection.

In the continuous time framework, the computation of the probabilities is

achieved using the distributional properties of y+
T c
1 (a) and y−T c

2 (b) – the continuous time

counterparts of the above mentioned random variables. Using results of Taylor [43]

and Lehoczky [18] for the distribution of a stopped drifted Brownian motion at

the first time of the downfall of level a, we are able to show that the probability

density function of y+
T c
1 (a) and y−T c

2 (b) is exponential, but with an additional mass at

0. The mass at 0 can be computed in a similar fashion as in the discrete case. As

a side result, we also get the expected value of the minimum of the above times,

which is related to the expectation of the 2-CUSUM stopping times with equal drift

parameters but unequal thresholds in their respective one-sided CUSUM branches

and is not known in the current literature in the continuous time framework.
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It is worth mentioning that the probability densities of the random variables

y+
T c
1 (a) and y−T c

2 (b) are the first stepping stone to the computation of the joint density

of the random variables maximal downward fall and maximal upward rally of a

Brownian motion. This is an extension of the result that exists in the current liter-

ature where one can find the density of the maximal downward fall of a Brownian

motion (see [21]). It is also worth mentioning that the Laplace transform of the

maximum of a random walk appears in Kemperman 1961 (see [17])
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Chapter 2

CUSUM rules for detecting a

regime change in the Brownian

motion model with multiple

alternatives

In this work, we examine the simplest continuous model (a model appropriate when

the observation process is assumed to be continuous). This is the Brownian motion

model.

The setting of the change-point detection problem in the Brownian motion

model is as follows: The stochastic process {ξt}t≥0 is observed and is assumed

to be a Brownian Motion which during the interval [0, τ ] has zero drift. During

the interval (τ,∞) it assumes a known (simple alternative case) or unknown drift

which is equivalent to several known drifts (multiple alternative case). We seek a



14

stopping rule T which ’detects’ the change point τ as soon as possible while at the

same time controls the mean time between false alarms. In other words, at each

decision time point, t, we want to discriminate between two states of the process, the

state, {T > s} and the state {T ≤ s} as explained by Sonesson in [38]. Sonesson

in [38] clearly indicates that this is achieved by an alarm statistic, i.e a process

that is a function of the observations, and an alarm limit. As soon as the alarm

limit is exceeded by the above statistic, an alarm is drawn. More specifically, the

stopping rule T balances the trade-off between controlling the mean time between

false alarms while minimizing the detection delay of the change.

As our problem involves multiple alternatives after the change, we extend

Lorden’s criterion in a min-max way as described in Section 2.1. Properties of

the one-sided CUSUM are presented in Section 2.2 along with an optimality result

applicable when all alternatives are of the same sign. In Section 2.3 the 2-CUSUM

rule is introduced for detecting a two-sided alternative. A special class of 2-CUSUM

stopping rules with the harmonic mean rule property is presented. The property

permits the explicit computation of the first moment of the 2-CUSUM rule. Among

that class, the smaller class of drift equalizer rules is subsequently presented . The

asymptotically best equalizer rule is found in the case of unequal-in-absolute-value

drifts. In Section 2.4, it is shown that in the latter case, the difference in the

performance between the optimal rule and the asymptotically best equalizer rule

tends to 0 as the in control ARL tends to infinity. In the symmetric case it is shown

that the difference between the 2-CUSUM stopping rule with drift parameter equal

to the absolute value of the change and the optimal stopping rule tends to a constant

as the in-control ARL tends to infinity. In Section 2.5, we close with concluding
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remarks and suggestions for future work. In Chapter 3 we revisit the class of 2-

CUSUM drift equalizer harmonic mean stopping rules, whereby we demonstrate

their optimality amongst the class of 2-CUSUM harmonic mean stopping rules.

2.1 Mathematical formulation of the problem.

We begin by considering the observation process {ξt}t>0 with the following dynam-

ics:

dξt =





dwt t ≤ τ

µi dt + dwt t > τ, i = 1, 2.

where τ , the time of change, is assumed to be an unknown constant; µi, the possible

drifts the process can change to, are assumed known, but the specific drift the

process is changing to is assumed to be determined by nature and is thus unknown.

Our goal is to detect the change and not to infer which of the changes occurred.

The probability triple is

(
C[0,∞],F , {Ft}, {P i

τ}
) ∀ i = 1, 2 and τ ∈ [0,∞),

functions, Ft = σ{ξt, t ≥ 0}, F = F∞ = ∪t>0Ft, and {P i
τ} is the family of probabil-

ity measures generated by the observation process {ξt} when the change is i = 1, 2

and the change-point is τ . Notice that P∞ is the Wiener measure.

The objective is to detect the change as soon as possible, which is achieved

through the means of a stopping rule T adapted to the filtration Ft. This means

that at each instant t it is decided whether to stop or continue sampling based only

on the information that is available up to that instant. If Pτ is the true distribution,

then in the event that {T ≥ τ} it is desired that the conditional expectation of
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T − τ should be small. Notice that {T ≥ τ} ∈ Fτ . But of course, ∀ t > τ ,

{T = t} ∈ Ft ⊃ Fτ . One of the possible performance measures of the detection

delay, suggested by Lorden in [20], considers the worst detection delay over all paths

before the change and all possible change points τ . It is

J(T ) = sup
τ

ess sup Eτ

[
(T − τ)+|Fτ

]
, (2.1)

giving rise to the following constrained stochastic optimization problem:

inf
T

J(T )

E∞ [T ] ≥ γ.
(2.2)

One can immediately notice that the small detection delay requirement is

offset by the requirement that the frequency of ”false reactions” be controlled. In

other words, the meaning of the requirement that E∞ [T ] ≥ γ is that, the mean

time between alarms under the Wiener measure (i.e. the measure corresponding to

there not being any change) is at least as big as γ. One can also write

E∞ [T ] =

∫ ∞

0

P∞(T > t)dt

and notice that the above requirement is equivalent to the requirement of a small

P∞ [T < t], which is the probability of a false alarm (type I error).

In order to incorporate the different possibilities for the µi, we extend Lor-

den’s performance measure inspired by the idea of the worst detection delay re-

gardless of the change (along the lines of [9]). It is

JL(T ) = max
i

sup
τ

ess sup Ei
τ

[
(T − τ)+|Fτ

]
, (2.3)

which results in a corresponding optimization problem of the form:

inf
T

JL(T )

E∞ [T ] ≥ γ.
(2.4)



17

It is easily seen that, in seeking solutions to the above problem, we can

restrict our attention to stopping times that satisfy the false alarm constraint with

equality. This is because, if E∞ [T ] > γ, we can produce a stopping time that

achieves the constraint with equality without increasing the detection delay, simply

by randomizing between T and the stopping time that is identically 0. This was

first seen by Moustakides in the discrete case [see [23]]. To this effect, we introduce

the following definition:

Definition 2.1 Define K to be the set of all stopping rules T that are adapted to

Ft and that satisfy E∞ [T ] = γ.

2.2 The one-sided CUSUM stopping time

The CUSUM statistic process and the corresponding one-sided CUSUM stopping

time are defined as follows:

Definition 2.2 Let λ ∈ R and ν ∈ R+. Define the following processes:

1. ut(λ) = λξt − 1
2
λ2t; mt(λ) = inf0≤s≤t us(λ).

2. yt(λ) = ut(λ)−mt(λ) ≥ 0, which is the CUSUM statistic process.

3. Tc(λ, ν) = inf{t ≥ 0; yt(λ) ≥ ν}, which is the CUSUM stopping time.

We are now in a position to examine two very important properties of the

one-sided CUSUM stopping time. The first is a characteristic specifically inherent

in the CUSUM statistic, and is summarized in the following lemma:
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Lemma 2.1 Fix τ ∈ [0,∞). Let t ≥ τ , and consider the process

yt,τ = ut − uτ − inf
τ≤s≤t

(ut − uτ ).

This is the CUSUM process when starting at time τ . We have that yt ≥ yt,τ with

equality if yτ = 0.

Proof: Note that

yt = yt,τ +
(

inf
τ≤s≤t

(us − uτ ) + yτ

)+

≥ yt,τ (2.5)

and that infτ≤s≤t(us − uτ ) ≤ 0. ¦
By its definition it is clear that yt,τ depends only on information received

after time τ . Let us remind ourselves that the CUSUM stopping rule is a function

of our CUSUM statistic process only. Thus, we conclude that all contribution of the

observation process {ξt} before time τ to our CUSUM stopping rule, is summarized

in yτ . Relation (2.5), therefore, suggests that the worst detection delay before τ

occurs whenever yτ = 0. In other words,

ess sup Eτ

[
(Tc(λ, ν)− τ)+|Fτ

]
= Eτ

[
(Tc(λ, ν)− τ)+|yτ = 0

]
= E0 [Tc(λ, ν)] .

(2.6)

Equation (2.6) states that the CUSUM stopping time is an equalizer rule over τ ,

in the sense that its performance does not depend on the value of this parameter.

The second property of the one-sided CUSUM comes as a result of noticing

that mt is nonincreasing and that when it changes (decreases) we necessarily have

mt = ut. In other words, when mt changes, yt attains its smallest value, that is 0.

When this happens we will say that the CUSUM statistic process restarts. This

important observation combined with standard results appearing in [16] allow for

the computation of the CUSUM delay function.
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Lemma 2.2 Suppose a CUSUM stopping rule is based on the CUSUM statistic with

drift parameter λ ∈ R and has threshold ν ∈ R+. Then the detection delay when

the observation process ξt has drift µ ∈ R is given by E [Tc(λ, ν)] = (2/λ2)g(ν, ρ),

where

g(ν, ρ) =
e−ρν + ρν − 1

ρ2
and ρ = 2

µ

λ
− 1.

Proof: Consider the function f(y) = 2
λ2 [g(ν, ρ)− g(y, ρ)]. Then f is a twice

continuously differentiable function of y satisfying

ρf ′(y) + f ′′(y) = −1, with f ′(0) = f(ν) = 0.

Using standard Itô calculus on the process f(yt) and the results appearing in [16,

Pages 149, 210] it is easy to show that for any stopping time T with E[T ] < ∞, we

have

E[f(yT )]− f(y0) = −E[T ].

The desired formula follows by noticing that y0 = 0 and for the CUSUM stopping

time we have yTc = ν (for more details see also [24]). ¦
Notice that for α 6= 0 we have 1

α2 g(ν, ρ) = g( ν
|α| , ρ|α|). This suggests the

following alternative expression for the delay function

E[Tc(λ, ν)] = 2g

(
ν

|λ| , sign(λ)(2µ− λ)

)
. (2.7)

In [6] and [35] it is shown that when there is only one possible alternative for

the drift µ, the CUSUM stopping rule Tc(µ, ν), with ν satisfying 2
µ2 g(ν,−1) = γ,

solves the optimization problem defined in (2.2).

When the sign of the alternative drifts is the same, with the help of the

following lemma we can show that the one-sided CUSUM stopping rule that detects

the smallest in absolute value drift is the optimal solution of the problem in (2.4).
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Lemma 2.3 For every path of the Brownian motion wt, the process yt(λ) is an

increasing (decreasing) function of the drift of the observation process ξt when λ > 0

(λ < 0).

Proof: Consider two possible drift values µ1, µ2 with µ1 < µ2. We define two ob-

servation processes ξt(µi) = µi(t−τ)+ +wt, i = 1, 2, that lead to the corresponding

CUSUM processes

ut(λ, µi) = λξt(µi)− 1

2
λ2t = λ{wt + µi(t− τ)+} − 1

2
λ2t

mt(λ, µi) = inf
0≤s≤t

us(λ, µi)

yt(λ, µi) = ut(λ, µi)−mt(λ, µi).

Consider the difference yt(λ, µ2) − yt(λ, µ1) = δ(t − τ)+ − mt(λ, µ2) + mt(λ, µ1)

where δ = λ(µ2 − µ1). Notice now that λ > 0 implies δ > 0 and we can write

us(λ, µ2) = us(λ, µ1) + δ(s− τ)+ ≤ us(λ, µ1) + δ(t− τ)+.

Taking the infimum over 0 ≤ s ≤ t we get mt(λ, µ2) ≤ mt(λ, µ1) + δ(t − τ)+ from

which, by rearranging terms, we get that yt(λ, µ2) ≥ yt(λ, µ1). The case λ < 0 can

be shown similarly. ¦
From Lemma 2.3 it also follows that µ1 ≤ µ2 implies E1[Tc(λ, ν)] ≥ E2[Tc(λ, ν)]

when λ > 0 and the opposite when λ < 0. As a direct consequence of this fact

comes our first optimality result concerning drifts with the same sign.

