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A Comparison of 2-CUSUM Stopping Rules
for Quickest Detection of Two-Sided Alternatives

in a Brownian Motion Model

O. Hadjiliadis,1 G. Hernandez del-Valle,2 and I. Stamos3
1Department of Mathematics, Brooklyn College, Brooklyn, New York, USA
2Department of Statistics, Columbia University, New York, New York, USA

3Department of Computer Science, Hunter College, New York, New York, USA

Abstract: This work compares the performance of all existing 2-CUSUM stopping rules
used in the problem of sequential detection of a change in the drift of a Brownian motion in
the case of two-sided alternatives. As a performance measure, an extended Lorden criterion
is used. According to this criterion, the optimal stopping rule is an equalizer rule. This
paper compares the performance of the modified drift harmonic mean 2-CUSUM equalizer
rules with the performance of the best classical 2-CUSUM equalizer rule whose threshold
parameters are chosen so that equalization is achieved. This comparison is made possible
through the derivation of a closed-form formula for the expected value of a general classical
2-CUSUM stopping rule.

Keywords: Brownian motion; 2-CUSUM; Change-point detection; Sequential detection;
Two-sided detection.

Subject Classifications: 62L15; 60G40; 62F12.

1. INTRODUCTION

The need for statistical surveillance has been noted in many different areas (see,
e.g., Anderson et al., 2004; Basseville and Nikiforov, 1993; Doerschuk et al., 1986;
Willsky et al., 1980). This area can be studied mathematically by considering
the problem of detecting a change in a stochastic process through sequential
observations. In this formalism, we seek a stopping rule � that detects a change point
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2-CUSUM Stopping Rules in a Brownian Motion Model 93

� while at the same time controls the mean time to false alarms. In other words, at
each decision time point, t, we want to discriminate between the two states of the
process: the state �t < �� and the state �t ≥ ��. More specifically, the stopping rule �
minimizes the detection delay of the change under the constraint on the mean time
to false alarms.

A useful model for studying such problems is a Brownian motion whose drift
changes from one constant to another at the unknown change point. In particular,
for the case of one-sided alternatives, in which the change in the drift is a known
constant, the traditional Page’s CUSUM is known to be optimal for any fixed value
of the mean time to false alarms (see Beibel, 1996; Shiryaev, 1996).

The problem of detecting a change in the drift of a Brownian motion with two-
sided alternatives is considerably more difficult than that with one-sided alternatives.
This paper is a continuation of the work started in Hadjiliadis (2005), Hadjiliadis
and Moustakides (2006), and Hadjiliadis and Poor (2009). In Hadjiliadis and
Moustakides (2006), it is conjectured but not proven that within the class of
2-CUSUM harmonic mean rules, drift equalizer rules are best and two strong
asymptotic optimality results as the mean time to false alarms tends to infinity are
presented both in the symmetric and the non-symmetric case. These asymptotic
results enhance the 2-CUSUM asymptotic optimality results of Tartakovsky (1994).
In Hadjiliadis (2005), it is seen that within the class of modified drift 2-CUSUM
harmonic mean rules, the best rules are those for which the drift parameters of the
modified drift 2-CUSUM harmonic mean rules, �1 and �2, are chosen so that �2 −
�1 = 2��2 − �1�, for any value of the mean time to false alarms. (Here, �1 and −�2

are the possible drift parameters assumed after the change.) In Hadjiliadis and Poor
(2009), it is proven that the optimal solution to the problem of quickest detection
of two-sided alternatives has to be an equalizer rule. In the same paper, it is proven
that the best amongst the classical 2-CUSUM stopping rules is unique and is a
harmonic mean rule in the case of a symmetric change in the drift, whereas it is a
non-harmonic mean rule with threshold parameters 	1 > 	2 (	1 < 	2) when �1 > �2

(�1 < �2) for any value of the mean time to false alarms. All existing results are
summarized in Table 1.

In this paper, we begin by deriving a closed-form formula for the first moment
of a general 2-CUSUM stopping rule based on the Brownian motion model using
renewal arguments and Anderson (1960). This rule, although similar, is different
from the ones treated in Khan (2008) and Yashchin (1985), which are based on
the drawdown and upward rally processes also studied in Hadjiliadis and Vecer
(2006). The fact that the optimal stopping rule is an equalizer rule (see Hadjiliadis
and Poor, 2009) gives rise to the natural question of comparing the best classical 2-
CUSUM equalizer rule with the modified drift 2-CUSUM harmonic mean equalizer
rule. In this paper, we compare the detection delay of the former with the latter

Table 1. Existing results regarding 2-CUSUM stopping rules

Classical Modified drift

Harmonic mean rules Best amongst all classical rules Best for
in the symmetric case �2 − �1 = 2��2 − �1�

Non-harmonic mean rules Best amongst all classical rules
in the non-symmetric case
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94 Hadjiliadis et al.

both in the symmetric and the non-symmetric cases for a given fixed level of the
mean time to false alarms. In the symmetric case, it is seen that the modified drift
2-CUSUM harmonic mean rule displays a slightly better performance than the
classical 2-CUSUM harmonic mean equalizer rule, which manifests itself for small
values of a two-sided change in the drift parameter and of the mean time to false
alarms. In the non-symmetric case, the results involved are very interesting and
to some extent surprising. The first observation is that although for the modified
drift parameter 2-CUSUM harmonic mean equalizer rules the relationship that the
modified drifts have to satisfy for equalization is linear (see Hadjiliadis, 2005), the
relationship that the threshold parameters 	1 and 	2 have to satisfy for equalization
in the classical 2-CUSUM stopping rule is much more involved. Moreover, it is seen
that the classical 2-CUSUM equalizer rule outperforms the modified drift parameter
2-CUSUM harmonic mean equalizer rule for effectively all values of the mean time
to false alarms. Interestingly, the performance of both types of rules as the mean
time to false alarms tends to infinity is identical. Further details will be presented in
the main body of the paper.

In Section 2, we mathematically formulate the problem of change-point
detection with two-sided alternatives in a Brownian motion model. In Section 3, we
derive an explicit formula for the first moment of a general 2-CUSUM stopping
rule under all relevant measures. In Section 4, we present the comparisons of the
modified drift 2-CUSUM harmonic mean equalizer stopping rule to the classical 2-
CUSUM harmonic mean rule in the symmetric case. In Section 5, we concentrate on
the non-symmetric case. We first provide a qualitative analysis of the relationship
between the threshold parameters of the classical 2-CUSUM equalizer rules and
then proceed to compare its performance to the modified drift 2-CUSUM harmonic
mean equalizer rules. Finally, in Section 6, we conclude with some closing remarks.
Appendices A and B contain the Mathematica code used to perform the above
comparisons.

