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ON THE BEST 2-CUSUM STOPPING RULE FOR QUICKEST
DETECTION OF TWO-SIDED ALTERNATIVES IN A BROWNIAN

MOTION MODEL∗

O. HADJILIADIS† AND H. V. POOR‡

Abstract. This work examines the problem of sequential detection of a change in the drift of
a Brownian motion in the case of two-sided alternatives. Traditionally, 2-CUSUM stopping rules
have been used for this problem due to their asymptotically optimal character as the mean time
between false alarms tends to ∞. In particular, attention has focused on 2-CUSUM harmonic mean
rules due to the simplicity of calculating their first moments. In this paper, expressions for the first
moment of a general 2-CUSUM stopping rule and its rate of change are derived. These expressions
are used to obtain explicit upper and lower bounds for it and its rate of change as one of the threshold
parameters changes. Using these expressions we prove not only the existence but also the uniqueness
of the best classical 2-CUSUM stopping rule with respect to the extended Lorden criterion suggested
in [O. Hadjiliadis and G. V. Moustakides, Theory Probab. Appl., 50 (2006), pp. 75–85]. In particular,
in both the symmetric and the nonsymmetric case we identify the class of the best 2-CUSUM stopping
rule.
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1. Mathematical formulation. We sequentially observe a process {ξt} with
the following dynamics:

dξt =
{

dwt, t < θ,
μ1 dt + dwt or − μ2 dt + dwt, t � θ,

where θ, the time of change, is assumed to be deterministic but unknown; wt is a
standard Brownian motion process; μi, the possible drifts to which the process can
change, are assumed to be known, but the specific drift to which the process changes
is unknown. Both μ1 and μ2 are assumed to be positive.

The probability triplet consists of (C[0,∞],
⋃

t>0Ft), with Ft = σ{ξs, 0 < s � t},
and the families of probability measures {P i

θ}, θ ∈ [0,∞), whenever the change is μi,
i = 1, 2, at time θ, and P∞, the Wiener measure.

Our goal is to detect a change by means of a stopping rule τ adapted to the filtra-
tion (Ft). As a performance measure for this stopping rule we propose an extended
Lorden criterion (see [5])

(1) JL(τ) = max
{
J1(τ), J2(τ)

}
,

where Ji(τ) = supθ ess supEi
θ[(τ − θ)+ | Fθ], i = 1, 2. This gives rise to the following

min-max constrained optimization problem:

inf
τ

JL(τ) subject to E∞[τ ] � T,(2)
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where the constraint specifies the minimum allowable mean time between false alarms.
As discussed in [7], in seeking solutions to the above problem, we can restrict our
attention to stopping times that achieve the false alarm constraint with equality.

In the case of a one-sided change in this setting, it has been shown that the one-
sided CUSUM stopping rule is optimal (see [8] and [2]). The problem of detecting a
change in the drift of a Brownian motion with two-sided alternatives is considerably
more difficult than that with one-sided alternatives. This paper is a continuation of
the work started in [5] and [4]. In the former it is conjectured, but not proved, that
equalizer rules are best and two strong asymptotic optimality results as the mean time
between false alarms tends to ∞ are presented both in the symmetric case, where a
classical 2-CUSUM harmonic mean rule is proposed, and in the nonsymmetric case,
where a modified drift 2-CUSUM harmonic mean equalizer rule is proposed. These
asymptotic results enhance the 2-CUSUM asymptotic optimality results of [10]. In [4],
it is seen that within the class of modified drift 2-CUSUM harmonic mean rules, the
best rules occur when the drift parameters of the modified drift 2-CUSUM harmonic
mean stopping rules λ1 and λ2 are chosen so that λ2−λ1 = 2(μ2−μ1) (a relationship
that results in an equalizer rule) for any value of the mean time between false alarms.

In this paper, we begin by a simple argument that demonstrates that the optimal
stopping rule for problem (2) must satisfy J1(τ) = J2(τ) and thus be an equalizer
rule. This argument is summarized in the following two remarks.

Remark 1. Consider a stopping rule τU such that J1(τU ) > J2(τU ) and let τV be a
new stopping rule that declares an alarm at exactly the same instant as τU if and only
if at each instant t it receives the observations {−ξs, s � t}. Then J2(τV ) > J1(τV )
with J1(τU ) = J2(τV ) and J2(τU ) = J1(τV ). Now construct τ = 1

2 τU + 1
2 τV . It is clear

that for this stopping rule, JL(τ) < JL(τU ) = JL(τV ) and E∞[τ ] = E∞[τU ] = E∞[τV ],
while J1(τ) = J2(τ). That is, we have found another stopping rule τ that, for the
same mean time between false alarms, has achieved a lesser detection delay.