Theorem 2.1 Let 0 < µ1 ≤ µ2 or µ2 ≤ µ1 < 0, then the one-sided CUSUM

stopping time Tc(µ1, ν1) with ν1 satisfying 2
µ2

1
g(ν1,−1) = γ solves the optimization

problem defined in (2.4).
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Proof: The proof is straightforward. Since ν1 was selected so that Tc(µ1, ν1) sat-

isfies the false alarm constraint, we have Tc(µ1, ν1) ∈ K. Then, ∀ T ∈ K we

have

JL(T ) = max
i

sup
τ

ess sup Ei
τ

[
(T − τ)+|Fτ

]

≥ sup
τ

ess sup E1
τ

[
(T − τ)+|Fτ

]

≥ E1
0 [Tc(µ1, ν1)] = max

i
Ei

0[Tc(µ1, ν1)] = JL(Tc(µ1, ν1)) =
2

µ2
1

g(ν1, 1).

The last inequality comes from the optimality of the one-sided CUSUM stopping

rule and the last three equalities are due to Lemma 2.3, the definition of the per-

formance measure JL(T ) in (2.3) and Lemma2.2. ¦
It is worth pointing out that if we had n alternative drifts (instead of two)

of the form 0 < µ1 ≤ µ2 ≤ · · · ≤ µn or 0 > µ1 ≥ µ2 ≥ · · · ≥ µn and we used

the extended Lorden criterion in (2.3), the optimality of Tc(µ1, ν1), presented in

Theorem 1, would still be valid. Our result should be compared to [9] (which refers

to discrete time and the exponential family), where for the same type of changes

only asymptotically optimum schemes are offered.

We also have the following corollary of Lemma 3:

Corollary 2.1 Let 0 < |µ1| ≤ |µ2| and define ηi, i = 1, 2, so that 2
µ2

i
g(ηi,−1) =

γ > 0. Then we have

1

µ2
1

g(η1, 1) ≥ 1

µ2
2

g(η2, 1). (2.8)

Proof: Since the result is independent of the sign of the two drifts, without loss

of generality we may assume 0 < µ1 ≤ µ2. Consider the two CUSUM rules

Tc(µi, ηi), i = 1, 2. Because the two thresholds ηi were selected to satisfy the false
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alarm constraint, using Lemma1, Lemma3 and the optimality of the one-sided

CUSUM stopping time, the following inequalities hold ∀ T ∈ K:

2

µ2
1

g(η1, 1) = E1
0 [Tc(µ1, η1)] ≥ E2

0 [Tc(µ1, η1)]

= sup
τ

ess sup E2
τ

[
(Tc(µ1, η1)− τ)+|Fτ

]

≥ inf
T

sup
τ

ess sup E2
τ

[
(T − τ)+|Fτ

]

= E2
0 [Tc(µ2, η2)] =

2

µ2
2

g(η2, 1). ¦

2.3 Different drift signs and the 2-CUSUM stop-

ping time

Let us now consider the case µ2 < 0 < µ1. The very interesting problem of

knowing the amplitude of the drift but not the sign falls into this setting. What

has traditionally been done in the literature, dating as far back as Barnard in [2],

is to use the minimum of the stopping rules Tc(µ1, ν1) and Tc(µ2, ν2) each tuned to

detect the respective changes µ1 and µ2. To this effect, we introduce the following

2-CUSUM stopping rule:

Definition 2.3 Let λ2 < 0 < λ1. The 2-CUSUM stopping time T2c(λ1, λ2, ν1, ν2)

is defined by: T2c(λ1, λ2, ν1, ν2) = Tc(λ1, ν1) ∧ Tc(λ2, ν2).

We will, from now on, denote all 2-CUSUM rules by T2c unless it is necessary to give

emphasis to their four parameters. By the definition of the 2-CUSUM stopping rule

it is apparent that it consists of running the two CUSUM statistic processes yt(λ1)

and yt(λ2) in parallel, and stopping whenever one of the two hits its corresponding
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threshold for the first time. From Lemma 2.1 we can conclude that

ess sup Ei
τ

[
(T2c − τ)+|Fτ

]
= Ei

τ

[
(T2c − τ)+|yτ (λ1) = yτ (λ2) = 0

]
= Ei

0 [T2c] , (2.9)

from which we get

JL(T2c) = max
i

sup
τ

ess sup Ei
τ

[
(T2c − τ)+|Fτ

]
= max

i
Ei

0 [T2c] .

As we have seen the 2-CUSUM stopping rule is characterized by the four

parameters, λ1, λ2, ν1 and ν2. Since our intention is to propose a specific rule as the

“preferable” one, we need to come up with a specific selection of these parameters.

For this purpose, up to this point, we only have one equation available, namely,

the false alarm constraint E∞[T2c] = γ. Hence, we will gradually impose additional

constraints on our 2-CUSUM structure in order to arrive to a unique stopping rule.

Once our rule is specified we will support its selection by demonstrating that it

enjoys a strong asymptotic optimality property.

2.3.1 The harmonic mean 2-CUSUM rules

First we draw our attention to a specific class of 2-CUSUM stopping rules that

allow for the exact computation of their performance.

Definition 2.4 Define

G = {T2c(λ1, λ2, ν1, ν2); ν1 = |λ1|ν and ν2 = |λ2|ν}.

For T2c ∈ G we have the following characteristic property:

Lemma 2.4 Let T2c ∈ G then, when T2c stops, one of its CUSUM statistic processes

hits its corresponding threshold while the other necessarily restarts.
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Proof: Although the proof given in [36, Page 28], for discrete time and the ex-

ponential family, applies here as well (without major changes), we will give an

alternative proof. Consider the process:

Yt =
yt(λ1)

|λ1| +
yt(λ2)

|λ2| = −1

2
(|λ1|+ |λ2|)t− mt(λ1)

|λ1| − mt(λ2)

|λ2| .

Since yt(λi) ≥ 0 we clearly have Yt ≥ 0. We can now distinguish the three cases:

1. if neither of yt(λ1)
|λ1| or yt(λ1)

|λ1| are equal to 0, then Yt decreases in time (since in

this case mt(λ1)
|λ1| and mt(λ2)

|λ2| remain constant in time).

2. if both of yt(λ1)
|λ1| and yt(λ1)

|λ1| are equal to 0, then Yt equals 0.

3. if one of yt(λ1)
|λ1| or yt(λ1)

|λ1| restarts (becomes equal to 0), then Yt increases in

time.

Therefore Yt increases only when either of the processes yt(λ1)
|λ1| or yt(λ2)

|λ2| restarts. In

other words, when yt(λ1)
|λ1| reaches its threshold ν for the first time yt(λ2)

|λ2| restarts and

the other way around. ¦
The following lemma uses the above property to derive a formula for the

expected delay of the 2-CUSUM rule.

Lemma 2.5 Let T2c = T1∧T2 with T2c ∈ G and T1, T2 the corresponding one-sided

CUSUM branches. Then the expected delay of the 2-CUSUM stopping time T2c is

related to the corresponding delays of its one-sided CUSUM branches through the

formula

(E[T2c])
−1 = (E[T1])

−1 + (E[T2])
−1. (2.10)
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Proof: By using Itô calculus on the function g(x, ρ) as it appears in Lemma 2.2

we get:

E
[
g(y+

T2c
, ρ1)

]
=

λ2
1

2
E [T2c] , (2.11)

where ρ1 = 2
µ

λ1

− 1 and

E
[
g(y−T2c

, ρ2)
]

=
λ2

2

2
E [T2c] , (2.12)

where ρ2 = 2
µ

λ2

− 1.

As a consequence of Lemma 2.4 and the fact that T2c ∈ G, it follows that

P (y−T2c
= 0) + P (y+

T2c
= 0) = 1, (2.13)

and therefore the RHS of equations (2.11) and (2.12) become:

g(ν, ρ1) · P (y−T2c
= 0) =

λ2
1

2
E [T2c] , (2.14)

g(ν, ρ2) · P (y+
T2c

= 0) =
λ2

2

2
E [T2c] . (2.15)

The result now follows from equations (2.13), (2.14), (2.15), and Lemma 2.2. ¦

2.3.2 2-CUSUM drift equalizer rules

It is well known that min-max problems, such as (2.4), are solved by equalizer rules.

In other words, by stopping rules that demonstrate the same performance under

the two changes. This is shown, in particular, in Chapter 3. Thus, we further

restrict ourselves among the class of equalizer rules.

Definition 2.5 Define

D = {T2c ∈ G; E1
0 [T2c] = E2

0 [T2c]}.
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By the definition of the class of equalizer rules it follows that D ⊂ G. Let us now

find a simple condition that guarantees this property.

By using equations. (2.7), (2.10) we get

Ei
0[T2c] =

(
1

2g(ν, sgn(λ1)(2µi − λ1))
+

1

2g(ν, sgn(λ2)(2µi − λ2))

)−1

, i = 1, 2.

(2.16)

From (2.16) we can see that in order to have T2c ∈ D we need

sgn(λ1)(2µ1 − λ1) = sgn(λ2)(2µ2 − λ2) (2.17)

sgn(λ2)(2µ1 − λ2) = sgn(λ1)(2µ2 − λ1). (2.18)

One can now easily verify that both of the above equations (2.17) and (2.18) are

satisfied whenever

λ1 + λ2 = 2(µ1 + µ2). (2.19)

In other words, if we select λ1, λ2 to satisfy (2.19) then the corresponding 2-CUSUM

stopping rule has the same performance under both drifts µ1, µ2. Note that a more

elegant proof of this appears in Chapter 3.

By limiting ourselves to the class D (i.e. selecting ν1 = |λ1|ν, ν2 = |λ2|ν
and using (2.19)), apart from the false alarm constraint, we impose two additional

constraints on our four parameters. In order for the 2-CUSUM rule to be completely

specified we need one final condition. Our intention is to select the parameter λ1 so

that the corresponding detection delay is asymptotically minimized (as γ →∞).

Theorem 2.2 Let µ2 < 0 < µ1 with |µ1| ≤ |µ2|. Consider all 2-CUSUM stopping

times T2c ∈ K ∩ D. Then among all such stopping rules the one with λ1 = µ1,

λ2 = 2µ2 + µ1 is asymptotically optimal as γ →∞.
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Proof: Since µ1 + µ2 ≤ 0, for any λ1 > 0, from equation (2.19), we get |λ1| ≤ |λ2|.
Let us first consider the false alarm constraint. Using equations. (2.7), (2.10) with

µ = 0 and ν1 = |λ1|ν, ν2 = |λ2|ν, we get

E∞[T2c] =

(
1

2g(ν,−|λ1|) +
1

2g(ν,−|λ2|)
)−1

= γ. (2.20)

By carefully examining the exponential rates of the two terms in (2.20) we conclude

that the leading term is the one containing λ1. Hence, we get

λ1ν = log γ(1 + o(1)). (2.21)

For the common detection delay, using equation (2.16) and substituting λ2 = 2(µ1+

µ2)− λ1 we have the estimates:

Ei
0[T2c] =

(
1

2g(ν, 2µ1 − λ1)
+

1

2g(ν, 2µ2 − λ1)

)−1

=





2ν
2µ1−λ1

(1 + o(1)) for 2µ1 > λ1 ≥ 0

ν2(1 + o(1)) for 2µ1 = λ1

2eν|2µ1−λ1|
(2µ1−λ1)2

(1 + o(1)) for 2µ1 < λ1.

(2.22)

The objective is to minimize the detection delay with respect to λ1 in order to find

the best selection for this parameter. From (2.22) it is clear that it is sufficient to

limit ourselves to the case 0 ≤ λ1 < 2µ1, since for λ1 ≥ 2µ1 the detection delay

increases significantly faster as ν increases. For 0 ≤ λ1 < 2µ1, the detection delay,

after substituting ν from (2.21), can be written as

2 log γ

λ1(2µ1 − λ1)
(1 + o(1)),

which is clearly minimized, asymptotically, for λ1 = µ1. Using equation (2.19), we

also get λ2 = 2µ2 + µ1. ¦
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Let us now summarize our results. We propose the following 2-CUSUM rule

for the case µ2 < 0 < µ1: when |µ1| ≤ |µ2| select λ1 = µ1, λ2 = 2µ2+µ1, ν1 = |µ1|ν,

ν2 = |2µ2 + µ1|ν. If |µ1| ≥ |µ2| then λ1 = 2µ1 + µ2, λ2 = µ2, ν1 = |2µ1 + µ2|ν,

ν2 = |µ2|ν. Finally, the parameter ν is selected so as to satisfy the false alarm

constraint.