2. MATHEMATICAL FORMULATION

We sequentially observe a process �
t� with the following dynamics:

d
t =




dwt t ≤ �

�1dt + dwt

or

−�2dt + dwt

t ≥ �

where �, the time of change, is assumed to be deterministic but unknown; �wt� is
a standard Brownian motion process; �i, the possible drifts to which the process
can change, are assumed to be known, but the specific drift to which the process is
changing is unknown. Both �1 and �2 are assumed to be positive.

The probability triplet consists of �C�0���
⋃

t>0 �t�, where �t = ��
s� 0 < s ≤ t�
and the families of probability measures ��i

��, � ∈ �0���, whenever the change is �i,
i = 1� 2� and �� (the Wiener measure).

Our goal is to detect a change by means of a stopping rule � adapted to
the filtration �t. As a performance measure for this stopping rule, we propose an
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2-CUSUM Stopping Rules in a Brownian Motion Model 95

extended Lorden criterion (see Hadjiliadis and Moustakides, 2006)

JL��� = max�J1���� J2���� (2.1)

where Ji��� = sup� essupEi
����− ��+ ���, i = 1� 2. This gives rise to the following

min-max constrained optimization problem:

inf
�
JL���

subject to E��� ≥ �� (2.2)

where the constraint specifies the minimum allowable mean time to false alarms. As
discussed in Moustakides (1986), in seeking solutions to the above problem, we can
restrict our attention to stopping times that achieve the false alarm constraint with
equality; that is, stopping rules � for which

E��� = �� (2.3)

As argued in Hadjiliadis and Poor (2009), the optimal stopping rule for problem
(2.2) has to satisfy

J1��� = J2���� (2.4)

We now proceed to define the normalized CUSUM processes and their
corresponding one-sided CUSUM stopping rules.

Definition 2.1. Let 	1 > 0 and 	2 > 0. Define1

1. u+
t = log

dP10
dP� ��t

�1
= 
t − 1

2�1t; m+
t = inf s≤t u

+
s ; y+t = u+

t −m+
t ; �1�	1� = inf�t > 0�

y+t ≥ 	1�,

2. u−
t = log

dP20
dP� ��t

�2
= −
t − 1

2�2t; m−
t = inf s≤t u

−
s ; y−t = u−

t −m−
t ; �2�	2� = inf�t > 0�

y−t ≥ 	2�.

That is, �1�	1� and �2�	2� are the first times that the processes y+t and y−t
reach their corresponding thresholds 	1 and 	2, respectively. The classical 2-CUSUM
stopping rules are then of the form ��	1� 	2� = �1�	1� ∧ �2�	2�.

We classify 2-CUSUM rules according to the class � = ���	1� 	2�� 	1 = 	2�
of harmonic mean rules and the classes �i = ���	i� 	j� � 	i > 	j > 0� i �= j� of non-
harmonic mean rules.

Remark 2.1. It is useful at this stage to contrast the stopping time ��	1� 	2� to the
one used in Khan (2008). The one considered in Khan (2008), using our notation, is
defined as T = T1�h1� ∧ T2�h2�, where T1�h1� is the first time that the process Y+

t =

t − inf s≤t 
s reaches the threshold h1 and T2�h2� is the first time that the process
Y−
t = sups≤t 
s − 
t reaches the threshold h2. It is therefore a different stopping rule.

We will revisit this point in Remark 3.1.

1Notice that log throughout the paper denotes the logarithm with base e.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
a
d
j
i
l
i
a
d
i
s
,
 
O
l
y
m
p
i
a
]
 
A
t
:
 
1
9
:
0
1
 
2
7
 
A
u
g
u
s
t
 
2
0
0
9



96 Hadjiliadis et al.

We now proceed to define the modified drift 2-CUSUM stopping rules as
follows.

Definition 2.2. Let �1 > 0, �2 > 0, 	1 > 0 and 	2 > 0. Define

1. u+
t ��1�= 
t − 1

2�1t; m
+
t ��1�= inf s≤t u

+
s ��1�; y

+
t ��1�= u+

t ��1�−m+
t ��1�; �1��1� 	1� =

inf�t > 0� y+t ��1� ≥ 	1�,

2. u−
t ��2�=−
t − 1

2�2t;m
−
t ��2�= inf s≤t u

−
s ��2�; y

−
t ��2�= u−

t ��2�−m−
t ��2�; �2��2� 	2�=

inf�t > 0� y−t ��2� ≥ 	2�.

That is, �1��1� 	1� and �2��2� 	2� are the first times that the processes y+t ��1� and
y−t ��2� reach their corresponding thresholds 	1 and 	2, respectively. The modified
drift 2-CUSUM stopping rules are then of the form ���1� �2� 	1� 	2� = �1��1� 	1� ∧
�2��2� 	2�.

In what follows we will focus on modified drift 2-CUSUM harmonic mean
stopping rules, which belong to the class �M = ����1� �2� 	1� 	2�� 	1 = 	2�.

We also define the following quantities, the use of which will become apparent
later.

Definition 2.3. For a > 0 and b > 0, we define

1. U+�a� = inf�t > 0� u+
t ≥ a�,

2. U−�b� = inf�t > 0�−u−
t ≤ −b�, and

3. ��a� b� = P�U+�a� < U−�b���

In the sequel we will repeatedly use the indices i� j ∈ �1� 2� and the function

f	�y� =
ey	 − y	− 1

y2
� (2.5)

According to Hadjiliadis and Moustakides (2006), Siegmund (1985), and Taylor
(1975), we have

E���i�	i�� = 2f	i ��i�� i = 1� 2� (2.6)

Ei
0��i�	i�� = 2f	i �−�i�� i = 1� 2� (2.7)

Ei
0��j�	j�� = 2f	j ��j + 2�i�� i �= j� i� j ∈ �1� 2�� (2.8)

Moreover, according to Hadjiliadis (2005) and Taylor (1975), we also have

E���i��i� 	�� = 2f	��i�� (2.9)

Ei
0��i��i� 	�� = 2f	��i − 2�i�� (2.10)

Ei
0��j��j� 	�� = 2f	��j + 2�i�� (2.11)

For any 2-CUSUM stopping rule �, it is true that JL��� = max�E1
0��� E

2
0���

(see Hadjiliadis and Moustakides, 2006; Hadjiliadis and Poor, 2009). Thus, equation
(2.4) takes the form

E1
0�� = E2

0��� (2.12)
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2-CUSUM Stopping Rules in a Brownian Motion Model 97