Remark 2. It is important to point out that τ of Remark 1 is not technically a
stopping rule with respect to Ft, since randomization is involved in its construction.
In other words, we flip a fair coin and if it comes up Heads, then we stop according
to the stopping rule τU , while if it comes up Tails, we stop according to the stopping
rule τV . Hence τ is a stopping rule with respect to the enlarged filtration F t that
consists of everything in Ft plus the two possible outcomes of the random experiment
of tossing the fair coin. That is, Ft = Ft ∪ {{Heads}, {Tails}}.

We then find the best classical 2-CUSUM stopping rule for any given value of the
mean time between false alarms. This is achieved through showing the existence and
uniqueness of a rule in the class of classical 2-CUSUM stopping rules that is adapted to
the original filtration Ft and satisfies J1(τ) = J2(τ). In particular, we point out that
in the symmetric case any harmonic mean classical 2-CUSUM stopping rule satisfies
J1(τ) = J2(τ) and is thus the best in the classical 2-CUSUM class (and it is unique
for any given mean rate between false alarms T ), while in the nonsymmetric case, it
is seen that there exists a unique (for any given mean rate between false alarms T )
nonharmonic mean classical 2-CUSUM stopping rule that satisfies J1(τ) = J2(τ) and
is thus the best in the classical 2-CUSUM stopping rule class. Moreover, the class
of optimal classical 2-CUSUM stopping rules is specified. This is achieved through
the derivation of an expression for the first moment of a general nonharmonic mean
2-CUSUM stopping rule and its rate of change as the threshold parameter of one of its
one-sided CUSUM stopping branches changes. We also derive upper and lower bounds
to the aforementioned moment that enhance the existing bounds of [3]. It is important
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to point out here that, although for any harmonic mean 2-CUSUM stopping rule the
Laplace transform of its probability density function has been computed (see [12]),
only a bound on the first moment of a general 2-CUSUM stopping rule is known
(see [3]). We proceed with some definitions.

Definition 1. Let ν1 > 0 and ν2 > 0. Define

1) u+
t = (log dP1

0
dP∞ | Ft)/μ1 = ξt − 1

2 μ1t; m+
t = infs�t u+

s ; y+
t = u+

t −m+
t ; τ1(ν1) =

inf{t > 0; y+
t � ν1}; and

2) u−
t = log( dP2

0
dP∞

| Ft)/μ2 = −ξt − 1
2 μ2t; m−

t = infs�t u−
s ; y−

t = u−
t − m−

t ;
τ2(ν2) = inf{t > 0; y−

t � ν2}.
The classical 2-CUSUM stopping rules are then of the form τ(ν1, ν2) = τ1(ν1) ∧

τ2(ν2).
We now classify 2-CUSUM rules according to the class G = {τ(ν1, ν2); ν1 = ν2}

of harmonic mean rules and the classes Ci = {τ(νi, νj) | νi > νj > 0, i �= j} of
nonharmonic mean rules. We also define the following quantities, the use of which
will become apparent later.

Definition 2. For a > 0 and b > 0, we define
1) U+(a) = inf{t > 0; u+

t � a}, U−(b) = inf{t > 0; −u−
t � −b}, and Π(a, b) =

P(U+(a) < U−(b));
2) U+

0 (a) = inf{t > 0; u+
t + 1

2 (μ1 +μ2) t � a}, U−
0 (b) = inf{t > 0;−u−

t − 1
2 (μ1 +

μ2) t � −b};
3) u−

t− = u−
t + 1

2 (μ1 + μ2) t; m−
t− = infs�t u−

s− ; y−
t− = ut− − mt− and τ−

2 (ν2) =
inf{t > 0; y−

t− � ν2}.
In what follows we will repeatedly use the indices i, j ∈ {1, 2}.
Definition 3. Let τ ∈ Ci. Define
1) m = min{ν1, ν2} and M = max{ν1, ν2};
2) Cm(x, y) = fm(x)2/(fm(x) + fm(y)), λx(y) = (yfx(y) + x)−1, and fx(y) =

(eyx − yx − 1)/y2;
3) Ri∞ = dE∞[τ ]/dM , Ri

j = dEj
0[τ ]/dM .