2.4 Asymptotic optimality in opposite sign drifts

For the specific 2-CUSUM rule introduced at the end of the previous Section, we are

going to demonstrate two asymptotic optimality results. By means of an upper and

a lower bound on the performance of the unknown optimal stopping rule, we will

show that in the case of equal in absolute value drifts the difference in performance

between the unknown optimum rule and the proposed 2-CUSUM rule tends to a

constant as γ → ∞. In the case of different in absolute value drifts we have a

stronger asymptotic result. In particular, we will demonstrate that the difference

in performance between the unknown optimal rule and the proposed 2-CUSUM

rule tends to 0 as γ → ∞. This should be compared to most existing asymptotic

optimality results (see for example [42]) where it is shown that the ratio between

the performance of the optimum and the proposed scheme tends to unity (first

order optimality). Our form of asymptotic optimality is clearly stronger since it

implies first order optimality, while the opposite is not necessarily true.

Let T2c denote the specific 2-CUSUM rule proposed in the previous Section

with the threshold ν selected so that the false alarm constraint is satisfied with

equality. Since T2c constitutes a possible choice in the class K, equation (2.9) and
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Lemma2.2 imply that ∀ T ∈ K

E1
0 [T2c] = E2

0 [T2c] = JL(T2c) ≥ inf
T

JL(T ). (2.23)

To find a lower bound, we observe that ∀ T ∈ K we can write

inf
T

JL(T ) = inf
T

max
i

sup
τ

ess sup Ei
τ [(T − τ)+|Fτ ]

≥ max
i

(
inf
T

sup
τ

ess sup Ei
τ [(T − τ)+|Fτ ]

)

= max
i

2

µ2
i

g(ηi, 1), (2.24)

where for the last equality we used the optimality of the one-sided CUSUM stopping

rule and the expression for its worst detection delay from Lemma2. The two

thresholds ηi, i = 1, 2, are selected to satisfy the false alarm constraint 2
µ2

i
g(ηi,−1) =

γ. The asymptotic results that follow examine the way the two bounds approach

each other. Since the performance of the optimal stopping rule is between the two

bounds, this will also determine the rate with which the 2-CUSUM approaches the

optimal solution.

2.4.1 The case of equal in absolute value drifts

We first consider the special case µ1 = −µ2 = µ. Here our parameter selection

takes the form λ1 = µ1 = µ and λ2 = 2µ2 +µ1 = µ2 = −µ which coincides with the

2-CUSUM scheme proposed in the literature. Let us now examine the two bounds.

The upper bound, from (2.16), with this specific parameter selection becomes

JL(T2c) = Ei
0[T2c] =

(
1

2g(ν, µ)
+

1

2g(ν,−3µ)

)−1

, i = 1, 2, (2.25)
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with the threshold ν computed from the false alarm constraint (2.20) that takes

the form

E∞[T2c] =

(
1

2g(ν,−µ)
+

1

2g(ν,−µ)

)−1

= g(ν,−µ) = γ. (2.26)

Similarly, the lower bound becomes 2
µ2 g(η, 1) with the threshold η satisfying 2

µ2 g(η,−1) =

γ.

Theorem 2.3 The difference in the performance between the proposed 2-CUSUM

stopping rule and the optimal stopping rule, is bounded above by a quantity that

tends to the constant 2 log 2
µ2 , as the false alarm constraint γ →∞.

Proof: Solving for ν from (2.26) we obtain µν = log γ +log µ2

2
+log 2+o(1).

On the other hand, we can write (2.25) as JL(T2c) = 2
µ2{µν + e−µν − 1}{1 +

O(µνe−3µν)}. Substituting the estimate for ν we get

JL(T2c) =
2

µ2

{
log γ + log

µ2

2
− 1 + log 2 + o(1)

}
.

Similarly, for the lower bound we have that the threshold η as a function of γ

becomes η = log γ + log µ2

2
+ o(1). Therefore, the lower bound is of the form

2
µ2{log γ + log µ2

2
− 1 + o(1)}. Since the difference between the upper and the lower

bound, bounds the difference JL(T2c)− infT JL(T ), we conclude that

0 ≤ JL(T2c)− inf
T

JL(T ) ≤ 2

µ2
{log 2 + o(1)},

from which the result follows by letting γ →∞. ¦
Figure 2.1 depicts the upper and lower bound as a function of the false alarm

constraint γ for the case µ1 = −µ2 = 1. Since, as we can see, the difference of the

two bounds is increasing with γ, the constant proposed by Theorem2.3 corresponds

to a worst case performance attained only in the limit as γ →∞.
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Figure 2.1: Typical form of the upper and lower bounds of the performance of the
optimum stopping rule for the case µ1 = −µ2 = 1.

2.4.2 The case of different in absolute value drifts

Theorem 2.4 The difference in the performance between the proposed 2-CUSUM

stopping rule and the optimal stopping rule is bounded above by a quantity that

tends to 0, as the false alarm constraint γ →∞.

Proof: We will only examine the case |µ1| < |µ2|. From Corollary 1 and equa-

tion (2.8) it follows that the maximum in the lower bound in (2.24) is achieved for

µ1. Hence, as in Theorem2.3, we get 2
µ2

1
{log γ + log

µ2
1

2
− 1 + o(1)} for the lower

bound.

The upper bound is the detection delay of the proposed 2-CUSUM stopping

time T2c. From (2.16), with λ1 = µ1, λ2 = 2µ2 + µ1, we have

JL(T2c) = Ei
0[T2c] =

(
1

2g(ν, µ1)
+

1

2g(ν, 2µ2 − µ1)

)−1

=
2

µ2
1

{e−µ1ν + µ1ν − 1}{1 + O(µ1νe(2µ2−µ1)ν)}, (2.27)
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where ν is selected to satisfy the false alarm constraint, which from (2.20) takes

the form

E∞[T2c] =

(
1

2g(ν,−µ1)
+

1

2g(ν, 2µ2 + µ1)

)−1

= γ. (2.28)

From (2.28) we get the estimate µ1ν = log γ +log
µ2

1

2
+o(1). This, when substituted

in (2.27), produces:

JL(T2c) = Ei
0[T2c] =

2

µ2
1

{
log γ + log

µ2
1

2
− 1 + o(1)

}
. (2.29)

Subtracting now the lower bound expression from the upper bound expression in

(2.29) we obtain

0 ≤ JL(T2c)− inf
T

JL(T ) ≤ o(1),

which tends to 0 as γ →∞. ¦
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Figure 2.2: Typical form of the upper and lower bounds of the performance
of the optimal stopping rule for the case µ2 < 0 < µ1, with µ1 = 1 and
µ2 = −1.05,−1.15,−1.3.

In Figure 2.2 we present the two bounds for µ1 = 1 and µ2 = −1.05,−1.15,−1.3.

We recall that the upper bound is the detection delay of the 2-CUSUM rule
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T2c ∈ G ∩ K with parameters λ1 = µ1 and λ2 = 2µ2 + µ1. We can see that

the difference between the two curves is tending to zero as the false alarm tends to

infinity, thus corroborating Theorem 2.4. What is more interesting, however, is the

fact that the two curves rapidly approach each other, uniformly over γ, as the ratio

|µ2|/|µ1| of the two drifts increases. As we can see, in the case µ1 = 1, µ2 = −1.3

the two bounds become almost indistinguishable. This suggests that the proposed

2-CUSUM rule can be (extremely) close to the unknown optimal rule, not only

asymptotically, as proposed by Theorem2.4, but also uniformly over all false alarm

values.

It is also worth noting that the difference in the performance of the optimal

rule and any 2-CUSUM rule in G with parameters λ1 = µ1 and λ2 ∈ (−µ1 2µ2 +µ1]

(one such possibility is the selection proposed in the literature λ1 = µ1, λ2 = µ2)

also tends to 0 as γ → ∞. Therefore, asymptotically optimal solutions allow for

many different choices. It is, however, our selection that leads to an equalizer rule.

2.5 Conclusions & Future Work

In this Chapter we identify the harmonic mean drift equalizer rule with the best

asymptotic performance in the case of unequal in absolute value drifts (as the fre-

quency of false alarms tends to infinity) and are able to prove a stronger asymptotic

optimality result than is known in the literature. In particular, in this case, the

difference in the detection delay of the optimal unknown scheme and the 2-CUSUM

stopping rule (with the choice of parameters λ1 = µ1 and λ2 = 2µ2 + 2µ1 − λ1)

tends to 0, even though both of the detection delay quantities are unbounded as

the frequency of false alarms tends to infinity. In fact, this difference tends faster
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to 0 as the difference between µ2 and µ1 increases. It is interesting to notice how-

ever, that this strong asymptotic optimality result holds even when the choice of

drift parameters is the one that coincides with the 2-CUSUM rules traditionally

proposed in the literature. Nevertheless, the drift equalizer 2-CUSUM rule choice

is preferable for all values of the frequency of false alarms as is demonstrated in the

next Chapter. Moreover, in the symmetric case the difference in the detection delay

of the optimum scheme and the specific 2-CUSUM rule with drift parameter equal

to the absolute value of the change tends to the constant 2 log 2
µ2 as the frequency of

false alarms tends to infinity, where µ is the absolute value of the two-sided possible

changes. Notice that in this case too, both detection delays become unbounded as

the frequency of false alarms tends to infinity.

Yet, the choice of stopping rules within the class G was made only due to

the fact that we can readily compute their expected values. Remark 4.2 in the

last Chapter provides the first stepping stone to the explicit computation of the

expected value of 2-CUSUM stopping rules that are not members of G. It would

be of great interest to contrast 2-CUSUM rules that are members of G with those

that are not in order to identify optimal behavior.

Another problem of great interest is the problem of identifying the best 2-

CUSUM rule among the family of 2-CUSUM rules generated by the set of all pairs

of possible drift parameter values M = {µ1, µ2, . . . , µn} that contains both positive

and negative values. This knowledge would enable us to select the best 2-CUSUM

rule in the case that we know that the change is two-sided but only know a possible

range of values that the two drifts of different signs can take. Obviously in the case

that all µi’s have the same sign the one-sided CUSUM with the smallest in absolute
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value drift will be the optimal stopping rule as shown by Moustakides in Section

2.2.

Moreover, it is worth pointing out that we can only hope to find strict opti-

mality in the two-sided alternative case if we restrict ourselves to a class of stopping

rules that satisfy a symmetry condition. This should be true due to the fact that

in two-sided-alternative hypotheses testing there is no uniformly most powerful

test, but there does exist a uniformly most powerful unbiased test that satisfies a

symmetry condition.

Finally, an area of interest would also be to try to generalize the results that

appear in this Chapter to general Lévy processes. For the simplest case of jump

processes, that is in the case of the Poisson disorder problem, results of interest

appear in [45, 12, 32, 26, 4, 5, 22].
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Chapter 3

Optimality of the 2-CUSUM drift

equalizer rules among the

harmonic mean 2-CUSUM rule

class for detecting two-sided

alternatives in the Brownian

motion model

In the previous Chapter we confined our attention to 2-CUSUM stopping rules

in the class G that satisfy the harmonic mean rule which enables us to compute

their first moment exactly. We further restricted our attention to drift equalizer

rules. This Chapter shows strictly optimal performance of drift equalizer harmonic
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mean rules. We begin by redefining the 2-CUSUM stopping time by using only

positive drift parameters and proceed to prove optimality of the 2-CUSUM drift

equalizer rules amongst the class of harmonic mean 2-CUSUM rules. Drift equalizer

2-CUSUM rules constitute a clear improvement over what has been proposed and

traditionally used in the literature for detecting two-sided alternatives. This is

because a strictly better performance is achieved by means of a careful selection of

their drift parameters.

This Chapter is structured as follows. In Section 3.1 we redefine the 2-

CUSUM stopping rules with only positive parameters and revisit the harmonic

mean rule. In Section 3.2 optimality of drift equalizer 2-CUSUM harmonic mean

rules is proven. The proof is made up of results that appear in Appendix A.

3.1 The 2-CUSUM rules & the harmonic mean

rule (revisited)

We sequentially observe a process {ξt} with the dynamics:

dξt =





dwt t ≤ τ

µ1dt + dwt

or

−µ2dt + dwt

t ≥ τ

where τ , the time of change, is assumed deterministic but unknown; µi, the possible

drifts the process can change to, are assumed known, but the specific drift the

process is changing to is assumed to be unknown. Both µ1, µ2 are assumed to be
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positive. Without loss of generality we can assume that µ2 ≥ µ1. Our goal is to

detect the change and not to infer which of the two changes occurred.