3. THE FIRST MOMENT OF A GENERAL 2-CUSUM RULE

We begin with our main expression for the first moment of a general classical
2-CUSUM stopping rule ��	1� 	2�. To simplify the expressions that follow, we
introduce

�j�r� 
� = exp�−�r − 1�	j�r��1 + �2�+ �j − 
�� (3.1)

�j�r� 
� = exp�−r	j�r��1 + �2�+ �i − 
�� (3.2)

Ai�
� =
�∑
r=1

��r�r��1 + �2�+ �i − 
���i�r� 
�− �i�r + 1� 
�� (3.3)

Bi�
� =
�∑
r=1

[
�r��1 + �2�+

1
2
��i − 
���i�r� 
�

]
(3.4)

Theorem 3.1. Let ��	1� 	2� = �1�	1� ∧ �2�	2� be any 2-CUSUM stopping rule and
denote ��	1� 	2� by �. Moreover, let f be as in (2.5). Then, for 	i ≥ 	j , i �= j, with � =
	i − 	j , we have

Ei
0�� = 2f	j ��j + 2�i�

[
1− f	j ��j + 2�i�

f	j �−�i�+ f	j ��j + 2�i�
e−2�·Bi�0�

]
� (3.5)

E��� = 2f	j ��j�

[
1− f	j ��j�

f	j ��j�+ f	j ��i�
e−2�·Bi�2�i�

]
� for i = 2� (3.6)

E
j
0�� = 2f	j �−�j�

[
1− f	j �−�j�

f	j �−�j�+ f	j ��i + 2�j�
e−�·Aj�0�

]
� (3.7)

E��� = 2f	j ��j�

[
1− f	j ��j�

f	j ��j�+ f	j ��i�
e−�·Aj�2�j�

]
� for j = 2� (3.8)

We notice that for any � with 	1 = 	2, all of the above expressions reduce to the
well-known harmonic mean rule (see Siegmund, 1985). That is, for 	1 = 	2, under
any measure, we obtain

E�� = E��1E��2

E��1+ E��2
� (3.9)

Moreover, it can easily be seen from the expressions of Theorem 3.1 that the
harmonic mean rule holds as a lower bound to the first moment of a general classical
2-CUSUM stopping rule (see, e.g., Dragalin, 1997).

In order to prove Theorem 3.1, we will need to make use of two preliminary
results that are summarized in the following two lemmas.

Lemma 3.1. We have

sup
s≤t

�y+s + y−s � = max
{
sup
s≤t

y+s � sup
s≤t

y−s
}
�

Proof. Observe that y+t + y−t = − 1
2 ��1 + �2�t −m+

t −m−
t . We notice that the

process y+t + y−t can only increase when either u+
t = m+

t or u−
t = m−

t , both of which
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98 Hadjiliadis et al.

cannot happen at the same time, because that would imply that y+t + y−t is 0.
Therefore, y+t + y−t is a strictly decreasing function of time unless either y+t = 0 or
y−t = 0, at which instant max�y+t � y

−
t � = sups∈�0�t�max�y+s � y

−
s ��� �

As a consequence of Lemma 3.1, we have that

	2 ≥ 	1 ⇒ ��2 < �1� ⊆ �y+�2 = 0�� (3.10)

	1 ≥ 	2 ⇒ ��1 < �2� ⊆ �y−�1 = 0�� (3.11)

Remark 3.1. We notice that in the case of Khan’s (2008) stopping rule T =
T1�h1� ∧ T2�h2� (see Remark 2.1), equations (3.10) and (3.11) become respectively

h2 ≥ h1 ⇒ �T2 < T1� ≡ �Y+
T2
= 0�� (3.12)

h1 ≥ h2 ⇒ �T1 < T2� ≡ �Y−
T1
= 0�� (3.13)

Similarly to Khan’s (1981) Lemma 2 and Khan’s (1985) Lemma 1 in which
(3.12) and (3.13) are used, we have the following lemma which uses (3.10) and (3.11)
instead.

Lemma 3.2. Let �1 and �2 be the one-sided CUSUM stopping branches of �� ∈ �
having the same threshold parameter 	. We then have

P��2 < �1� =
E��1

E��1+ E��2
� P��1 < �2� =

E��2

E��1+ E��2
�

Proof. For simplicity in this proof, we will use � to denote ��. We have � = �1 ∧ �2.
Hence,

�1 = �+ ��1 − ��+� �2 = �+ ��2 − ��+�

Conditioning on �� = �2�, and subsequently on its complement, and taking
expectations, we have

E��1 = E��+ E��1 − �2 � �2 < �1 · P��2 < �1�� (3.14)

E��2 = E��+ E��2 − �1 � �1 < �2 · P��1 < �2�� (3.15)

Because �1 and �2 have the same thresholds 	, using (3.10) and (3.11), we obtain

��2 < �1� ⊆ �y+�2 = 0�� ��1 < �2� ⊆ �y−�1 = 0��

Therefore, (3.14) and (3.15) become

E��1 = E��+ E��1 · P��2 < �1�� E��2 = E��+ E��2 · P��1 < �2��

from which, by eliminating E��, the result follows. �

Proof of Theorem 3.1. Let us suppose that 	1 > 	2. Then, using (3.11) and (3.15), we
have that

E��2�	2� = E��+ E��2�	2� · P��1�	1� < �2�	2���
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2-CUSUM Stopping Rules in a Brownian Motion Model 99

Table 2. The dynamics of u+
t and −u−

t under the different regimes

No change (P�) Change is �1 (P1
0 ) Change is −�2 (P2

0 )

u+
t wt − 1

2�1t wt + 1
2�1t wt − 1

2 ��1 + 2�2�t

−u−
t wt + 1

2�2t wt + 1
2 ��2 + 2�1�t wt − 1

2�2t

Hence,

E�� = E��2�	2� · P��2�	2� < �1�	1��� (3.16)

We now proceed to express P��2�	2� < �1�	1�� in terms of ��a� b� as it appears in
Definition 2.3. Notice that we can rewrite the probability of its complement, namely
P��1�	1� < �2�	2��,

2 as

P��1�	1� < �2�	2�� = P��1�	1� < �2�	2� � �1�	2� < �2�	2��P��1�	2� < �2�	2��� (3.17)

Using Lemma 3.2, however, with 	 = 	2, we obtain

P��1�	2� < �2�	2�� =
E��2�	2�

E��1�	2�+ E��2�	2�
� (3.18)