According to [5] and [9], we also have

E∞
[
τi(νi)

]
= 2fνi(μi), i = 1, 2,(3)

Ei
0

[
τi(νi)

]
= 2fνi(−μi), i = 1, 2,(4)

Ei
0

[
τj(νj)

]
= 2fνj (μj + 2μi), i �= j, i, j ∈ {1, 2}.(5)

For any 2-CUSUM stopping rule τ it is true (see [5]) that JL(τ) = max{E1
0[τ ], E2

0[τ ]}.
In section 2, we derive two expressions for the first moment of a general 2-CUSUM

stopping rule and an expression for the rate of change of this first moment with respect
to one of the threshold parameters. In section 3, we establish explicit upper and lower
bounds on the expected value of a general 2-CUSUM stopping rule and on its rate
of change with respect to one of the threshold parameters. In section 4, we prove
the uniqueness of the best 2-CUSUM stopping rule, both in the case of a symmetric
change and in the case of a nonsymmetric change, and specify its class. Finally, in
section 5, we conclude with some closing remarks.

2. The first moment of a general 2-CUSUM rule. We begin with our
main expression for the first moment of a general 2-CUSUM stopping rule.
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Theorem 1. Let τ(ν1, ν2) = τ1(ν1)∧ τ2(ν2) be any 2-CUSUM stopping rule and
denote τ(ν1, ν2) by τ . Then, under any of the measures P∞, P1

0, and P2
0, we have

τ ∈ C1 =⇒ E[τ ] = E
[
τ2(m)

][
1 − E[τ2(m)]

E[τ1(m)] + E[τ2(m)]
lim

n→∞ Π
(

M − m

n
, m

)n]
,(6)

τ ∈ C2 =⇒ E[τ ] = E
[
τ1(m)

][
1 − E[τ1(m)]

E[τ2(m)] + E[τ1(m)]

× lim
n→∞

[
1 − Π

(
m,

M − m

n

)]n]
.(7)

We notice that for any τG , (6) and (7) reduce to the well-known harmonic mean
rule. In the following corollary we provide an alternative expression for the expected
value of a general 2-CUSUM stopping rule τ through which it can be seen to be an
infinitely continuously differentiable function of the thresholds ν1 and ν2 as well as
the parameters μ1 and μ2.

We point out that the probability Π(a, b), involved in the above theorem, is given
in closed form in [1]. However, in our paper we focus on the derivation of easy-to-
handle explicit expressions that lead us to the proof of the existence and uniqueness
of the best 2-CUSUM stopping rule as well as the specification of its class in both the
symmetric and the nonsymmetric case.

Corollary 1. Let τ(ν1, ν2) = τ1(ν1)∧τ2(ν2) be any 2-CUSUM stopping rule and
denote τ(ν1, ν2) by τ . Let xi

∞, xi
1, and xi

2 be some constants such that xi
∞ ∈ (−μi, μj),

xi
i ∈ (μi, μj + 2μi), xi

j ∈ (−(μi + 2μj), −μj) for i �= j. Then, for all τ ∈ Ci, i �= j, we
have

E∞[τ ] = 2fm(μj)
[
1 − Cm(μj , μi)

fm(μj)
e−λm(xi

∞)(M−m)

]
,(8)

Ei
0[τ ] = 2fm(μj + 2μi)

[
1 − Cm(μj + 2μi,−μi)

fm(μj + 2μi)
e−λm(xi

i)(M−m)

]
,(9)

Ej
0[τ ] = 2fm(−μj)

[
1 − Cm(−μj , μi + 2μj)

fm(−μj)
e−λm(xi

j)(M−m)

]
.(10)

The proof of this corollary will be completed in the following section after the
proof of Theorem 1 and the display of all auxiliary lemmas. We now proceed to
express the rate of change of the first moment of a general 2-CUSUM stopping rule
with respect to M = max{ν1, ν2}.

Corollary 2. Let τ(ν1, ν2) = τ1(ν1) ∧ τ2(ν2) be any 2-CUSUM stopping rule
and denote τ(ν1, ν2) by τ . Then, for all τ ∈ Ci, i �= j,

Ri
∞ = Cm(μj , μi)λm(xi

∞) e−λm(xi
∞)(M−m),(11)

Ri
i = Cm(μj + 2μi,−μi)λm(xi

i) e−λm(xi
i)(M−m),(12)

Ri
j = Cm(−μj , μi + 2μj)λm(xi

j) e−λm(xi
j)(M−m),(13)

with xi
∞, xi

i, xi
j as in Corollary 1.