The probabilistic setting of this problem is identical to the one that appears

in Chapter 2 and our objective is identical to the one in Chapter 2, namely to solve

the stochastic optinizaton problem that appears in 2.4.

Let us redefine the CUSUM statistics with only positive parameters.

Definition 3.1 The normalized CUSUM statistics with drift parameters λ1 > 0

and λ2 > 0, tuned to detect the positive and negative changes in the drift of the

Brownian motion are defined respectively as follows:

1.
y+

t (λ1)

λ1
= ξt − 1

2
λ1t− infs≤t(ξs − 1

2
λ1s),

2.
y−t (λ2)

λ2
= −ξt − 1

2
λ2t− infs≤t(−ξs − 1

2
λ2s).

We now proceed to define the 2-CUSUM stopping rules.

Definition 3.2 The 2-CUSUM stopping rule with drift parameters λ1 > 0, λ2 > 0

and threshold parameters ν1 > 0, ν2 > 0 is defined as follows:

T (λ1, λ2, ν1, ν2) = T 1 ∧ T 2,

where

1. T 1 = inf{t > 0;
y+

t (λ1)

λ1
> ν1},

2. T 2 = inf{t > 0;
y−t (λ2)

λ2
> ν2}.

We proceed to consider the smaller class of 2-CUSUM rules that satisfy the property

of the harmonic mean rule. In particular, we will consider all 2-CUSUM rules whose

both two CUSUM stopping-time branches T 1 and T 2 have the same threshold. The
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harmonic mean rule enables us to explicitly compute the expected value of the 2-

CUSUM stopping rule in terms of the expected values of its corresponding one sided

CUSUM stopping times, as seen in Lemma 2.5. To this effect, we introduce the

harmonic mean 2-CUSUM class of stopping rules with positive parameters only:

Definition 3.3 With λ1, λ2, ν1, ν2 ∈ R+, define G = {T (λ1, λ2, ν1, ν2); ν1 = ν2}.

From now on we only consider 2-CUSUM rules in G and denote them by T (λ1, λ2, ν).

In the previous Chapter, we showed that under any of the measures P 1
0 , P 2

0 , P∞ we

have:

1

E [T (λ1, λ2, ν)]
=

1

E [T 1]
+

1

E [T 2]
. (3.1)

At this point, it is worth noting that for any T , CUSUM stopping rule the worst

detection delay over all paths is the one that occurs when y+
τ and y−τ are 0. This is

essentially a consequence of the non-negativity of the CUSUM statistic processes

and can more formally be seen as a result of Lemma 2.1. It appears in equation

(2.9) and we recall it here.

JL(T ) = max
i

sup
τ

essup Ei
τ

[
(T − τ)+|Fτ

]

= max{E1
0 [T ] , E2

0 [T ]}. (3.2)

As shown in Lemma 2.2, by applying Itô’s rule and using existing results in
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stochastic analysis we get:

1

2
E∞(T 1) =

h(λ1ν)

λ2
1

, (3.3)

1

2
E∞(T 2) =

h(λ2ν)

λ2
2

, (3.4)

1

2
E1

0(T
1) =

h
(
(λ1 − 2µ1)ν

)

(λ1 − 2µ1)2
, (3.5)

1

2
E1

0(T
2) =

h
(
(λ2 + 2µ1)ν

)

(λ2 + 2µ1)2
, (3.6)

1

2
E2

0(T
1) =

h
(
(λ1 + 2µ2)ν

)

(λ1 + 2µ2)2
, (3.7)

1

2
E2

0(T
2) =

h
(
(λ2 − 2µ2)ν

)

(λ2 − 2µ2)2
, (3.8)

where h(x) = ex − x− 1.

3.2 Equalizer rules are best

We now proceed to inspect the dynamics of the CUSUM statistic processes when

the change is µ1 and when the change is −µ2:

change is µ1

y+
t

λ1
wt + (µ1 − 1

2
λ1)t− infs≤t(ws + (µ1 − 1

2
λ1)s)

y−t
λ2

−wt − (µ1 + 1
2
λ2)t− infs≤t(−ws − (µ1 + 1

2
λ2)s)

Table 3.1: The dynamics of the two CUSUMs when the change is µ1

We notice that if equation

λ2 − λ1 = 2µ2 − 2µ1 (3.9)
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change is µ2

y+
t

λ1
wt − (µ2 + 1

2
λ1)t− infs≤t(ws − (µ2 + 1

2
λ1)s)

y−t
λ2

−wt + (µ2 − 1
2
λ2)t− infs≤t(−ws + (µ2 − 1

2
λ2)s)

Table 3.2: The dynamics of the two CUSUMs when the change is µ2

holds, then
y+

t

λ1
when the change is µ1 has the same law as

y−t
λ2

when the change is µ2

and that
y+

t

λ1
when the change is µ2 has the same law as

y−t
λ2

when the change is µ1. In

particular, this means that T (λ1, λ2, ν) = T 1 ∧ T 2 has the same distribution under

both measures P 1
0 and P 2

0 . Therefore, when equation (3.9) holds, E1
0

(
T (λ1, λ2, ν)

)
=

E2
0

(
T (λ1, λ2, ν)

)
. This allows us to distinguish among all 2-CUSUM harmonic mean

rules, the equalizer rules whose performance is the same under both measures P 1
0

and P 2
0 .

Definition 3.4 We define the class of all equalizer rules as follows:

E = {T (λ1, λ2, ν); λ2 − λ1 = 2(µ2 − µ1), ν > 0}.

In the sequel we will use S for any stopping rule that belongs to the class

E and by T any stopping rule that does not belong to E . Notice that if µ2 = µ1

(the symmetric case) any choice of λ ∈ R+ will result in an equalizer rule for

λ2 = λ1 = λ.

Our focus thus, is on the case that µ2 > µ1. The objective is that for any

arbitrary rule T we would like to be able to find an equalizer rule S that achieves

the same frequency of false alarms while lowering the detection delay. In other

words, for any arbitrary rule T we want to always be able to find a rule S ∈ E that

has better performance.
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To this effect let us define two classes of non-equalizer rules:

Definition 3.5 We define the following two classes of non-equalizer rules

1. Dg = {T (λ1, λ2, ν); λ2 − λ1 > 2µ2 − 2µ1},

2. Ds = {T (λ1, λ2, ν); λ2 − λ1 < 2µ2 − 2µ1}.

Notice that Ec = Dg ∪ Ds.

Theorem 3.1 ∀ 2-CUSUM rules T ∈ Dg ∪ Ds, ∃ S ∈ E such that

E∞(T ) = E∞(S), (3.10)

while

max{E1
0(T ), E2

0(T )} > E1
0(S) = E2

0(S).

Proof: We can distinguish the following three cases

1. T (λ′1, λ
′
2, ν) ∈ Dg. ∃ λ2 , λ1 > 0 with λ2 < λ′2 and λ1 > λ′1 such that

λ2 − λ1 = 2µ2 − 2µ1 for which (3.10) holds.

2. T (λ′1, λ
′
2, ν) ∈ Ds and λ′2 > λ′1. (The justification for the additional assump-

tion λ′2 > λ′1 is given in Appendix A.3 and should be read after the sequel).

∃ λ2 , λ1 > 0 with λ2 > λ′2 and λ′1 > λ1 such that λ2 − λ1 = 2µ2 − 2µ1 and

the same frequency of false alarms can be achieved by an equalizer rule for

the same threshold ν. More specifically, ∃ S(λ1, λ2, ν) for which (3.10) holds.

3. There does not exist λ1 > 0 such that with λ2 > λ′2 and λ2 − λ1 = 2µ2 − 2µ1

the same frequency of false alarms can be achieved by an equalizer rule with

the same threshold.
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To prove the result in the first case it suffices to show the following two

inequalities:

1

E2
0(S

1)
− 1

E2
0(T

1)
>

1

E∞(S1)
− 1

E∞(T 1)
, (3.11)

1

E∞(T 2)
− 1

E∞(S2)
>

1

E2
0(T

2)
− 1

E2
0(S

2)
. (3.12)

This is because the RHS of inequality (3.11) is equal to the LHS of inequality (3.12)

as can be seen by using equations (3.1) and (3.10). It then follows that the LHS

of the former inequality is greater than the RHS of the latter and using equation

(3.1) again we get that E2
0(T ) > E2

0(S). Using equations (3.7), (3.8), (3.3), (3.4)

we can rewrite inequality (3.11) in the following way:

1

h
(
(λ1+2µ2)ν

)
(λ1+2µ2)2

− 1

h
(
(λ′1+2µ2)ν

)
(λ′1+2µ2)2

>
1

h(λ1ν)

λ2
1

− 1
h(λ1ν)

λ′21

. (3.13)

Multiplying both sides of the equation by ν2 and using the convexity of the function

g(x) = x2

h(x)
(see Appendix A.1) the result follows. Similarly we can show (3.12).

In cases 2 and 3 the result follows from inequalities

1

E1
0(S

2)
− 1

E1
0(T

2)
>

1

E∞(S2)
− 1

E∞(T 2)
, (3.14)

1

E∞(T 1)
− 1

E∞(S1)
>

1

E1
0(T

1)
− 1

E1
0(S

1)
. (3.15)

Notice that in both cases 2 and 3 we have E1
0(T ) > E1

0(S). In case 2 the two

inequalities are a direct consequence of the convexity of the function g(x) = x2

h(x)

after using equations (3.5), (3.6), (3.3), and (3.4).

In case 3 the situation is slightly more involved, since in order to achieve the

same frequency of false alarms for an equalizer rule, we need to lower the threshold

to ν ′ < ν. In other words, we can still find an S(λ1, λ2, ν
′) ∈ E for which (3.10)
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holds by selecting λ1 = λ′1, λ2 > λ′2 such that λ2−λ1 = 2µ2−2µ1 and consequently

a threshold ν ′ < ν. We can now rewrite inequalities (3.14) and (3.15) with the

above choice of parameters using equations (3.5), (3.6), (3.3), and (3.4) as follows:

1

h
(
(λ2+2µ1)ν′

)
(λ2+2µ1)2

− 1

h
(
(λ′2+2µ1)ν

)
(λ′2+2µ1)2

>
1

h(λ2ν′)
λ2
2

− 1
h(λ′2ν)

λ′22

, (3.16)

1
h(λ1ν)

λ2
1

− 1
h(λ1ν′)

λ2
1

>
1

h
(
(λ1−2µ1)ν

)
(λ1−2µ1)2

− 1

h
(
(λ1−2µ1)ν′

)
(λ1−2µ1)2

. (3.17)

For a proof of inequality (3.17) please refer to Appendix A.4. Notice that the

parameters are chosen in such a way that (3.10) holds and therefore the RHS of

(3.16) is equal to the LHS of (3.17) and they are both negative. Thus, we have

h(λ′2ν)

λ′22
< h(λ2ν′)

λ2
2

. If
h
(
(λ′2+2µ1)ν

)
(λ′2+2µ1)2

≥ h
(
(λ2+2µ1)ν′

)
(λ2+2µ1)2

, then (3.16) trivially holds. We will

now proceed to examine the contrary case. We make two selections λ′′2 ∈ [λ′2, λ2]

and λx
2 ∈ [λ′2, λ2] such that

h(λ2ν
′)

λ2
2

=
h(λ′′2ν)

λ′′22

, (3.18)

h
(
(λ2 + 2µ1)ν

′
)

(λ2 + 2µ1)2
=

h
(
(λx

2 + 2µ1)ν
)

(λx
2 + 2µ1)2

. (3.19)

But from Appendix A.2, it follows that λx
2 < λ′′2 and since the function h(x)

x2 is

strictly increasing ∀ x ∈ R+ we have:

1

h
(
(λx

2+2µ1)ν
)

(λx
2+2µ1)2

− 1

h
(
(λ′2+2µ1)ν

)
(λ′2+2µ1)2

>
1

h
(
(λ′′2+2µ1)ν

)
(λ′′2+2µ1)2

− 1

h
(
(λ′2+2µ1)ν

)
(λ′2+2µ1)2

. (3.20)

Inequality (3.16) now readily follows from (3.20), (3.18), (3.19), the convexity of the

function g(x) = x2

h(x)
(see Appendix A.1) and the fact that λ′′2 > λ′2. This completes

the proof. ¦
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3.3 Conclusions

After restricting ourselves to the class of harmonic mean 2-CUSUM rules that

impose a first constraint on the thresholds of each one-sided branch we proceed to

examine the best selection of drift parameters in the case that the two opposite

sign drifts are known. The result presented in this Chapter allows us to select the

drifts λ1, λ2 in such a way that we can construct harmonic mean 2-CUSUM rules

with a strictly better performance for all frequencies of false alarms especially in

the case that the absolute values of the possible opposite sign drifts assumed after

the change are not equal. This result clearly enhances the results in the literature

whereby the suggested 2-CUSUM rules that have been used were selected amongst

the class of harmonic mean 2-CUSUM rules with drift parameters exactly equal to

the drifts assumed after the change.
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Appendix A

A.1

Lemma A.1 The function

g(x) =
1

h(x)
x2

where h(x) = ex − x− 1, is strictly convex.