To get an expression for

P��1�	1� < �2�	2� � �1�	2� < �2�	2���

we first consider the dynamics of y+t and y−t under all relevant measures. Using
Definition 2.1, we can write y+t = u+

t −m+
t and y−t = u−

t −m−
t where the dynamics

of u+
t and −u−

t are summarized in Table 2.
Therefore, if we were to divide the interval �0� 	1 − 	2 into n equal length

intervals, then

P��1�	1� < �2�	2� � �1�	2� < �2�	2�� = lim
n→�P

( n⋂
i=1

Ei

)
� (3.19)

where Ei is the event that �sup�t∈Ii� y
−
t < 	2� conditioned upon the initial value of y−t at

the left endpoint of each interval Ii being equal to 0 and �Ii� are the random intervals

Ii =
[
�1

(
	2 + �i− 1�

�	1 − 	2�

n

)
� �1

(
	2 + i

�	1 − 	2�

n

)]
�

Because of the strong Markov property of Brownian motion the events �Ei� are
independent, equiprobable, and they have the same probability as the event{

The process u+
t increases by at least

	1 − 	2
n

units

before the process −u−
t falls by 	2 (or more) units

}
� (3.20)

A depiction of the strong Markov property is given in Figure 1, where the
upper solid black line represents the process −u−

t = 
t + 1
2�2t, the upper dashed line

2Notice that P��1�	1� = �2�	2�� = 0 under any measure and any 	1 > 0 and 	2 > 0.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
a
d
j
i
l
i
a
d
i
s
,
 
O
l
y
m
p
i
a
]
 
A
t
:
 
1
9
:
0
1
 
2
7
 
A
u
g
u
s
t
 
2
0
0
9



100 Hadjiliadis et al.

Figure 1. A demonstration of the strong Markov property of Brownian motion.

represents its running supremum (that is, the process sups≤t�
s + 1
2�2s� = −m−

t ), the
lower solid black line represents the process u+

t = 
t − 1
2�1t, and the lower dashed

line its running infimum (that is, the process m+
t = inf s≤t�
s − 1

2�1s�). We remark
that the normalized CUSUM process y−t is the difference between the upper dashed
and the black lines and the normalized CUSUM process y+t is the difference between
the lower solid black and the lower dashed lines (see Definition 2.1). The strong
Markov property is depicted by a shift of the axis to the time point �1�	2�, that is, the
first time point at which the process y+t reaches 	2 (the difference between the lower
solid black and the lower dashed lines is 	2). Representation (3.19) comes as a result
of repeated such “shifts” of the axis (which are valid by the strong Markov property
of Brownian motion) at each of the points �1�	2 + 	1−	2

n
�, �1�	2 + 2 	1−	2

n
�� � � � � �1�	2 +

�n− 1� 	1−	2
n

�.
Therefore, in view of Definition 2.3 and (3.20), (3.19) becomes

P��1�	1� < �2�	2� � �1�	2� < �2�	2�� = lim
n→�P�E1�

n = lim
n→��

(
	1 − 	2

n
� 	2

)n

� (3.21)

Using Theorem 4.1 of Anderson (1960), we obtain the following representations
for

lim
n→�P�E1�

n�
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2-CUSUM Stopping Rules in a Brownian Motion Model 101

under the following different measures:

1. Under P1
0

�

(
	1 − 	2

n
� 	2

)n

=
(
1−

�∑
r=1

[
e−2��r−1�2�1�1+r2�2�2−r�r−1���1�2+�2�1�

− e−2�r2��1�1+�2�2�−r�r+1��1�2−r�r−1��2�1
])n

� (3.22)

where �1 = 	1−	2
n

, �2 = −	2, �1 = − 1
2�1 and �2 = − 1

2 ��2 + 2�1�.
2. Under P2

0

�

(
	1 − 	2

n
� 	2

)n

=
( �∑

r=1

[
e−2�r2�1�1+�r−1�2�2�2−r�r−1���1�2+�2�1�

− e−2�r2��1�1+�2�2�−r�r−1��1�2−r�r+1��2�1
])n

� (3.23)

where �1 = 	1−	2
n

, �2 = −	2, �1 = 1
2 ��1 + 2�2� and �2 = 1

2�2.
3. Under P�

�

(
	1 − 	2

n
� 	2

)n

has the same representation as in (3.23), for

�1 =
1
2
�1 and �2 = −1

2
�2�

Let

C�r� = exp�−2�r2�2�2 − r�r − 1��2�1���

D�r� = exp�−2�1�r
2�1 − r�r − 1��2��

Factoring out the term C�r�, the right-hand side of (3.22) becomes(
1−

�∑
r=1

C�r��e−2�1��r−1�2�1−r�r−1��2 − e−2�1�r
2�1−r�r+1��2

)n

� (3.24)

Because �1 = 	1−	2
n

and �2 = −	2, we have that

e−2�1��r−1�2�1−r�r−1��2 − e−2�1�r
2�1−r�r+1��2

=
(
1− 2�	1 − 	2�

n

[
�r − 1�2�1 − r�r − 1��2

]+ o

(
1
n

))

−
(
1− 2�	1 − 	2�

n

[
r2�1 − r�r + 1��2

]+ o

(
1
n

))
� (3.25)

Substituting (3.25) into (3.24), we obtain

lim
n→�

(
1+ 2�	1 − 	2�

n

[ �∑
r=1

��1 + 2r��2 − �1�C�r�

])n

= exp
{
−2�	1 − 	2�

[ �∑
r=1

��1 + 2r��2 − �1��C�r�

]}]
�

as claimed.
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102 Hadjiliadis et al.

Similarly the right-hand side of (3.23) can be written as

( �∑
r=1

D�r�
[
e−2��r−1�2�2�2−r�r−1��2�1 − e−2�r2�2�2−r�r+1��2�1

])n

� (3.26)

Observe that because �1 = 	1−	2
n

,

D�r� = e−2�1�r
2�1−r�r−1��2 = exp

{
−2�	1 − 	2�

n
�r2�1 − r�r − 1��2

}

= 1− 2�	1 − 	2�

n

[
r2�1 − r�r − 1��2

]+ o

(
1
n

)
�

Moreover,

�∑
r=1

[
e−2��r−1�2�2�2−r�r−1��2�1 − e−2�r2�2�2−r�r+1��2�1

] = 1� (3.27)

which is recognizable as quantity P1 in Theorem 4.1 of Anderson (1960) for �1 = 0.
Indeed it is with probability 1 that a Brownian process, which starts at zero, will
first hit the boundary �1t, before hitting the linear boundary �2 + �2t, because this
occurs at time t = 0.

Thus,

lim
n→��

(
	1 − 	2

n
� 	2

)n

= lim
n→�

(
1− 2�

n

[ �∑
r=1

�r2�1 − r�r − 1��2��2�r� 0�− �2�r + 1� 0�
])n

�

which reduces to

exp�−�A2�0��

as claimed.
All other cases follow similarly.