Proof of Corollary 2. The result follows by considering the ratio

lim
ε→0

ε−1
(
E
[
τ(ν1 + ε, ν2)

]− E
[
τ(ν1, ν2)

])
under each of the measures P∞, P1

0, and P2
0 and using Corollary 1.
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In order to prove Theorem 1 we will need to make use of two preliminary results
that are summarized in the following two lemmas (see [5]).

Lemma 1. We have

sup
s�t

(y+
s + y−

s ) = max
{

sup
s�t

y+
s , sup

s�t

y−
s

}
.

Proof. Observe that y+
t + y−

t = − 1
2 (μ1 + μ2) t − m+

t − m−
t . We notice that the

process y+
t + y−

t can increase only when either u+
t = m+

t or u−
t = m−

t , both of which
cannot happen at the same time, since that would imply that y+

t +y−
t is 0. Therefore,

y+
t + y−

t is a strictly decreasing function of time unless either y+
t = 0 or y−

t = 0, at
which instant max{y+

t , y−
t } = sups∈[0,t]{max{y+

s , y−
s }}.

As a consequence of Lemma 1, we have that

ν2 � ν1 =⇒ {τ2 < τ1} ⊆ {y+
τ2

= 0},(14)
ν1 � ν2 =⇒ {τ1 < τ2} ⊆ {y−

τ1
= 0}.(15)

Lemma 2. Let τ1 and τ2 be the one-sided CUSUM stopping branches of τG ∈ G
having the same threshold parameter ν. We then have

P(τ2 < τ1) =
E[τ1]

E[τ1] + E[τ2]
and P(τ1 < τ2) =

E[τ2]
E[τ1] + E[τ2]

.

Proof. For simplicity in this proof we will use τ to denote τG . We have τ = τ1∧τ2.
Hence, τ1 = τ + (τ1 − τ)+, τ2 = τ + (τ2 − τ)+. Conditioning on {τ = τ2}, and
subsequently on its complement, and taking expectations, we have

E[τ1] = E[τ ] + E[τ1 − τ2 | τ2 < τ1]P(τ2 < τ1),(16)
E[τ2] = E[τ ] + E[τ2 − τ1 | τ1 < τ2]P(τ1 < τ2).(17)

Since τ1 and τ2 have the same threshold ν, using (14) and (15), we obtain

{τ2 < τ1} ⊆ {y+
τ2

= 0} and {τ1 < τ2} ⊆ {y−
τ1

= 0}.
Therefore, (16) and (17) become

E[τ1] = E[τ ] + E[τ1]P(τ2 < τ1) and E[τ2] = E[τ ] + E[τ2]P(τ1 < τ2),

from which, by eliminating E[τ ], the result follows.
Proof of Theorem 1. Suppose that ν1 > ν2. Then, using (15) and (17), we have

that E[τ2(ν2)] = E[τ ] + E[τ2(ν2)]P(τ1(ν1) < τ2(ν2)). Hence,

E[τ ] = E
[
τ1(ν1)

]
P
(
τ2(ν2) < τ1(ν1)

)
.(18)

We now proceed to express P(τ2(ν2) < τ1(ν1)) in terms of Π(a, b) as it appears in
Definition 2. Notice that we can rewrite P(τ1(ν1) < τ2(ν2)) as

P
(
τ1(ν1) < τ2(ν2)

)
= P

(
τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)
P
(
τ1(ν2) < τ2(ν2)

)
.(19)

Using Lemma 2, however, with ν = ν2, we obtain

P
(
τ1(ν2) < τ2(ν2)

)
=

E[τ2(ν2)]
E[τ1(ν2)] + E[τ2(ν2)]

.(20)
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Table 1

The dynamics of u+
t and −u−

t under the different regimes.

No change (P∞) Change is µ1 (P1
0) Change is −µ2 (P2

0)

u+
t wt − 1

2
µ1t wt + 1

2
µ1 t wt − 1

2
(µ1 + 2µ2) t

−u−
t wt + 1

2
µ2t wt + 1

2
(µ2 + 2µ1) t wt − 1

2
µ2t

To get an expression for P(τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)), we first consider the
dynamics of y+

t and y−
t under all relevant measures. Using Definition 1, we can write

y+
t = u+

t − m+
t and y−

t = u−
t −m−

t ; the dynamics of u+
t and −u−

t are summarized in
Table 1.