Proof: It suffices to show that g′′(x) > 0. We have

g′′(x) =
[2(ex − x− 1)− x2ex] (ex − x− 1)− 2(ex − 1) [2x(ex − x− 1)]

(ex − x− 1)3

In order to show that g′′(x) > 0 it suffices to show that the function f(x) =

[(ex − x− 1)3] g′′(x) is positive ∀ x 6= 0. Notice that f(0) = 0. It suffices to show

that f ′(x) has the same sign as x. But

f ′(x) = xex
[
2xex − 6ex + x2 + 4x + 6

]

Let k(x) = 2xex−6ex+x2+4x+6. We have k(0) = 0 and k′′(x) = 2ex [e−x + x− 1] >

0 ∀ x 6= 0. Therefore k(x) > 0 ∀ x 6= 0 and k(0) = 0. Hence f ′(x) has the same

sign as x and f(0) = 0 from which it follows that f(x) ≥ 0 with equality only at

x = 0. This completes the proof. ¦
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A.2

Lemma A.2 Suppose we pick x1, x2, ν ′ and ν all positive, with ν > ν ′ and x1 < x2

so that

h(x1ν)

x2
1

=
h(x2ν

′)
x2

2

. (A.1)

Then ∀ a ∈ R+, we have:

h
(
(x1 + a)ν

)

(x1 + a)2
>

h
(
(x2 + a)ν ′

)

(x2 + a)2
, (A.2)

where h(x) = ex − x− 1.

Proof: Notice that, since x1 < x2, for equality (A.1) to hold we need x1ν < x2ν
′.

Therefore, 1
x1ν

+ 1
(x1ν)2

> 1
x2ν′ + 1

(x2ν′)2 . Using this and the fact that ν > ν ′, we get

that:

[
x1ν + 1

(x1ν)2

]
ν2 −

[
x2ν

′ + 1

(x2ν ′)2

]
ν ′2 > 0. (A.3)

From equation (A.1) and inequality (A.3), it follows that:

ex1ν

x2
1

>
ex2ν′

x2
2

⇔ x2
2

x2
1

>
ex2ν′

ex1ν
. (A.4)

We now have:

ex2ν′

ex1ν
>

ex2ν′ − x1νe−aν

ex1ν − x1νe−aν
>

ex2ν′ − x2ν
′e−aν′

ex1ν − x1νe−aν

>
ex2ν′ − x2ν

′e−aν′ − aν ′e−aν′ − e−aν′

ex1ν − x1νe−aν − aνe−aν − e−aν
, (A.5)

where the first inequality follows from the fact that x1νe−aν > 0, the second in-

equality from the fact that x1ν < x2ν
′ and e−aν′ > e−aν , and the last inequality by
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noting that the function (x + 1)e−x is decreasing ∀ x > 0. Using inequalities (A.4),

(A.5) as well as the fact that a > 0 and the fact that eaν′

eaν < 1, we get:

(x2 + a)2

(x1 + a)2
>

x2
2

x2
1

>
ex2ν′ − (x2 + a)ν ′e−aν′ − e−aν′

ex1ν − (x1 + a)νe−aν − e−aν

>
eaν′

eaν

ex2ν′ − (x2 + a)ν ′e−aν′ − e−aν′

ex1ν − (x1 + a)νe−aν − e−aν
. (A.6)

The result follows from the final inequality and a rearrangement of terms. ¦

A.3

What remains for the proof of Theorem 3.1 is to justify that, whenever E1
0 [T ] >

E1
0 [S] (cases 2 and 3), it is sufficient to consider 2-CUSUM rules T for which the

second drift parameter is greater than the first. To this effect, let us define the

following two classes of stopping rules:

Definition A.1 Define

1. C1 = {T (λ1, λ2, ν); λ2 > λ1 > 0, λ2 − λ1 < 2µ2 − 2µ1, ν > 0}.

2. C2 = {T (λ1, λ2, ν); 0 < λ2 < λ1, λ2 − λ1 < 2µ2 − 2µ1, ν > 0}.

Notice that C1∪C2 = Ds. The following lemma is sufficient to justify our adherence

to rules that belong to the class C1, whenever E1
0 [T ] > E1

0 [S].

Lemma A.3 ∀ Tc2 ∈ C2 ∃ Tc1 ∈ C1 such that E∞ [Tc1 ] = E∞ [Tc2 ] while E1
0 [Tc2 ] >

E1
0 [Tc1 ].

Proof: Let λ′1 > λ′2 > 0. Then T (λ′1, λ
′
2, ν) ∈ C2. From equations (3.3), (3.4) and

(3.1), we get that

1

E∞ [T (λ′1, λ
′
2, ν)]

=
1

h
(
(λ′1)ν

)
(λ′1)2

+
1

h
(
(λ′2)ν

)
(λ′2)2

. (A.7)
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Now let λ′′1 = λ′2 and λ′′2 = λ′1. Then T (λ′′1, λ
′′
2, ν) ∈ C1, while

1

E∞ [T (λ′′1, λ
′′
2, ν)]

=
1

h
(
(λ′′1 )ν

)
(λ′′1 )2

+
1

h
(
(λ′′2 )ν

)
(λ′′2 )2

=
1

h
(
(λ′1)ν

)
(λ′1)2

+
1

h
(
(λ′2)ν

)
(λ′2)2

. (A.8)

Therefore both of the above rules have the same frequency of false alarms.

The desirable result comes as a direct consequence of the following two in-

equalities:

1

h
(
(λ′1−2µ1)ν

)
(λ′1−2µ1)2

− 1

h
(
(λ′′1−2µ1)ν

)
(λ′′1−2µ1)2

<
1

h
(
(λ′1)ν

)
(λ′1)2

− 1

h
(
(λ′′1 )ν

)
(λ′′1 )2

(A.9)

and

1

h
(
(λ′′2 )ν

)
(λ′′2 )2

− 1

h
(
(λ′2)ν

)
(λ′2)2

<
1

h
(
(λ′′2+2µ1)ν

)
(λ′′2+2µ1)2

− 1

h
(
(λ′2+2µ1)ν

)
(λ′2+2µ1)2

. (A.10)

Notice that from (A.8) and (A.7), it follows that the RHS of (A.9) is equal to the

LHS of (A.10). Therefore, the LHS of (A.9) is greater than the RHS of (A.10).

From the result just mentioned, a rearrangement of terms and equations (3.6),

(3.5), (3.3), (3.4) as well as (3.1), we get 1

E1
0

(
T (λ′′1 ,λ′′2 ,ν)

) > 1

E1
0

(
T (λ′1,λ′2,ν)

) , which is the

desired inequality.

Inequalities (A.9) and (A.10) follow by multiplying both sides by ν2 and

using the convexity of the function x2

h(x)
(see Appendix A.1) along with the fact

that λ′1 > λ′′1 and λ′′2 > λ′2 respectively. This completes the proof of the lemma. ¦

A.4

Definition A.2 Let µ ∈ [0,∞) and ν > ν ′ > 0. Define the following functions:
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1. Cν(µ) =
h
(
(λ1−2µ)ν

)
(λ1−2µ)2

,

2. Cν′(µ) =
h
(
(λ1−2µ)ν′

)
(λ1−2µ)2

,

3. f(µ) = 1
Cν(µ)

− 1
Cν′ (µ)

,

where h(x) = ex − x− 1.

After introducing the above definition we can rewrite (3.17) in the following

way:

f(0) > f(µ1). (A.11)

To prove inequality (A.11) it suffices to show that f(µ) is strictly decreasing.

Lemma A.4 The function f(µ) is strictly decreasing.

Proof: By differentiating f(µ) w.r.t µ we get

f ′(µ) =
−C ′

ν(µ)

[Cν(µ)]2
+

C ′
ν′(µ)

[Cν′(µ)]2
. (A.12)

Hence it suffices to show that

−C ′
ν(µ) [Cν′(µ)]2 < −C ′

ν′(µ) [Cν(µ)]2 . (A.13)

Using ν > ν ′ and doing a term-by-term comparison the result follows. ¦
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Chapter 4

The gambler’s ruin problem with

relative wealth perception

This Chapter is structured as follows. In Section 4.1.1 the explicit probabilities

of exiting on the upward rally (or the downward fall) are computed along with

the probability mass functions of the random variables Y +
T1(a) and Y −

T2(b) in the

discrete time framework. Moreover, the expected value of the minimum of the two

stopping times described above is given in a remark. All computations are also

given in the special case of an unbiased random walk. In Section 4.1.2 the explicit

probabilities of winning (or losing) as well as the probability density functions

of the random variables y+
T c
1 (a) and y−T c

2 (b) are computed in the continuous time

framework. Furthermore, the expected value of the minimum of the two stopping

times described above is given in a remark. All computations are also given in

the special case of a standard Brownian motion model. Concluding remarks and

suggestions for future work appear in Section 4.2. A short review of the traditional

gambler’s ruin problem in both the discrete and in the continuous time framework
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appears in Appendix B.

4.1 Gambler’s ruin problem with relative wealth

perception

4.1.1 The discrete time framework

Assume that the evolution of the gambler’s wealth Sn follows biased random walk,

i.e., at time n

Sn =
n∑

i=1

Zi,

where

Zi =





1, with probability p,

−1, with probability q,

with p + q = 1 and p < q. The quantity

Sn − min
k∈[0,n]∩N

Sk

measures the size of the upward rally comparing the present value of the wealth to

its historical minimum, while the quantity

max
k∈[0,n]∩N

Sk − Sn

measures the size of the downward fall comparing the present value of the wealth

to its historical maximum.

The aim of this Section is to determine the probability that the gambler

would quit the game on the upward rally in contrast to quitting the game on the
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downward fall. To this effect, we introduce the stopping times:

T1(a) = inf{n ∈ N : max
k∈[0,n]∩N

Sk − Sn = a, a ∈ N},

and

T2(b) = inf{n ∈ N : Sn − min
k∈[0,n]∩N

Sk = b, b ∈ N}.

The gambler stops at T (a, b) = T1(a)∧ T2(b). The stopping times T1(a) and

T2(b) indicate the first time of reaching the critical level of the downward fall T1(a),

or the first time of reaching the critical level of the upward rally T2(b). In this

Section, we compute probabilities of the events {T (a, b) = T1(a)}, which represents

stopping the game on the downward fall, and {T (a, b) = T2(b)}, which represents

stopping the game on the upward rally.

In order to simplify notation we introduce the following processes:

M+
n := min

k∈[0,n]∩N
Sk,

M−
n := min

k∈[0,n]∩N
(−Sk) = − sup

k∈[0,n]∩N
Sk,

Y +
n := Sn −M+

n ,

Y −
n := −Sn −M−

n .

Therefore we can re-express T1(a) and T2(b) as:

T1(a) = min{n ∈ N : Y −
n = a, a ∈ N},

T2(b) = min{n ∈ N : Y +
n = b, b ∈ N}.

Theorem 4.1 Let Sn =
∑n

i=1 Zi be the evolution of the wealth of the gambler and

let T (a, b), T1(a) and T2(b) be stopping times defined as above. We distinguish the

following three cases:
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1. b ≥ a + 1 > 1

The probabilities of stopping the game on downward fall or upward rally are

given by

P
(
T (a, b) = T1(a)

)
= mA + (1−mA) · (1−Rb−a

A ), (4.1)

P
(
T (a, b) = T2(b)

)
= (1−mA) ·Rb−a

A , (4.2)

respectively, where

mA =

(
q
p

)a+1

− (a + 1)
(

q
p

)
+ a

[
1−

(
q
p

)−a
]
·
[(

q
p

)a+1

− 1

] , (4.3)

and

RA =
1−

(
q
p

)a

1−
(

q
p

)a+1 . (4.4)

2. a ≥ b + 1 > 1

The probabilities of stopping the game on downward fall or upward rally are

given by

P
(
T (a, b) = T1(a)

)
= (1−mB) ·Ra−b

B , (4.5)

P
(
T (a, b) = T2(b)

)
= mB + (1−mB) · (1−Ra−b

B ), (4.6)

respectively, where

mB =

(
q
p

)−(b+1)

− (b + 1)
(

q
p

)−1

+ b
[
1−

(
q
p

)−b
]
·
[(

q
p

)b+1

− 1

] , (4.7)

and

RB =

(
q

p

)
·

1−
(

q
p

)b

1−
(

q
p

)b+1
. (4.8)
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3. a = b

The probabilities of stopping the game on downward fall or upward rally are

given by

P
(
T (a, a) = T1(a)

)
=

(
q
p

)a+1

− (a + 1)
(

q
p

)
+ a

[
1−

(
q
p

)−a
]
·
[(

q
p

)a+1

− 1

] , (4.9)

P
(
T (a, a) = T2(a)

)
=

(
q
p

)−(a+1)

− (a + 1)
(

q
p

)−1

+ a
[
1−

(
q
p

)−a
]
·
[(

q
p

)a+1

− 1

] (4.10)

respectively.