4. THE SYMMETRIC CASE

In this section we treat the case that �1 = �2 = �. The best 2-CUSUM stopping
rule has to satisfy (2.12). Moreover, the best amongst the classical 2-CUSUM
stopping rules, in the symmetric case, belongs to the class � of harmonic mean 2-
CUSUM rules and is also unique within its class (see Hadjiliadis and Poor, 2009).
Furthermore, in Hadjiliadis (2005) it is seen that (2.12) is satisfied for all modified
drift 2-CUSUM stopping rules of class �M for which

�1 − �2 = 2��1 − �2�� (4.1)

Notice that equation (4.1) implies that �1 should be equal to �2 whenever there
is a symmetric change, namely �1 = �2. The optimality of the modified drift 2-
CUSUM harmonic mean rules within the class of all modified drift 2-CUSUM
harmonic mean rules �M (see Hadjiliadis, 2005) for any value of � suggests that
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2-CUSUM Stopping Rules in a Brownian Motion Model 103

one should compare the performance of the classical 2-CUSUM harmonic mean
rule with the performance of the modified drift 2-CUSUM harmonic mean rule
for the same mean time to false alarms �. Because the latter involves one more
free parameter, namely � = �1 = �2, over which minimization of JL���, can take
place, it is expected that it will have a strictly better performance than its classical
2-CUSUM counterpart. It is also expected, due to the asymptotic optimality
of the classical 2-CUSUM harmonic mean rule as � → � (see Hadjiliadis and
Moustakides, 2006), that the free parameter �, which minimizes JL���, converges to
� = �1 = �2 as � → �.

In particular, for the modified parameter 2-CUSUM ���� 	�, using (2.9)–(2.11),
and the harmonic mean rule (3.9), (2.2) becomes

min
�

{
2

f	��+ 2��f	��− 2��
f	��+ 2��+ f	��− 2��

}
subject to f	��� = �� (4.2)

From the above constraint it follows that as � → �, we obtain

�	 = log����1+ o�1��� (4.3)

By inspection of the delay function

E1
0����� 	� = E2

0����� 	� = 2
f	��+ 2��f	��− 2��

f	��+ 2��+ f	��− 2��
� (4.4)

it is easily seen that the minimal detection delay as 	 increases, occurs for � < 2�
(see Theorem 2 of Hadjiliadis and Moustakides, 2006), and becomes

2
f	��+ 2��f	��− 2��

f	��+ 2��+ f	��− 2��
= 2	

2� − �
�1+ o�1��� (4.5)

Substituting (4.3) into (4.5), we obtain

f	��+ 2��f	��− 2��
f	��+ 2��+ f	��− 2��

= 2 log �
��2� − ��

�1+ o�1��� (4.6)

which is minimized for the choice � = �.
This asserts that the best asymptotically in the class �M is the same as the best

in the class �.
For the purpose of clarity, let us denote by DDmodified the quantity of (4.4) and

by DDclassical the same quantity for � = �. In Figure 2 (right), the relative difference
of these two quantities, namely

Relative diff. = 100× DDclassical −DDmodified

DDclassical

� (4.7)

is plotted against log �.

Remark 4.1. It is possible to solve for 	 in the equation f	��� = � in terms of
the Lambert W function. In particular, let W be the second real branch of the
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104 Hadjiliadis et al.

Figure 2. Convergence of � as a function of log���. The solid curve corresponds to � = 0�5,
the dotted curve to � = 1, and the dashed curve to � = 2�5. (Right) Relative diff., defined
in (4.7), as a function of log���. Solid, dotted, and dashed curves same as in (Left).

Lambert W function (see Corless et al., 1996), that is represented by the function
ProductLog�−1� · in Mathematica (see Appendix A). Then,

	 = log�−W�−e−��2�+1��

�
� (4.8)

Optimization for each value of � can then be carried out by substituting for 	 from
(4.8) into (4.4).

The results found above are represented in Figure 2. The percentage decrease
(Relative diff., equation (4.7)) in detection delay of the modified 2-CUSUM
harmonic mean equalizer rule is barely noticeable and occurs only for small values
of changes in the drift parameter � and small values of �. We also observe that this
percentage decrease in the relative difference (4.7) is achieved for even smaller values
of � as � increases.

The results for the non-symmetric case are far more interesting and are
summarized in the following section.

5. THE NON-SYMMETRIC CASE

In this section we consider the case of a non-symmetric change �1 �= �2. Without
loss of generality we assume that �1 > �2. In Hadjiliadis and Poor (2009), it is seen
that the best classical 2-CUSUM stopping rule is unique and satisfies 	1 > 	2. We
thus compare the detection delay JL�·� of the unique classical 2-CUSUM stopping
rule ��	1� 	2� with 	1 > 	2 that satisfies (2.12) to that of the modified drift 2-CUSUM
harmonic mean rule with �2 a free parameter, over which the detection delay JL�·�
is minimized. For the purpose of clarity, let us denote the detection delay of the
former 2-CUSUM by DDclassical eq� and the detection delay of the latter 2-CUSUM
by DDmodified optimized. For the modified drift 2-CUSUM harmonic mean rule, (4.1)
implies that �1 = 2��1 − �2�+ �2. Both rules are chosen so as to satisfy the false
alarm constraint with equality (2.3).
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2-CUSUM Stopping Rules in a Brownian Motion Model 105

Figure 3. (Left) Case of �2 = 0�5: The ratio of thresholds 	1
	2

of the best classical 2-CUSUM
rule as a function of log���. The solid curve corresponds to �1

�2
= 1�5, the dotted curve to

�1
�2

= 2, and the dashed curve to �1
�2

= 5. (Middle) Case of �2 = 1. (Right) Case of �2 = 2�5.

Figure 3 demonstrates the relationship of the ratio of thresholds 	1
	2
as a function

of log � for the best classical 2-CUSUM stopping rule. The exact relationship can be
extracted from Theorem 3.1. In particular, 	1 and 	2 have to be chosen so that (2.12)
holds. The first interesting feature is that the ratio 	1

	2
increases as � → �. Another

interesting characteristic that can be seen in Figure 3, is that the ratio 	1
	2

for which
Equation (2.12) holds is always less than the ratio �1

�2
.

For the modified drift 2-CUSUM harmonic mean equalizer rule, the optimal
choice of the free parameter �2 converges to �2 (see Hadjiliadis and Moustakides,
2006). The modified drift 2-CUSUM harmonic mean equalizer rule is also
asymptotically optimal as � → � (see Hadjiliadis and Moustakides, 2006). Yet, in
Figure 4, it is seen that the modified drift 2-CUSUM harmonic mean equalizer rule
has inferior performance to the classical 2-CUSUM equalizer rule. In particular,
Figure 4, displays the relative difference between the classical 2-CUSUM stopping
rule that satisfies (2.12) to the modified drift 2-CUSUM harmonic mean rule with
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106 Hadjiliadis et al.