Therefore, if we were to divide the interval [0, ν1−ν2] into n equal length intervals,
then

P
(
τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)
= lim

n→∞P

(
n⋂

i=1

Ai

)
,(21)

where Ai is the event that {supt∈Ii
y−

t < ν2} conditioned upon the initial value of
y−

t at the left endpoint of each interval Ii being equal to 0, with {Ii} denoting the
random intervals

Ii =
[
τ1

(
ν2 + (i − 1)

ν1 − ν2

n

)
, τ1

(
ν2 + i

ν1 − ν2

n

)]
.

Due to the strong Markov property of Brownian motion the events {Ai} are indepen-
dent and equiprobable and they have the same probability as the following event:{

The process u+
t increases by at least n−1(ν1 − ν2) units

before the process −u−
t falls by ν2 (or more) units

}
.(22)

Therefore, in view of Definition 2 and (22), identity (21) becomes

P
(
τ1(ν1) < τ2(ν2) | τ1(ν2) < τ2(ν2)

)
(23)

= lim
n→∞

[
P(A1)

]n = lim
n→∞ Π

(
ν1 − ν2

n
, ν2

)n

.

Using equations (18)–(20) and (23) the result follows.

3. Upper and lower bounds. In this section we establish upper and lower
bounds on the first moment of a general 2-CUSUM stopping rule and on its rate of
change with respect to M = max{ν1, ν2}.

Corollary 3. Let AM
m (z, y, x) = 2fm(z) [1 − (Cm(z, y)/fm(z)) e−x(M−m)] and

let τ(ν1, ν2) = τ1(ν1) ∧ τ2(ν2) be any 2-CUSUM stopping rule. Denote τ(ν1, ν2) by τ .
Then, for all τ ∈ Ci, i �= j, we have

AM
m

(
μj , μi, λm(μj)

)
� E∞[τ ] � AM

m

(
μj , μi, λm(−μi)

)
,(24)

AM
m (μj + 2μi, −μi, λm(μj + 2μi)) � Ei

0[τ ] � AM
m (μj + 2μi, −μi, λm(μi)),(25)

AM
m

(− μj , μi + 2μj , λm(−μj)
)

� Ej
0[τ ] � AM

m

(
− μj , μi + 2μj, λm

(− (μi + 2μj)
))

.
(26)
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Proof. We will prove the result for the case in which τ ∈ C1, since the proof is
similar in the case in which τ ∈ C2. We begin by summarizing the dynamics of the
processes u+

t + 1
2 (μ1 + μ2) t and −u−

t − 1
2 (μ1 + μ2) t, as they appear in Definition 1,

in Table 2.

Table 2

The dynamics of u+
t + 1

2
(µ1 + µ2) t and −u−

t − 1
2

(µ1 + µ2) t under the different regimes.

No change (P∞) Change is µ1 (P1
0) Change is −µ2 (P2

0)

u+
t + 1

2
(µ1 + µ2) t wt + 1

2
µ2t wt + 1

2
(µ2 + 2µ1) t wt − 1

2
µ2t

−u−
t − 1

2
(µ1 + µ2) t wt − 1

2
µ1t wt + 1

2
µ1t wt − 1

2
(µ1 + 2µ2) t

From Definition 2 it is evident that under any of the measures P∞, P1
0, and P2

0,
the following relationships hold:

P
(
U+(a) < U−

0 (b)
)

< P
(
U+(a) < U−(b)

)
< P

(
U+

0 (a) < U−(b)
)
.(27)

Using Theorem 1 and inequalities (27), we can obtain the following upper and lower
bounds on E[τ ]:

E[τ ] � E
[
τ2(ν2)

]
×
[
1 − E[τ2(ν2)]

E[τ1(ν2)] + E[τ2(ν2)]
lim

n→∞P
(

U+

(
ν1 − ν2

n

)
< U−

0 (ν2)
)n]

,(28)

E[τ ] � E
[
τ2(ν2)

]
×
[
1 − E[τ2(ν2)]

E[τ1(ν2)] + E[τ2(ν2)]
lim

n→∞P
(

U+
0

(
ν1 − ν2

n

)
< U−(ν2)