The proof of the above theorem uses the following proposition:

Proposition 4.1 The probability distribution functions of the random variables

Y +
T1(a) and Y −

T2(b) are given by the following:

1.

pA
0 = P (Y +

T1(a) = 0) = mA + (1−mA) · (1−RA), (4.11)

pA
k = P (Y +

T1(a) = k) = (1−mA) · (1−RA) ·Rk
A, ∀ k ∈ N ∗ ,

where mA and RA are given by equations (4.3) and (4.4) respectively.

2.

pB
0 = P (Y −

T2(b) = 0) = mB + (1−mB) · (1−RB), (4.12)

pB
k = P (Y −

T2(b) = k) = (1−mB) · (1−RB) ·Rk
B, ∀ k ∈ N ∗ ,

where mB and RB are given by equations (4.7) and (4.8) respectively.
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In order to prove Proposition 4.1 and Theorem 4.1, we will need the following

two lemmas.

Lemma 4.1 For a, b ∈ N , we have:

E [T1(a)] =
1

p
·

( q
p

)−(a+1)−(a+1)
( q

p

)−1
+a

[(p
q

)
−1

]
·
[
1−

( q
p

)] , (4.13)

E [T2(b)] =
1

q
·

( q
p

)b+1−(b+1)
( q

p

)
+b

[( q
p

)
−1

]
·
[
1−

(p
q

)] . (4.14)

Proof. The proof is similar to the procedure that appears in Siegmund (1985) (see

[36]) for the purpose of computing the expectation of the CUSUM stopping time.

With Sn =
∑n

i=1 Zi, define the sequence of stopping times {Nk} in the following

way:

N1 = inf{n ≥ 1; Sn 6∈ (−1, b)}.

If SN1 = b, then T2 = N1, otherwise

SN1 = min
k∈[0,N1]∩N

Sk,

and

N2 = inf{n ≥ 1; SN1+n − SN1 6∈ (−1, b)}.

If SN1+N2 = b, then T2 = N1 + N2, else

SN1+N2 = min
k∈[0,N1]∩N

Sk.

In general we have:

Nk = inf{n ≥ 1; SN1+...+Nk−1+n − SN1+...+Nk−1
6∈ (−1, b)},
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and T2(b) =
∑M

i=1 Ni, where

M = inf{k; SN1+...+Nk
− SN1+...+Nk−1

= b}.

Since the Z ′
is and the N ′

is are independent, from Wald’s identity it follows that

E [SN1 ] = E [Z1] E [N1] = (p− q) · E [N1] , (4.15)

E [T2(b)] = E [N1] E [M ] =
E [N1]

P (SN1 = b)
, (4.16)

since M ∼ Geometric
(
P (SN1 = b)

)
. From Theorem B.1 mentioned in the Ap-

pendix, we can write

P (SN1 = b) = P (U(b, 1) = U1(b)) =
1−

( q
p

)

1−
( q

p

)b+1 , (4.17)

P (SN1 ≤ −1) = P (U(b, 1) = U2(1)) =
(

q
p

) 1−
( q

p

)b

1−
( q

p

)b+1 . (4.18)

Finally, we have

E [N1] = b · P (SN1 = b) + 1 · P (SN1 = −1). (4.19)

Using equations (4.19), (4.18), (4.17), (4.16), and (4.15), we get (4.14).

Equation (4.13) follows similarly by noticing that

Y −
n =

n∑
i=1

Ri − inf
k∈[0,n]∩N

k∑
i=1

Ri,

where

Ri =





1, with probability q,

−1, with probability p.

Equation (4.15) becomes:

E [SN1 ] = E [Z1] E [N1] = (q − p) · E [N1] . (4.20)
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The result follows by using equations (4.19), (4.18), (4.17), (4.16), where we sub-

stitute p in place of q and q in place of p, and (4.20). This concludes the proof of

the lemma. ¦

Lemma 4.2 We have

Y +
k + Y −

k = max
i∈[0,k]∩N

{Y +
i , Y −

i }.

Proof. Observe that

Y +
k + Y −

k = −M+
k −M−

k . (4.21)

We notice that the process Y +
k +Y −

k can only increase when either Sk = M+
k

or −Sk = M−
k , both of which cannot happen since that would imply that (4.21)

is 0. Therefore, Y +
k + Y −

k is constant in time unless either Y +
k = 0 or Y −

k = 0, at

which instant

max{Y +
k , Y −

k } = max
i∈[0,k]∩N

{
max{Y +

i , Y −
i }

}
.

This completes the proof of the lemma. ¦
An important consequence of this lemma is that

Y +
T1(a) = ( max

n≤T1(a)
Y +

n − a) ∨ 0, (4.22)

Y −
T2(b) = ( max

n≤T2(b)
Y −

n − b) ∨ 0. (4.23)

We can now proceed to the proof of Proposition 4.1 and then to the proof of

Theorem 4.1.

Proof of Proposition 4.1. Let us compute the probability distribution function of

the random variable Y +
T1(a), since the computation of the probability mass function

of the random variable Y −
T2(b) is done in a similar way. From equation (4.22), it
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follows that

P
(
Y +

T1(a) = 0
)

= P
(

max
n≤T1(a)

Y +
n < a

)
+

+P
(

max
n≤T1(a)

Y +
n ≥ a

)
· P

(
Y +

T1(a) = 0 | max
n≤T1(a)

Y +
n ≥ a

)
,

(4.24)

while

P
(
Y +

T1(a) = k
)

= P
(

max
n≤T1(a)

Y +
n ≥ a

)
· P

(
Y +

T1(a) = k | max
n≤T1(a)

Y +
n ≥ a

)
. (4.25)

We prove this proposition in three basic steps:

In the first step we compute the distribution of the random variable

max
n≤T1(a)

Sn.

In the second step we show that

P
(
Y +

T1(a) = k | max
n≤T1(a)

Y +
n ≥ a

)
= P

(
max

n≤T1(a)
Sn = k

)
, k ∈ N . (4.26)

In the last step we compute P (maxn≤T1(a) Y +
n < a).

Beginning with the distribution of

max
n≤T1(a)

Sn,

we notice that maxn≤T1(a) Sn = k is the same event as k times going up by 1 before

going down by a, and then going down by a before going up by 1. Thus we have

P
(

max
n≤T1(a)

Sn = k
)

= P
(
U2(1) < U1(a)

)k

· P
(
U1(a) < U2(1)

)
,

where the last equality follows from the definition of U1(a) and U2(b) as it appears

in the Appendix. Therefore, using the result of Theorem B.1, we get that

max
n≤T1(a)

Sn ∼ Geometric(π), (4.27)
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where π =
( q

p)
a−( q

p)
a+1

1−( q
p)

a+1 .

Let us proceed to the second step where we demonstrate

L
(
Y +

T1(a) | max
n≤T1(a)

Y +
n ≥ a

)
= L

(
max

n≤T1(a)
Sn

)
. (4.28)

To see this, let

R1 = sup{n ≤ T1(a); Y +
n = 0}. (4.29)

Fix k ∈ N . Then

P
(
Y +

T1(a) = k | max
n≤T1(a)

Y +
n ≥ a

)
=

P

(
ST1(a)−infn≤T1(a) Sn=k

)

P

(
maxn≤T1(a) Y +

n ≥a

)

=
P

(
ST1(a)−SR1

+SR1
−infn≤T1(a) Sn=k | R1<T1(a)

)
·P

(
R1<T1(a)

)

P

(
maxn≤T1(a)(Sn−SR1

+SR1
−infk≤n Sk)≥a | R1<T1(a)

)
·P

(
R1<T1(a)

)

=
P

(
ST1(a)−SR1

+SR1
−infn≤R1

Sn=k | R1<T1(a)

)

P

(
maxn≤T1(a)(Sn−SR1

+SR1
−infk≤R1

Sk)≥a | R1<T1(a)

)

=
P

(
ST1(a)−SR1

=k | R1<T1(a)

)

P

(
maxn≤T1(a) Sn−SR1

≥a | R1<T1(a)

) =
P

(
ST1(a)−SR1

=k | R1<T1(a)

)

P

(
maxR1≤n≤T1(a) Sn−SR1

≥a | R1<T1(a)

)

=
P (ST1(a)=k)

P (maxn≤T1(a) Sn≥a)
= (1−π)k+aπ∑∞

k=a(1−π)kπ
= (1−π)k+aπ

(1−π)a = P ( max
n≤T1(a)

Sn = k),

where π =
( q

p)
a−( q

p)
a+1

1−( q
p)

a+1 . Therefore we get

P
(
Y +

T1(a) = k | max
t≤T1(a)

Y +
t ≥ a

)
∼ Geometric(π), k ∈ N . (4.30)

What remains to be computed is P (maxn≤T1(a) Y +
n < a). From equation

(4.22), it follows that

P ( max
n≤T1(a)

Y +
n < a) = P

(
T1(a) < T2(a)

)
. (4.31)
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To compute P
(
T1(a) < T2(a)

)
, we first notice that

T1(a) = T (a, b) +
(
T1(a)− T (a, b)

)
1{T (a,b)=T2(b)}, (4.32)

T2(b) = T (a, b) +
(
T2(b)− T (a, b)

)
1{T (a,b)=T1(a)}. (4.33)

Taking expectations we get

E [T1(a)] = E [T (a, b)] + E
[(

T1(a)− T (a, b)
)
1{T (a,b)=T2(b)}

]
, (4.34)

E [T2(b)] = E [T (a, b)] + E
[(

T2(b)− T (a, b)
)
1{T (a,b)=T1(a)}

]
. (4.35)

With a = b and equation (4.22), it follows that

E [T1(a)] = E [T (a, a)] + E [T1(a)] · P
(
T2(a) < T1(a)

)
, (4.36)

E [T2(a)] = E [T (a, a)] + E [T2(a)] · P
(
T1(a) < T2(a)

)
. (4.37)

Using

P
(
T1(a) < T2(a)

)
+ P

(
T2(a) < T1(a)

)
= 1

and equations (4.36) and (4.37), we conclude that

P
(
T1(a) < T2(a)

)
=

E [T2(a)]

E [T2(a)] + E [T1(a)]
. (4.38)

The result now follows by substituting (4.30) and (4.38) into (4.24) and (4.25),

using Lemma 4.1 and the fact that

P ( max
n≤T1(a)

Y +
n < a) + P ( max

n≤T1(a)
Y +

n ≥ a) = 1.

This concludes the proof of the proposition. ¦
We can now proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. We will prove the result in the case b ≥ a + 1 > 1 since

the result is proven similarly in the case when a ≥ b + 1 > 1.
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From Lemma 4.2 and equation (4.22), it follows that on the event {T1(a) <

T2(b)}, we have

Y +
T1(a) =





0 if maxn≤T1(a) Y +
n < a,

maxn≤T1(a) Y +
n − a if a ≤ maxn≤T1(a) Y +

n < b.
(4.39)

From equation (4.39) it becomes obvious that on the event {T1(a) < T2(b)}, Y +
T1(a)

cannot exceed the level b− a, or cannot be exactly equal to this level. Therefore

P
(
T1(a) < T2(b)

)
=

b−a−1∑

k=0

P
(
Y +

T1(a) = k
)
. (4.40)

Using Proposition 4.1 the result follows. This completes the proof of the Theorem

4.1. ¦
It is worth noting that we can readily get the expectation of T (a, b) = T1(a)∧

T2(b).

Remark 4.1 We can distinguish the following three cases for the expectation of

T (a, b) = T1(a) ∧ T2(b) in terms of the expectations of T1(a) and T2(b) (as they

appear in Lemma 4.1):

1. b ≥ a + 1 > 1

E [T (a, b)] = E [T1(a)] · [1− (1−mA) ·Rb−a
A

]
, (4.41)

where RA and mA as they appear in equations (4.4) and (4.3) respectively.