Figure 4. (Left) Case of �2 = 0�5: The relative difference between the modified 2-CUSUM
and the classical 2-CUSUM equalizer rules is displayed as a function of log���. The solid
curve corresponds to �1

�2
= 1�5, the dotted curve to �1

�2
= 2, and the dashed curve to �1

�2
= 5.

(Middle) Case of �2 = 1. (Right) Case of �2 = 2�5. (Note that the dashed curve is very close
zero, and thus hard to distinguish in the three graphs.) Relative diff. is defined in (5.1).

drift parameters �1 and �2 as suggested in the first paragraph; that is,

Relative diff. = 100× DDmodified optimized −DDclassical eq�

DDmodified optimized

� (5.1)

It is seen that even for moderate values of � and any value of �2, there is a clear
percentage decrease in detection delay, as defined in (5.1), of the classical 2-CUSUM
equalizer rule versus the modified drift 2-CUSUM harmonic mean equalizer rule.
This relative difference reaches the level of 5% for log � as high as 4, �2 = 0�5, and
�1
�2

= 1�5 as seen in Figure 4. This relative difference, however, decreases to 0 faster
as �1

�2
increases.

In Figure 4 it is also seen that the relative difference, defined in (5.1), tends to 0
as � → �. This is to be expected as both stopping rules display the same detection
delay JL�·�, namely 2 log���

�22
�1+ o�1��, as � → �.
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6. DISCUSSION AND CONCLUDING REMARKS

In this paper, we derive an exact closed form formula of the expected value of a
general 2-CUSUM stopping rule in the Brownian motion model. This enables us to
compare the performance of the modified drift 2-CUSUM harmonic mean equalizer
rules, introduced for the first time in Hadjiliadis and Moustakides (2006), to the
classical 2-CUSUM equalizer rules. As expected, in the symmetric case, the modified
drift 2-CUSUM harmonic mean equalizer rules display a better performance than
their classical 2-CUSUM counterparts (that is, a lesser detection delay for the same
mean time to false alarms), because they introduce one more parameter (i.e., �) over
which minimization of the detection delay takes place. This gain, however, is not
significant and is only seen in the case that � is small and for small values of �.
The difference in their performance tends to 0 as � → �. On the other hand, in the
case of a non-symmetric change, it is seen that even for moderate values of �, the
classical 2-CUSUM equalizer rule displays a better performance than its modified
drift 2-CUSUM harmonic mean equalizer rule counterpart. This suggests that in
the non-symmetric case, it is more desirable to select a pair of thresholds for which
(2.12) holds than to modify the drift parameters. Of course, the difference in the two
detection delays tends to 0 as � → �, signifying that for large values of �, it makes
no difference in detection delay which one of the two is selected.

The contribution of this paper, apart from the derivation of an exact closed
form formula for the mean of a general 2-CUSUM stopping rules, is roughly
summarized in Table 3.

Although, this paper concerns the case of a known two-sided post-change drift,
we wish to add a comment on the unknown drift parameter case. Consider the
case in which the drift assumed after the change is known to be two-sided and
symmetric, namely + or −� for some � > 0 known to lie in a two-sided symmetric
interval I = �−M�−m ∪ �m�M, for some M > m > 0. In Figure 2, it is seen that
there is a slight decrease in detection delay resulting from using a � > � for small
values of �, whereas as � → �, equation (4.6) implies that the detection delay is
minimized for � = �. But because we only have an interval of equally possible
values for � after the change, we can set � = M+m

2 and follow the minimization
procedure of (4.2) in conjunction with Remark (4.1) to identify the optimal choice
of �. Similarly, consider the case in which the drift assumed after the changes is
unknown, but known to be non-symmetric and to thus lie in a non-symmetric
interval I ′ = �−M2�−m2 ∪ �m1�M1 such that m2+M2

2 > m1+M1
2 (m2+M2

2 < m1+M1
2 ). It is

then reasonable to set �i = mi+Mi

2 for i = 1� 2 and using the results in Section 5,
choose 	2 > 	1 (	1 > 	2) so that (2.12) is satisfied. Finally, in the case that the interval
of possible values is non-symmetric but with m2+M2

2 = m1+M1
2 , the same treatment as

the one suggested in the symmetric case could be followed.

Table 3. Comparison of 2-CUSUM equalizer stopping rules

Symmetric case Non-symmetric case

Modified drift better than classical Classical non-harmonic rules better than
harmonic mean rules for small values modified drift harmonic mean rules for almost
of � and � all values of � and other parameters

Difference tends to 0 as � → �
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108 Hadjiliadis et al.

APPENDIX A: SYMMETRIC CASE PROGRAM

(*Mathematica program for the symmetric case*)

(*Input/output arrays *)
(*Array of mus*)
Nm = 5; Array[ma, Nm];
(*Fill some values for mu*)
(*ma[1]=...,ma[2]=...,...*)

(*Array of gammas*)
Ng=7; Array[g, Ng];
(*Fill some values for gammas*)
(*g[1]=...,g[2]=...,...*)

(*2D array of lambdas: lambda[i,j] is the lambda corresponding to
mu ma[i] and gamma g[j]*)

Array[lamda, {Nm, Ng}];

(*2D array: minDD[i,j] is minDD corresponding to mu ma[i]
and gamma g[j]*)

Array[minDD, {Nm, Ng}];

(*2D array: DDleqm[i,j] is DDelqm corresponding to mu ma[i]
and gamma g[j]*)

Array[DDleqm, {Nm, Ng}];

(*2D array: Comp[i,j] is Comp corresponding to mu ma[i]
and gamma g[j]*)

Array[Comp, {Nm, Ng}];

(*Function definitions*)
f[l_, x_] := 2*(Exp[l*x] - l*x - 1)/(lˆ2)
g[x1_, x2_] :=
x1*x2/(x1 + x2)
(*n is the threshold for given lambda l_ and gamma gamma_ in terms
of the second real component of the LambertW function *)
n[l_, gamma_] := Log[-ProductLog[-1, -Exp[-((lˆ2)*gamma + 1)]]]/l
(*DD is the detection delay for given lambda l_, gamma gamma_,

and mu m_*)
DD[l_, m_, gamma_] :=
g[f[l + 2*m, n[l, gamma]], f[l - 2*m, n[l, gamma]]]

(*Loop for computing results*)