)n]
.(29)

However,

lim
n→∞P

(
U+

(
ν1 − ν2

n

)
< U−

0 (ν2)
)n

= P
(

sup
s�τ−

2 (ν2)

u+
s > ν1 − ν2

)
,(30)

lim
n→∞P

(
U+

0

(
ν1 − ν2

n

)
< U−(ν2)

)n

= P
(

sup
s�τ2(ν2)

(
u+

s +
1
2

(μ1 + μ2) s

)
> ν1 − ν2

)
,(31)

where τ2 is as it appears in Definition 1 and τ−
2 as it appears in Definition 2. According

to [11] and [6], it follows that

sup
s�τ−

2 (ν2)

u+
s ∼ Exponential

(
λν2(2x)

)
,(32)

sup
s�τ2(ν2)

(
u+

s +
1
2

(μ1 + μ2) s

)
∼ Exponential

(
λν2

(
2
(

x +
1
2

(μ1 + μ2)
)))

,

(33)

where x is the drift of the drifting Brownian motion process u+
t , summarized in

Table 3.
Using (32) and (33) to evaluate (30) and (31), and inequalities (27) to express (28)

and (29), the upper and lower bound inequalities (24), (25), and (26) follow.
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Table 3

The drift of the u+
t process under the different regimes.

No change (P∞) Change is µ1 (P1
0) Change is −µ2 (P2

0)

x − 1
2

µ1
1
2

µ1 − 1
2

(µ1 + 2µ2)

Using the proof of Corollary 3, it is now easy to prove Corollary 1.
Proof of Corollary 1. Again it suffices to show the result for the case in which

τ ∈ C1. Of course, it also suffices to prove the result for any one of the measures P∞,
P1

0, or P2
0, since the proof is similar for any other measure. To this effect, consider

the function

F (x) = e−λν2(x)(ν1−ν2) − lim
n→∞

[
P∞

(
U+

(
ν1 − ν2

n

)
< U−(ν2)

)]n

.(34)

Using (24), it follows that F (μ2) > 0, while F (−μ1) < 0. Therefore, by the conti-
nuity of F (·), it follows that there exists an x1

∞ in the interval (−μ1, μ2) such that
F (x1∞) = 0. That is,

lim
n→∞

[
P∞

(
U+

(
ν1 − ν2

n

)
< U−(ν2)

)]n

= exp
{−λν2(x

1
∞)(ν1 − ν2)

}
(35)

for some x1
∞ ∈ (−μ1, μ2). Substituting the above expression into the expression for

E[τ ] given in Theorem 1, the result follows.
Remark 3. By looking at Table 1, we notice that
1) u+

t (P1
0) − u+

t (P∞) = −u−
t (P1

0) + u−
t (P∞) = μ1t, and

2) u+
t (P∞) − u+

t (P2
0) = −u−

t (P∞) + u−
t (P2

0) = μ2t.
Therefore, the effect of changing the measure from P∞ to P1

0 is to add the drift μ1

to both processes u+
t and −u−

t . The effect of changing the measure from P2
0 to P∞

is to add the drift μ2 to both of the above processes. Finally, the effect of changing
the measure from P2

0 to P1
0 is to add the drift μ1 + μ2 to the same processes. This

is reflected in the argument of the function λν2 (·). From (32) and (33), we notice
that this change of measure results in a shift in the argument of the function λν2(·)
by 2μ1, 2μ2, and 2(μ2 + μ1), respectively. Comparing this to expression (35) and the
equivalent expressions

lim
n→∞

[
Pi

0

(
U+

(
ν1 − ν2

n

)
< U−(ν2)

)]n

= exp
{−λν2(x

1
i )(ν1 − ν2)

}
,(36)

i = 1, 2, we deduce that

x1
1 − x1

∞ = 2μ1, x1
∞ − x1

2 = 2μ2, and x1
1 − x1

2 = 2(μ1 + μ2).(37)

(More generally, xi
i − xi

∞ = 2μi, xi
∞ − xi

j = 2μj, and xi
i − xi

j = 2(μi + μj) for i �= j.)
We conclude this section with upper and lower bounds on the rates of change of

Definition 3.
Corollary 4. Let τ(ν1, ν2) = τ1(ν1) ∧ τ2(ν2) be any 2-CUSUM stopping rule

and denote τ(ν1, ν2) by τ . For all τ ∈ Ci, let νi = νj + ε. Then, as ε → 0

Cνj (μj , μi)λνj (μj) � Ri
∞ |ν1=ν2 � Cνj (μj , μi)λνj (−μi),(38)