2. a ≥ b + 1 > 1

E [T (a, b)] = E [T2(b)] ·
[
1− (1−mB) ·Ra−b

B

]
, (4.42)

where RB and mB as they appear in equations (4.8) and (4.7) respectively.
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3. b = a

E [T (a, a)] =
E [T2(a)] · E [T1(a)]

E [T2(a)] + E [T1(a)]
. (4.43)

Proof: The proof, for case 1, is a mere consequence of the following equation

E [T1(a)] = E [T (a, a)] + E [T1(a)− T2(b) | T2(b) < T1(a)] · P
(
T2(b) < T1(a)

)

= E [T (a, b)] + E [T1(a)] · P
(
T2(b) < T1(a)

)
,

and Theorem 4.1. ¦
It is interesting to see the probabilities of stopping on downward fall or

upward rally for an unbiased random walk.

Corollary 4.1 Let Sn =
∑n

i=1 Zi be the evolution of the wealth of the gambler in a

game of equal odds (p = q = 1
2
), and let T (a, b), T1(a) and T2(b) be stopping times

defined as above. We distinguish the following three cases:

1. b ≥ a + 1 > 1

The probabilities of stopping the game on downward fall or upward rally are

given by

P
(
T (a, b) = T1(a)

)
= 1− 1

2
·
( a

a + 1

)b−a

, (4.44)

P
(
T (a, b) = T2(b)

)
=

1

2
·
( a

a + 1

)b−a

. (4.45)

2. a ≥ b + 1 > 1
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The probabilities of stopping the game on downward fall or upward rally are

given by

P
(
T (a, b) = T1(a)

)
=

1

2
·
( b

b + 1

)a−b

, (4.46)

P
(
T (a, b) = T2(b)

)
= 1− 1

2
·
( b

b + 1

)a−b

. (4.47)

3. a = b

The probabilities of stopping the game on downward fall or upward rally are

given by

P
(
T (a, a) = T1(a)

)
= P

(
T (a, a) = T2(a)

)
=

1

2
. (4.48)

Proof. All of the above results are a simple consequence of taking the limit as

p → 1
2

in Theorem 4.1. ¦

Corollary 4.2 Let Sn =
∑n

i=1 Zi be the evolution of the wealth of the gambler in

a game of equal odds (p = q = 1
2
). The probability distribution functions of the

random variables Y +
T1(a) and Y −

T2(b) are given by the following:

1.

pA
0 = P (Y +

T1(a) = 0) =
1

2
+

1

2
· 1

a + 1
, (4.49)

pA
k = P (Y +

T1(a) = k) =
1

2
· 1

a + 1
·
( a

a + 1

)k

, ∀ k ∈ N ∗.

2.

pB
0 = P (Y −

T2(b) = 0) =
1

2
+

1

2
· 1

b + 1
, (4.50)

pB
k = P (Y −

T2(b) = k) =
1

2
· 1

b + 1
·
( b

b + 1

)k

, ∀ k ∈ N ∗.
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Proof. This corollary is a simple consequence of Proposition 4.1 by taking the

limit as p → 1
2
. ¦

4.1.2 The continuous time framework

In the continuous time framework, the wealth of the gambler at each time point t

is assumed to follow

Xt = Wt − µt,

where µ > 0 and Wt is a Brownian motion.

The quantity

Xt − inf
s∈[0,t]

Xs

measures the size of the upward rally comparing the present value of the wealth to

its historical minimum, while the quantity

sup
s∈[0,t]

Xs −Xt

measures the size of the downward fall comparing the present value of the wealth

to its historical maximum.

The aim of this Section is to determine the probability that the gambler

would quit the game on the upward rally in contrast to quitting the game on the

downward fall. We introduce the stopping times:

T c
1 (a) = inf{t ≥ 0 : sup

s∈[0,t]

Xs −Xt = a, a ∈ R+},

and

T c
2 (b) = inf{t ≥ 0 : Xt − inf

s∈[0,t]
Xs = b, b ∈ R+}.
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The gambler stops at T c(a, b) = T c
1 (a)∧T c

2 (b). The stopping times T c
1 (a) and

T c
2 (b) indicate the first time of reaching the critical level of the downward fall T c

1 (a),

or the first time of reaching critical level of the upward rally T c
2 (b). In this Section

we compute the probabilities of the events {T c(a, b) = T c
1 (a)}, which represents

stopping the game on downward fall, and {T c(a, b) = T c
2 (b)}, which represents

stopping the game on upward rally.

In order to simplify notation we introduce the following processes:

m+
t := inf

s∈[0,t]
Xs,

m−
t := inf

s∈[0,t]
(−Xs) = − sup

s∈[0,t]

Xs,

y+
t := Xt −m+

t ,

y−t := −Xt −m−
t .

Using the above notation, the stopping times T c
1 (a) and T c

2 (b) become

T c
1 (a) = inf{t ≥ 0 : y−t = a, a ∈ R+},

T c
2 (b) = inf{t ≥ 0 : y+

t = b, b ∈ R+}.

Theorem 4.2 Let Xt = Wt − µt be the evolution of the wealth of the gambler and

let T c, T c
1 and T c

2 be stopping times defined as above and µ > 0. We distinguish the

following two cases:

1. b ≥ a > 0

The probabilities of stopping at downward fall or upward rally are given by

P
(
T c(a, b) = T c

1 (a)
)

= mc
A + (1−mc

A) · [1− exp
(− 2µ

1−e−2µa · (b− a)
)]

,

(4.51)

P
(
T c(a, b) = T c

2 (b)
)

= (1−mc
A) · exp

(− 2µ
1−e−2µa · (b− a)

)
, (4.52)
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where

mc
A =

e2µa − 2µa− 1

e2µa + e−2µa − 2
. (4.53)

2. a ≥ b > 0

The probabilities of stopping at downward fall or upward rally are given by

P
(
T c(a, b) = T c

1 (a)
)

= (1−mc
B) · exp

(
− 2µ

e2µb−1
· (a− b)

)
, (4.54)

P
(
T c(a, b) = T c

2 (b)
)

= mc
B + (1−mc

B) ·
[
1− exp

(
− 2µ

e2µb−1
· (a− b)

)]
,

(4.55)

where

mc
B =

e−2µb + 2µb− 1

e2µb + e−2µb − 2
. (4.56)

The proof of the theorem uses the next proposition:

Proposition 4.2 The probability distribution functions of the random variables

y+
T c
1 (a) and y−T c

2 (b) are given by:

1.

P (y+
T c
1 (a) = 0) = mc

A (4.57)

P (y+
T c
1 (a) ∈ dr) = (1−mc

A) · [ 2µ
1−e−2µa · exp

(− 2µ
1−e−2µa · r

)]
dr , r > 0,

(4.58)

where mc
A is given by equation (4.53).
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2.

P (y−T c
2 (b) = 0) = mc

B (4.59)

P (y−T c
2 (b) ∈ dr) = (1−mc

B) ·
[

2µ
e2µb−1

· exp
(
− 2µ

e2µb−1
· r

)]
dr , r > 0,

(4.60)

where mc
B is given by equation (4.56).

In order to prove Proposition 4.2 and Theorem 4.2, we will need the following

two lemmas.

Lemma 4.3 For a, b ∈ R+, we have:

E [T c
1 (a)] =

e−2µa + 2µa− 1

2µ2
, (4.61)

E [T c
2 (b)] =

e2µb − 2µb− 1

2µ2
. (4.62)

Proof. Let g2(x) = e2µx − 2µx− 1. By applying Itô’s rule to the processes g2(y
+
t )

we get

dg2(y
+
t ) = g′2(y

+
t )dWt − µg′2(y

+
t )dt− g′2(y

+
t )dm+

t +
1

2
g′′2(y

+
t )dt. (4.63)

We notice that the third term in the right hand side of the above equality disappears

because dm+
t 6= 0 only when y+

t = 0 and g′2(0) = 0. We also notice that the function

g2 satisfies the second order differential equation

−µg′2(x) +
1

2
g′′2(x) = 2µ2. (4.64)

By integrating from 0 to T c
2 (b), we have

g2(y
+
T c
2 (b))− g2(0) =

∫ T c
2 (b)

0

g′2(y
+
t )dWt +

∫ T c
2 (b)

0

(
−µg′2(y

+
t ) +

1

2
g′′2(y

+
t )

)
dt.
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Using equation (4.64), y+
T c
2 (b) = b, g2(0) = 0 and taking expectations we get

g2(b) = 2µ2E [T c
2 (b)] . (4.65)

Consequently,

E [T c
2 (b)] =

g2(b)

2µ2
. (4.66)

Similarly, by applying Itô’s rule to g1(y
−
t ), where g1(x) = e−2µx + 2µx− 1, we have

g1(y
−
T c
1 (a))− g1(0) = −

∫ T c
1 (a)

0

g′1(y
−
t )dWt +

∫ T c
1 (a)

0

(
µg′1(y

−
t ) +

1

2
g′′1(y

−
t )

)
dt

from which it follows that

E [T c
1 (a)] =

g1(a)

2µ2
. (4.67)

This concludes the proof of the lemma. ¦

Lemma 4.4 We have

y+
t + y−t = max

s≤t
{y+

s , y−s }.

Proof. Observe that

y+
t + y−t = −m+

t −m−
t . (4.68)

We notice that the process y+
t + y−t can only increase when either Xt = m+

t

or −Xt = m−
t , both of which cannot happen at the same time since that would

imply that y+
t + y−t is 0. Therefore, y+

t + y−t is a constant as a function of time

unless either y+
t = 0 or y−t = 0, at which instant

max{y+
t , y−t } = sup

s∈[0,t]

{
max{y+

s , y−s }
}

.

This completes the proof of the lemma. ¦
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As a consequence of this lemma we have

y+
T c
1 (a) = ( max

t≤T c
1 (a)

y+
t − a) ∨ 0, (4.69)

y−T c
2 (b) = ( max

t≤T c
2 (b)

y−t − b) ∨ 0. (4.70)

Finally, in order to proceed to the proof of Proposition 4.2 and Theorem 4.2, we

will use the results of Taylor in [43] and Lehoczky in [18]. Taylor computes the

bivariate Laplace transform of XT c
1 (a) and T c

1 (a), where T c
1 is defined as above.

Lehoczky pointed out that the random variable XT c
1 (a) + a = supt≤T c

1 (a) Xt has the

exponential distribution:

XT c
1 (a) + a ∼ Exp

(
2µ

1−e−2µa

)
. (4.71)

Note that the exponential parameter becomes equal to 1
a

in the case when µ = 0.

Now we can proceed to the proof of Proposition 4.2 and then to the proof of

Theorem 4.2.

Proof of Proposition 4.2. We will only compute the probability density function

of the random variable y+
T c
1 (a) since the computation of the probability density func-

tion of the random variable y−T c
2 (b) is done in a similar way. From equation (4.69),

it follows that

P
(
y+

T c
1 (a) = 0

)
= P

(
max

t≤T c
1 (a)

y+
t < a

)
, (4.72)

while

P
(
y+

T c
1 (a) ∈ dr

)
= P

(
max

t≤T c
1 (a)

y+
t ≥ a

)
· P

(
y+

T c
1 (a) ∈ dr | max

t≤T c
1 (a)

y+
t ≥ a

)

= P
(
y+

T c
1 (a) > 0

)
· P

(
y+

T c
1 (a) ∈ dr | y+

T c
1 (a) > 0

)
, r > 0. (4.73)
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In the next discussion we first demonstrate

L
(
y+

T c
1 (a) | y+

T c
1 (a) > 0

)
= L

(
XT c

1 (a) + a
)
. (4.74)

To see this, let

Rc
1 = sup{t ≤ T c

1 (a); y+
t = 0}. (4.75)

Fix r > 0. Then

P
(
y+

T c
1 (a) ∈ dr | y+

T c
1 (a) > 0

)
=

P

(
XTc

1 (a)−infs≤Tc
1 (a) Xs∈dr

)

P

(
maxt≤Tc

1 (a) y+
t ≥a

)

=
P

(
XTc

1 (a)−XRc
1
+XRc

1
−infs≤Tc

1 (a) Xs∈dr | Rc
1<T c

1 (a)

)
·P

(
Rc

1<T c
1 (a)

)

P

(
maxt≤Tc

1 (a)(Xt−XRc
1
+XRc

1
−infs≤t Xs)≥a | Rc

1<T c
1 (a)

)
·P

(
Rc

1<T c
1 (a)

)

=
P

(
XTc

1 (a)−XRc
1
+XRc

1
−infs≤Rc

1
Xs∈dr | Rc

1<T c
1 (a)