(*For each mu ma[i] and gamma g[j]*)
For[i = 1, i <= Nm, i++,
For[j = 1, j <= Ng, ++j,
(* Minimization of detection delay wrt lambda (modified drift

2-CUSUM) *)
R = FindMinimum[DD[l, ma[i], g[j]], {l, ma[i]}];
(* Minimum detection delay *)
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2-CUSUM Stopping Rules in a Brownian Motion Model 109

minDD[i, j] = First[R];
(* Value of lambda that provides minimum *)
lamda[i, j] = First[l /. Rest[R]];
(* Detection delay for lambda=mu (classical 2-CUSUM)*)
DDleqm[i, j] = N[DD[ma[i], ma[i], g[j]]];
(* Comp[i,j] is -1 if modified is smaller than classical,
0 if equal, 1 otherwise*)
If[ minDD[i, j] < DDleqm[i, j], Comp[i, j] = -1,
If[minDD[i, j] == DDleqm[i, j], Comp[i, j] = 0, 1]];
(*Print results on stdout*)
Print["m: ", ma[i], " g: ", g[j], " minDD: ", minDD[i, j],
" lamda: ", lamda[i, j], " DDleqm: ", DDleqm[i, j], " Comp: ",
Comp[i, j]];
]
];

(*Save results to Excel CSV file*)
tableSize = Nm * Ng + 1

(*Array used for output into Excel spreadsheet*)
Array[outTableF, {tableSize, 6}];
outTableF[1, 1] = "m"; outTableF[1, 2] = "g";
outTableF[1, 3] = "lambda"; outTableF[1, 4] = "minDD";
outTableF[1, 5] = "DD at l=m"; outTableF[1, 6] = "Comp";
localCounter = 0;
For[i = 1, i <= Nm, i++,
For[j = 1, j <= Ng, ++j,
localCounter++;
outTableF[localCounter + 1, 1] = ma[i];
outTableF[localCounter + 1, 2] = g[j];
outTableF[localCounter + 1, 3] = lamda[i, j];
outTableF[localCounter + 1, 4] = minDD[i, j];
outTableF[localCounter + 1, 5] = DDleqm[i, j];
outTableF[localCounter + 1, 6] = Comp[i, j];
]
]

(*Export results to CSV file (Excel)*)
Export["LambertW.csv", Array[outTableF, {tableSize, 6}], "CSV"]

(*END of Mathematica program for the symmetric case*)

APPENDIX B: NON-SYMMETRIC CASE PROGRAM

(*Mathematica program for the non-symmetric case*)

(*Input/Output Array Initialization*)
(*---------------------------------*)

(*Input array of mu2s*)
(*Nm2 Size of array + 1*)
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Nm2 = 5; Array[m2, Nm2 - 1];
(*Fill array with some values...*)
(*m2[1]=..., m2[2]=...,...*)

(*Input array of ratios mu1/mu2*)
(*Nrat Size of array + 1*)
Nrat = 7; Array[m12rat, Nrat - 1];
(*Fill array of ratios with some values...*)
(*m12rat[1]=..., m12rat[2]=..., ...*)

(*Array of mu1s: m1[i,j] is mu1 corresponding to mu2[i] and
ratio m12rat[j]*)

Array[m1, {Nrat - 1, Nm2 - 1}];

(*Calculate mu1s from mu2s and ratios*)
For[i = 1, i < Nrat, i++,
For[j = 1, j < Nm2, j++, m1[i, j] = m12rat[i]*m2[j]]]

(*Input array of nu2s*)
Nn2 = 15; Array[n2, Nn2 - 1];
(*Fill n2 with some values...*)
(*n2[1]=..., n2[2]=..., ...*)

(*Output 3D Arrays for storing results*)
(*Value at [i,j,k] corresponds to m12rat[i], m2[j], and n2[k]*)
Array[Carr, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[n1A, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[nM, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[nMO, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[l2A, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[MO, {Nrat - 1, Nm2 - 1, Nn2 - 1}];
Array[M, {Nrat - 1, Nm2 - 1, Nn2 - 1}];

(*Function definitions*)
(*------------------*)
f[n_, y_] := (Exp[y*n] - y*n - 1)/(y*y)
f2[n_, a_, b_] := 2*(f[n, a]*f[n, b])/(f[n, a] + f[n, b])

(*Limiting value of P1 of Theorem 4.1 in Anderson 1960
for d1 positive*)

Ppos[d1_, d2_, n2_] :=
Exp[-2*Sum[(r*r*d1 -

r*(r - 1)* d2)*
(Exp[-2*(r*(r - 1)*n2*d1 - (r - 1)*(r - 1)*n2*d2)] -
Exp[-2*(r*(r + 1)*n2*d1 - r*r*n2*d2)]),
{r, 1, Infinity}]]

(*Limiting value of P1 of Theorem 4.1 in Anderson 1960
for d1 negative*)

Pneg[d1_, d2_, n2_] :=
Exp[2*Sum[((r - 1)*(r - 1)*d1 - r*(r - 1)*d2 - r*r*d1 +
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r*(r + 1)*d2)*Exp[-2*(r*(r - 1)*n2*d1 - r*r*n2*d2)],
{r, 1, Infinity}]]

(*Functions to deal with tables of 15 columns*)
(*Name of table: theTable_, size of table: Size_*)
(*Intitialize values of array theTable_ of Size_ elements
to -1*)

InitTable[theTable_, Size_] :=
For[ ii = 2, ii <= Size, ii++,
For[jj = 1, jj <= 15, jj++, theTable[ii, jj] = -1]]

(*Print table to standard output*)
PrintTable[theTable_] :=
For[ii = 1, ii <= (Nrat - 1)*(Nn2 - 1) + 1, ii++,
For[jj = 1, jj <= 15, jj++, Print[theTable[ii, jj]]]]

(*Export table to Excel CSV file.
Name of file to be saved is Table<iter_>.csv*)

SaveTable[iter_, theTable_, Size_] :=
Export[ToString[StringForm["Table".csv", iter]],
Array[theTable, {Size, 15}], "CSV"]

Nsize = (Nrat - 1)*(Nn2 - 1) + 1;

(*Initialization of output table to store results*)
(*-----------------------------------------------*)

Array[outTable2, {Nsize, 15}];
outTable2[1, 1] = "v1"; outTable2[1, 2] = "v2";
outTable2[1, 3] = "m1"; outTable2[1, 4] = "m2";
outTable2[1, 5] = "v1/v2"; outTable2[1, 6] = "m1/m2";
outTable2[1, 7] = "nM"; outTable2[1, 8] = "nMO";
outTable2[1, 9] = "l2";
outTable2[1, 10] = "g"; outTable2[1, 11] = "C";
outTable2[1, 12] = "M"; outTable2[1, 13] = "MO";
outTable2[1, 14] = "C>M ?"; outTable2[1, 15] = "C>MO ?";
InitTable[outTable2, Nsize];