Cνj (μj + 2μi,−μi)λνj (μj + 2μi) � Ri
i |ν1=ν2 � Cνj (μj + 2μi,−μi) λνj (μi),(39)

Cνj (−μj , μi + 2μj)λνj (−μj) � Ri
j |ν1=ν2

� Cνj (−μj , μi + 2μj)λνj

(− (μi + 2μj)
)
.(40)
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Proof. This corollary is an immediate consequence of Corollary 2 and the fact
that the function λx(y) is strictly decreasing in y.

4. The best 2-CUSUM stopping rule.
Lemma 3. With Ri

i and Ri
j , i �= j, as in Definition 3, we have that μi � μj ⇒

Ri
i > Ri

j.
Proof. Let i = 1. Using Corollary 2, we have that

R1
1 = Cν2(μ2 + 2μ1,−μ1)λν2 (x

1
1) exp

{−λν2(x1)(ν1 − ν2)
}
,(41)

R1
2 = Cν2(μ2, μ1)λν2(x

1
2) exp

{−λν2(x
1
2)(ν1 − ν2)

}
.(42)

Since x1
1 > x1

2, it follows that exp{−λν2(x
1
1)(ν1 − ν2)} > exp{−λν2(x

1
2) × (ν1 − ν2)}.

Hence to establish the desired inequality it suffices to show that

λν2(x1
1)

λν2(x1
2)

>
Cν2 (μ2, μ1)

Cν2(μ2 + 2μ1,−μ1)
.(43)

Using the fact that the function h(x) = [x/(ex − 1)][(x − α)/(ex−α − 1)]−1 for any
α > 0 (and in particular for α = 2(μ1 + μ2) = x1

1 − x1
2; see (37)) is strictly decreasing

for all x, we obtain λν2 (x1
1)/λν2(x1

2) > λν2(μ2 + 2μ1)/λν2(−μ2). Therefore, to prove
inequality (43) it suffices to show that

Cν2(μ2 + 2μ1,−μ1)λν2(μ2 + 2μ1) > Cν2(−μ2, μ1 + 2μ2)λν2(−μ2).(44)

But by the convexity of the function fx(y) in y, it follows that for μ1 < μ2,

fν2(μ1 + 2μ2) + fν2(−μ2) > fν2(μ2 + 2μ1) + fν2(−μ1),(45)

so that [
fν2(μ1 + 2μ2) + fν2(−μ2)

]−1
<
[
fν2(μ2 + 2μ1) + fν2(−μ1)

]−1
.

Substituting for Cν2(·, ·) and for λν2(·) and multiplying through by ν2, it becomes
obvious that to show (44), it suffices to show that the function [1 − 1/g(x)]2g(x)/x2,
with g(x) = (ex − 1)/x, is strictly increasing for all x, which is true. Lemma 3 is
proved.

Lemma 4. Let τG be a 2-CUSUM harmonic mean rule with threshold parame-
ter ν. Then for i �= j,

μi < μj ⇐⇒ Ei
0[τG ] > Ej

0[τG ],(46)

μ2 = μ1 ⇐⇒ E2
0[τG ] = E1

0[τG ].(47)

Proof. Let us begin with the case that i = 1. In view of expressions (4) and (5)
and the fact that, since τG is a 2-CUSUM harmonic mean rule, its expected value is the
harmonic mean of the expected values of its respective one-sided CUSUM branches τ1

and τ2, (47) is trivial. Inequality (46) follows by the harmonic mean rule which implies

1
E1

0[τG ]
=

1
2fν(μ2 + 2μ1)

+
1

2fν(−μ1)
,(48)

1
E2

0[τG ]
=

1
2fν(μ1 + 2μ2)

+
1

2fν(−μ2)
(49)

by the convexity of the function 1/fx(y) in y and by the facts that 2μ2 + μ1 >
μ2 + 2μ1 > −μ1 > −μ2, while (2μ2 + μ1) − (μ2 + 2μ1) = (−μ1) − (−μ2) = μ2 − μ1;
similarly for i = 2. Lemma 4 is proved.
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As a consequence of Remark 1, the best 2-CUSUM stopping rule τ∗ will be a
member of the class of equalizer 2-CUSUM stopping rules E = {τ ∈ 2-CUSUM class;
E1