)

P

(
maxt≤Tc

1 (a)(Xt−XRc
1
+XRc

1
−infs≤Rc

1
Xs)≥a | Rc

1<T c
1 (a)

) =
P

(
XTc

1 (a)−XRc
1
∈dr | Rc

1<T c
1 (a)

)

P

(
maxt≤Tc

1 (a) Xt−XRc
1
≥a | Rc

1<T c
1 (a)

)

=
P

(
XTc

1 (a)−XRc
1
∈dr | Rc

1<T c
1 (a)

)

P

(
maxRc

1≤t≤Tc
1 (a) Xt−XRc

1
≥a | Rc

1<T c
1 (a)

) =
P (XTc

1 (a)∈dr)

P (maxt≤Tc
1 (a) Xt≥a)

= λe−λre−λadr
e−λa = λe−λrdr = P (XT c

1 (a) + a ∈ dr),

where λ = 2µ
1−e−2µa . Therefore we get

P
(
y+

T c
1 (a) ∈ dr | y+

T c
1 (a) > 0

)
∼ Exp

( 2µ

1− e−2µa

)
, r > 0. (4.76)

From equation (4.69), it follows that

P (y+
T c
1 (a) = 0) = P

(
T c

1 (a) < T c
2 (a)

)
. (4.77)

With T c
1 , T c

2 in place of T1 and T2 respectively in equations (4.36) and (4.37), we

get

E [T c
1 (a)] = E [T c(a, a)] + E [T c

1 (a)] · P
(
T c

2 (a) < T c
1 (a)

)
, (4.78)

E [T c
2 (a)] = E [T c(a, a)] + E [T c

2 (a)] · P
(
T c

1 (a) < T c
2 (a)

)
. (4.79)
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Using

P
(
T c

1 (a) < T c
2 (a)

)
+ P

(
T c

2 (a) < T c
1 (a)

)
= 1

and equations (4.78) and (4.79), we conclude that

P
(
T c

1 (a) < T c
2 (a)

)
=

E [T c
2 (a)]

E [T c
2 (a)] + E [T c

1 (a)]
. (4.80)

The result now follows by substituting (4.76), (4.77), (4.80) into equation (4.73)

using Lemma 4.3. This completes the proof of Proposition 4.2. ¦
Proof of Theorem 4.2. We will prove the theorem in the case that b ≥ a since

the proof is similar in the case a ≥ b. Suppose that b ≥ a.

From Lemma 4.4 and equation (4.69), it follows that on the event {T c
1 (a) <

T c
2 (b)} we have

y+
T c
1 (a) =





0 if maxs≤T c
1 (a) y+

s < a,

maxs≤T c
1 (a) y+

s − a if a ≤ maxs≤T c
1 (a) y+

s < b.
(4.81)

Therefore,

P
(
T c

1 (a) < T c
2 (b)

)
= P (y+

T c
1 (a) = 0) +

∫ b−a

0+

P (y+
T c
1 (a) ∈ dr), (4.82)

and the result is obtained from Proposition 4.2. This completes the proof of the

Theorem 4.2. ¦

Remark 4.2 We can distinguish the following three cases for the expectation of

T c(a, b) = T c
1 (a) ∧ T c

2 (b) in terms of the expectations of T c
1 (a) and T c

2 (b) (as they

appear in Lemma 4.3):

1. b ≥ a > 0

E [T c(a, b)] = E [T c
1 (a)] · [1− (1−mc

A) · e−λneg(b−a)
]
, (4.83)

where λneg = 2µ
1−e−2µa and mc

A as it appears in equation (4.53).
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2. a ≥ b > 0

E [T c(a, b)] = E [T c
2 (b)] · [1− (1−mc

B) · e−λpos(a−b)
]
, (4.84)

where λpos = 2µ
e2µb−1

and mc
B as it appears in equation (4.56).

Proof: The proof for b > a is very similar to the proof of Lemma 4.1. The case

a > b is done in a similar way too. ¦

Corollary 4.3 Let Xt = Wt be the evolution of the wealth of the gambler and let

T c, T c
1 and T c

2 be stopping times defined as above in a game of equal chances. We

distinguish the following two cases:

1. b ≥ a > 0

The probabilities of stopping at downward fall or upward rally are given by

P
(
T c(a, b) = T c

1 (a)
)

=
1

2
+

1

2
·
[
1− e−

1
a
(b−a)

]
, (4.85)

P
(
T c(a, b) = T c

2 (b)
)

=
1

2
· e− 1

a
(b−a). (4.86)

2. a ≥ b > 0

The probabilities of stopping at downward fall or upward rally are given by

P
(
T c(a, b) = T c

1 (a)
)

=
1

2
· e− 1

b
(a−b), (4.87)

P
(
T c(a, b) = T c

2 (b)
)

=
1

2
+

1

2
·
[
1− e−

1
b
(a−b)

]
. (4.88)

Proof. It is a simple consequence of Theorem 4.2 by taking the limit as µ → 0.

¦
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Corollary 4.4 Let Xt = Wt be the evolution of the wealth of the gambler. The

probability distribution function of the random variables y+
T c
1 (a) and y−T c

2 (b) are given

by

1.

P (y+
T c
1 (a) = 0) =

1

2
(4.89)

P (y+
T c
1 (a) ∈ dr) =

1

2
·
[
1

a
e−

1
a
r

]
dr , r > 0. (4.90)

2.

P (y−T c
2 (b) = 0) =

1

2
(4.91)

P (y−T c
2 (b) ∈ dr) =

1

2
·
[
1

b
e−

1
b
r

]
dr , r > 0. (4.92)

Proof. The above corollary is a consequence of Proposition 4.2 by letting µ → 0.

¦

4.2 Conclusions & Future work

In this Chapter we are able to compute explicitly the probabilities of winning or

losing in a game of chance based on quitting the game after a significant upward

rally or downward fall both in the continuous and in the discrete time framework.

In doing so, we have also managed to compute the distributions of the random

variables Y +
T1

, Y −
T2

in discrete time with their continuous counterparts y+
T c
1

and y−T c
2

respectively. These results are the first step to getting the joint distribution of the

random variables maxs≤t y
+
s and maxs≤t y

−
s in both the continuous and the discrete

time setting. This is a clear improvement of the already existing that appears in
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[21], whereby the marginal distribution of maxs≤t y
−
s is computed in the continuous

time framework.

Another very important result that follows directly from the above proba-

bilities appears in the computation of the expected value of the minimum stopping

rule, namely in Remarks 4.2 and 4.1. The importance of this result is its con-

nection to the 2-CUSUM stopping rule, since T (b, a) can be seen as the two-sided

CUSUM stopping time with T1(b) and T2(a) as its one sided CUSUM branches.

The 2-CUSUM stopping rule, as seen in the first two chapters has been widely used

in the literature for the purpose of detecting two-sided changes. In Yashchin (1985)

(see [51]), one can find the Laplace transform of the 2-CUSUM stopping time in

the discrete time framework when b = a. Although an expression for the Laplace

transform is also given for a 6= b, only upper and lower bounds for the expected

value of T (a, b) are achieved, and as a result, only upper and lower bounds are

given for the P
(
T1(a) < T2(b)

)
. His work only deals with the discrete time model.

Our result provides the exact computation of the expected value of the 2-CUSUM

stopping rule with equal drift parameters in each of its one-sided CUSUM stopping

branches. This is a result that can help us find the best 2-CUSUM rule (in the sense

of the first Chapter) among the family of 2-CUSUM rules with different thresholds

and equal drift parameters in their respective one-sided CUSUM branches. This

result could then potentially be extended to identifying the best 2-CUSUM rule

amongst all 2-CUSUM rules that are members of the class G and which therefore

have different drift and threshold parameters in their respective one-sided CUSUM

branches.
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Appendix B

Review of the Gambler’s Ruin Problem in the Traditional Setup

This Section reviews the very well known result of the gambler’s ruin prob-

lem. We distinguish between the discrete time and the continuous time framework.

The discrete time framework

Let Zi, i ∈ N be a sequence of independent identically distributed random

variables with the following distribution

Zi =





1, with probability p,

−1, with probability q,

where p + q = 1 and p < q. Each Zi represents a win or loss of the gambler on the

i-th bet. The wealth (or cumulative winnings) of the gambler after n bets is given

by

Sn =
n∑

i=1

Zi.

The gambler stops as soon as his or her wealth reaches some upper level b or some

lower level −a, where a, b ∈ N . This event occurs at the stopping time

U(a, b) = inf{n ∈ N : Sn = −a or Sn = b}.
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Let us introduce the stopping times

U1(a) = inf{n ∈ N : Sn = −a},

and

U2(b) = inf{n ∈ N : Sn = b}.

In other words, U1(a) is the time when gambler’s wealth reaches the level −a, and

U2(b) is the time at which his or her wealth reaches the level b. We are interested in

computing the probabilities of the events {U(a, b) = U1(a)}, i.e., exiting the game

on a loss, and {U(a, b) = U2(b)}, i.e., exiting the game on a win. We have the

following result which determines these probabilities:

Theorem B.1 Let Sn =
∑n

i=1 Zi be the evolution of the wealth of the gambler and

let U(a, b), U1(a) and U2(b) be stopping times defined as above, with a, b ∈ N . Then

P
(
U(a, b) = U1(a)

)
= P

(
U1(a) < U2(b)

)
=

(
q
p

)a

−
(

q
p

)a+b

1−
(

q
p

)a+b
, (B.1)

and

P
(
U(a, b) = U2(b)

)
= P

(
U2(b) < U1(a)

)
=

1−
(

q
p

)a

1−
(

q
p

)a+b
. (B.2)

Proof. The result is a simple consequence of the Optional Sampling Theorem

applied to the discrete time martingale Mn =
(

q
p

)Sn

. In particular,

1 = E
[
MU(a,b)

]
= P

(
U(a, b) = U1(a)

)
·
(

q

p

)−a

+ P
(
U(a, b) = U2(b)

)
·
(

q

p

)b

.

The fact that P
(
U(a, b) = U1(a)

)
+ P

(
U(a, b) = U2(b)

)
= 1 concludes the proof.

¦
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Remark B.1 For the case of equal odds (p = q = 1
2
), we can pass to the limit in

the previously computed probabilities to conclude

P
(
U(a, b) = U1(a)

)
= P

(
U1(a) < U2(b)

)
=

b

a + b
, (B.3)

and

P
(
U(a, b) = U2(b)

)
= P

(
U2(b) < U1(a)

)
=

a

a + b
. (B.4)

The continuous time framework

In the continuous time framework, the wealth Xt of the gambler follows a

drifted Brownian motion

Xt = Wt − µt, (B.5)

for µ > 0, where Wt is a standard Brownian motion. The analogous stopping times

introduced above now become

U c(a, b) = inf{t ≥ 0 : Xt = −a or Xt = b},

U c
1(a) = inf{t ≥ 0 : Xt = −a},

and

U c
2(b) = inf{t ≥ 0 : Xt = b},

with a, b ∈ R+. The following theorem determines probabilities of events {U c(a, b) =

U c
1(a)} and {U c(a, b) = U c

2(b)}.

Theorem B.2 Let Xt = Wt− µt be the evolution of the wealth of the gambler and

let U c(a, b), U c
1(a) and U c

2(b) be the stopping times defined above, with a, b ∈ R+,

µ > 0. Then

P
(
U c(a, b) = U c

1(a)
)

= P
(
U c

1(a) < U c
2(b)

)
=

e2µb − 1

e2µb − e−2µa
, (B.6)
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and

P
(
U c(a, b) = U c

2(b)
)

= P
(
U c

2(b) < U c
1(a)

)
=

1− e−2µa

e2µb − e−2µa
. (B.7)

Proof. Consider the martingale Mt = e2µXt . Then, according to the Optional

Sampling Theorem,

1 = E
[
MUc(a,b)

]
= P

(
U c(a, b) = U c

1(a)
)
· e−2µa + P

(
U c(a, b) = U c

2(b)
)
· e2µb.

Since

P
(
U c(a, b) = U c

1(a)
)

+ P
(
U c(a, b) = U c

2(b)
)

= 1,

simple algebra concludes the proof. ¦

Remark B.2 When µ = 0, we can take the limit as µ → 0 in the previously

computed probabilities to conclude

P
(
U c(a, b) = U c

1(a)
)

= P
(
U c

1(a) < U c
2(b)

)
=

b

a + b
, (B.8)

P
(
U c(a, b) = U c

2(b)
)

= P
(
U c

2(b) < U c
1(a)

)
=

a

a + b
. (B.9)
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