(*Loop over input values, compute results, and save*)
(*-------------------------------------------------*)
localCounter = 0;
aCounter = 0;

(*For each mu2 mu2[j], mu1 m1[i,j], and nu2 n2[k]*)
For[j = 1, j < Nm2, j++,
For[i = 1, i < Nrat, ++i,
For[k = 1, k < Nn2, k++,
Print[ " m1 ", m1[i, j], " m2 ", m2[j], " n2 ",

n2[k], " ... "];
(*Value of probability of Eq. 3.28 under measure P_0ˆ2*)
P2 = Ppos[0.5*(m1[i, j] + 2*m2[j]), 0.5*m2[j], n2[k]];
Print[" P2 ", N[P2]];
(*Value of probability of Eq. 3.28 under measure P_0ˆ1*)
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P1 = Pneg[-0.5*m1[i, j], -0.5*(m2[j] + 2*m1[i, j]), n2[k]];
Print[" P1 ", N[P1]];
(*Value of probability of Eq. 3.28 under measure P_infinity*)
P0 = Ppos[0.5*m1[i, j], -0.5*m2[j], n2[k]];
Print[" P0 ", N[P0]];
(* Threshold nu1 for the classical 2-CUSUM equalizer rule *)
R = FindRoot[
2*f[n2[k], -m2[

j]]*(1 - (f[n2[k], -m2[j]]*(P2ˆ(n1 - n2[k])))/(f[
n2[k], -m2[j]] + f[n2[k], 2*m2[j] + m1[i, j]]))

==
2*f[n2[k],
2*m1[i, j] +
m2[j]]*(1 - (f[n2[k],

2*m1[i, j] + m2[j]]*(P1ˆ(n1 - n2[k])))/(f[n2[k],
2*m1[i, j] + m2[j]] + f[n2[k], -m1[i, j]])),

{n1, m1[i, j]*n2[k]/m2[j]}];
(*value of nu1*)
v1 = n1 /. R;
(* Detection delay of classical 2-CUSUM equalizer rule *)
Carr[i, j, k] =
N[2*f[n2[k], -m2[j]]*(1 - (f[n2[k], -m2[j]]*
(N[P2]ˆ(v1 - n2[k])))/
(f[n2[k], -m2[j]] + f[n2[k], 2*m2[j] + m1[i, j]]))];

(*Store nu1*)
n1A[i, j, k] = v1;
(*gamma*)
g[i, j, k] =
N[2*f[n2[k],

m2[j]]*(1 - (f[n2[k], m2[j]]*
P0ˆ(v1 - n2[k])) /(f[n2[k], m1[i, j]] +
f[n2[k], m2[j]]))];

Ival = n2[k];
(* Threshold (nu) computation for the modified-drift

2-CUSUM harmonic mean equalizer rule *)
R1 =
FindRoot[
g[i, j, k] ==
2*(f[n3, m2[j]]*f[n3, 2*m1[i, j] - m2[j]])/(f[n3, m2[j]]

+ f[n3, 2*m1[i, j] - m2[j]]), {n3, Ival}];
(*Value of nu*)
v = n3 /. R1;
(*Store nu*)
nM[i, j, k] = v;
(* Detection delay for the modified-drift 2-CUSUM

harmonic mean rule when lambda2 = mu2 *)
M[i, j, k] =
2*(f[v, -m2[j]]*f[v, 2*m1[i, j] + m2[j]])/(f[v, -m2[j]] +

f[v, 2*m1[i, j] + m2[j]]);

(* Minimization of the detection delay of the modified drift
2-CUSUM harmonic mean rule over lambda2 *)

R2 =
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Minimize[{f2[n4, l2 - 2*m2[j], 2*m1[i, j] + l2],
g[i, j, k] == f2[n4, l2, 2*(m1[i, j] - m2[j]) + l2]},
{l2, n4}];

(* Value of lambda2 *)
l2A[i, j, k] = l2 /. First[Rest[R2]];
nMO[i, j, k] = n4 /. First[Rest[R2]];
(* Detection delay of the modified-drift 2-CUSUM

harmonic mean rule for the optimal value of lambda2 *)
MO[i, j, k] = First[R2];
(*Counters*)
aCounter++;
localCounter++;
(*Print to output table*)
outTable2[localCounter + 1, 1] = n1A[i, j, k];
outTable2[localCounter + 1, 2] = n2[k];
outTable2[localCounter + 1, 3] = m1[i, j];
outTable2[localCounter + 1, 4] = m2[j];
outTable2[localCounter + 1, 5] = n1A[i, j, k]/n2[k];
outTable2[localCounter + 1, 6] = m1[i, j]/m2[j];
outTable2[localCounter + 1, 7] = nM[i, j, k];
outTable2[localCounter + 1, 8] = nMO[i, j, k];
outTable2[localCounter + 1, 9] = l2A[i, j, k];
outTable2[localCounter + 1, 10] = g[i, j, k];
outTable2[localCounter + 1, 11] = Carr[i, j, k];
outTable2[localCounter + 1, 12] = M[i, j, k];
outTable2[localCounter + 1, 13] = MO[i, j, k];
outTable2[localCounter + 1, 14] =
If[Carr[i, j, k] > M[i, j, k], "True", "False"];
outTable2[localCounter + 1, 15] =
If[Carr[i, j, k] > MO[i, j, k], "True", "False"];
(*Save to Excel CVS file - Different file for each mu2*)
If [ Mod[aCounter , ((Nrat - 1)*(Nn2 - 1))] == 0,
Print["Saving..."]; SaveTable[m2[j], outTable2, Nsize];
InitTable[outTable2, Nsize]; localCounter = 0];
(*Print to standard output*)
Print[" v1 ", n1A[i, j, k], " v2 ", n2[k], " m1 ", m1[i, j],
" m2 ", m2[j], " v1/v2 ", n1A[i, j, k]/n2[k], " m1/m2 ",
m1[i, j]/m2[j], " nM ", nM[i, j, k], " nMO ", nMO[i, j, k],
" l2 ", l2A[i, j, k], " g ", g[i, j, k], " C ", Carr[i, j, k],
" M ", M[i, j, k], " MO ", MO[i, j, k], " C>M ",
If[Carr[i, j, k] > M[i, j, k], "True", "False"], " C>MO ",
If[Carr[i, j, k] > MO[i, j, k], "True", "False"]]
]]];

(*END Mathematica program for the non-symmetric case *)
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