0[τ ] = E2
0[τ ]}. We proceed in this section with the main theorem that establishes

not only that the class E is nonempty, but that in fact it has one element.
Theorem 2. The best 2-CUSUM stopping rule τ∗ exists and is unique, and we

have

μi < μj =⇒ τ∗ ∈ Cj, i �= j,(50)
μ1 = μ2 =⇒ τ∗ ∈ G.(51)

Proof. Let us begin with i = 1. Using Lemma 4, we see that E1
0[τG ] > E2

0[τG ].
Lemma 4 is proved. But if we start increasing ν2 above ν1, of course, as can readily
be seen from the expression for E[τ ] appearing in Theorem 1, both the left-hand
side and the right-hand side of the above inequality will increase continuously (see
Corollary 1), but the left-hand side will increase at the rate R2

1, while the right-hand
side will increase at the rate R2

2. According to Lemma 3, R2
1 < R2

2. Therefore, there
exists a unique ν2 > ν1 such that E1

0[τ ] = E2
0[τ ].

For the second case i = 2, again using Lemma 4, we see that E1
0[τG ] < E2

0[τG ].
But if we start increasing ν1 above ν2, both the left-hand side and the right-hand side
of the above inequality will increase continuously (see Corollary 1), but the left-hand
side will increase at the rate R1

1, while the right-hand side will increase at rate R1
2.

According to Lemma 3, R1
1 > R1

2. Therefore, there exists a unique ν1 > ν2 such that
E1

0[τ ] = E2
0[τ ].

In the third and final case we see that any τ ∈ G is also a member of E , that is,
E1

0[τG ] = E2
0[τG ]. If we start increasing ν1 above ν2, since R1

1 > R1
2, although both

the left-hand side and the right-hand side of this equality will increase, the right-hand
side will increase faster than the left-hand side, resulting in E1

0[τ ] > E2
0[τ ]. Similarly,

if we start increasing ν2 above ν1, since R2
1 < R2

2, although both the left-hand side
and the right-hand side of this equality will increase, the right-hand side will increase
faster than the left-hand side, resulting in E1

0[τ ] < E2
0[τ ]. Therefore, ν1 = ν2 is the

unique case for which equality will hold. This completes the proof of Theorem 2.

5. Discussion and concluding remarks. In this paper, we have proved ex-
istence and uniqueness of the best 2-CUSUM stopping rule for any given level of the
mean time between false alarms. In particular, we have shown that the best 2-CUSUM
stopping rule lies in the class C1 in the case in which μ1 > μ2 and in the class C2 in the
opposite case, while it is a harmonic mean rule in the case in which μ1 = μ2. We have
been able to prove this result by deriving and using useful expressions for the first
moment of a general 2-CUSUM stopping rule and its rate of change as the largest of
the two thresholds changes. In fact the final proof is based on the comparison of this
rate of change under the different regimes P1

0 and P2
0. It is these same expressions

that also have helped us derive upper and lower bounds on the first moment and its
rate of change of a general 2-CUSUM stopping rule.

A very interesting problem is to find the best 2-CUSUM stopping rule for the case
in which the magnitude of the drift μ of the Brownian motion after the change point θ
is unknown but satisfies either μ � μ1 or μ � μ2. Another interesting problem is to
compare the performance of the best classical 2-CUSUM stopping rule τ that lies in the
class E to the performance of the modified 2-CUSUM harmonic mean drift equalizer
rules in the case of a nonsymmetric change in the drift of Brownian motion (see [4]).
The difficulty in successfully carrying out this comparison lies in the fact that the
closed form expression for the first moment of a general 2-CUSUM nonharmonic mean
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rule appearing in Theorem 1 involves the computation of a limit of the probability
that Brownian motion hits two linear nonintersecting boundaries of different slopes
(see [1]). This expression is quite involved and as such, this comparison could only
be carried out numerically. The ultimate problem is to find the optimal solution
to (2) in both the symmetric and the nonsymmetric cases. Of course, the classical
2-CUSUM stopping rules, although not optimal, have been shown to have very strong
asymptotic optimality properties as the mean time between false alarms tends to ∞,
not only under the proposed extended Lorden performance measure (see [5]) but also
under the performance measure supθ E[τ − θ | τ > θ] (see [10]). Therefore, specifying
the best in this class is a useful contribution to a field with 50-year-old open problems
such as the one described above.
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