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Abstract

This paper studies drawdown and drawup processes in a general diffusion model. The main result is
a formula for the joint distribution of the running minimum and the running maximum of the process
stopped at the time of the first drop of size a. As a consequence, we obtain the probabilities that a
drawdown of size a precedes a drawup of size b and vice versa. The results are applied to several
examples of diffusion processes, such as drifted Brownian motion, Ornstein–Uhlenbeck process, and
Cox–Ingersoll–Ross process.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we study properties of a general diffusion process {X t } stopped at the first time
when its drawdown attains a certain value a. Let us denote this time as TD(a). The drawdown
of a process is defined as the current drop of the process from its running maximum. We present
two main results here. First, we derive the joint distribution of the running minimum and the
running maximum stopped at TD(a). Second, we calculate the probability that a drawdown of

∗ Corresponding author at: Department of Statistics, Columbia University, 1255 Amsterdam Avenue, NY 10027, USA.
Tel.: +1 212 851 2145; fax: +1 212 851 2164.

E-mail addresses: lp2185@columbia.edu (L. Pospisil), vecer@stat.columbia.edu (J. Vecer),
ohadjiliadis@brooklyn.cuny.edu (O. Hadjiliadis).

0304-4149/$ - see front matter c© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2009.01.002

http://www.elsevier.com/locate/spa
mailto:lp2185@columbia.edu
mailto:vecer@stat.columbia.edu
mailto:ohadjiliadis@brooklyn.cuny.edu
http://dx.doi.org/10.1016/j.spa.2009.01.002


2564 L. Pospisil et al. / Stochastic Processes and their Applications 119 (2009) 2563–2578

size a precedes a drawup of size b, where the drawup is defined as the increase of {X t } over
the running minimum. All formulas are expressed in terms of the drift function, the volatility
function, and the initial value of {X t }. In addition to the main theorems, this paper contains other
results that help us to understand the behavior of diffusion processes better. For example, we
relate the probability that the drawup process stopped at TD(a) is zero to the expected running
minimum stopped at TD(a).

We apply the results to several examples of diffusion processes: drifted Brownian motion,
Ornstein–Uhlenbeck process (OU), and Cox–Ingersoll–Ross process (CIR). These examples
play important roles in change point detection and in finance. We also discuss how the results
presented in this paper are related to the problem of quickest detection and identification of two-
sided changes in the drift of general diffusion processes.

Our results extend several theorems stated and proved in [1–3]. These results include the
distribution of a diffusion process stopped at the first time it hits either a lower or an upper
barrier, and the distribution of the running maximum of a diffusion process stopped at time
TD(a). The formulas for a drifted Brownian motion presented here coincide with the results in
[4]. The approach used in [4] is based on a calculation of the expected first passage times of
the drawdown and drawup processes to levels a and b. However, while this approach applies to
a drifted Brownian motion, it cannot be extended to a general diffusion process. In this paper,
we derive the joint distribution of the running maximum and minimum stopped at TD(a), which
can be obtained for a general diffusion process. Subsequently, we use this result to calculate the
probability that a drawdown precedes a drawup.

Properties of drawdown and drawup processes are of interest in change point detection, where
the goal is to test whether an abrupt change in a parameter of a dynamical system has occurred.
Drawdowns and drawups of the likelihood ratio process serve as test statistics for hypotheses
about the change point. Details can be found, for example, in [5–7].

The concept of a drawdown has been also been studied in applied probability and in finance.
The underlying diffusion process usually represents a stock index, an exchange rate, or an
interest rate. Some characteristics of its drawdown, such as the expected maximum drawdown,
can be used to measure the downside risks of the corresponding market. The distribution of
the maximum drawdown of a drifted Brownian motion was determined in [8]. Cherny and
Dupire [9] derived the distribution of a local martingale and its maximum at the first time when
the corresponding range process attains value a. Salminen and Vallois [10] derived the joint
distribution of the maximum drawdown and the maximum drawup of a Brownian motion up to an
independent exponential time. Vecer [11] related the expected maximum drawdown of a market
to directional trading. Several authors, such as Grossman and Zhou [12], Cvitanic and Karatzas
[13], and Chekhlov et al. [14], discussed the problem of portfolio optimization with drawdown
constraints. Meilijson [15] used stopping time TD(a) to solve an optimal stopping problem based
on a drifted Brownian motion and its running maximum. Obloj and Yor [16] studied properties
of martingales with representation H(Mt , M̄t ), where Mt is a continuous local martingale and
M̄t its supremum up to time t . Nikeghbali [17] associated the Skorokhod stopping problem with
a class of submartingales which includes drawdown processes of continuous local martingales.

This paper is structured in the following way: notation and assumptions are introduced in
Section 2. In Section 3, we derive the joint distribution of the running maximum and the running
minimum stopped at the first time that the process drops by a certain amount (Theorem 3.1), and
in Section 4, we calculate the probability that a drawdown of size a will precede a drawup of size
b (Theorems 4.1 and 4.2). Special cases, such as drifted Brownian motion, Ornstein–Uhlenbeck
process, Cox–Ingersoll–Ross process, are discussed in Section 5. The relevance of the result in
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Section 4 to the problem of quickest detection and identification of two-sided alternatives in the
drift of general diffusion processes is also presented in Section 5. Finally, Section 6 contains
concluding remarks.

2. Drawdown and drawup processes

In this section, we define drawdown and drawup processes in a diffusion model and present
the main assumptions.

Consider an interval I = (l, r), where −∞ ≤ l < r ≤ ∞. Let (Ω ,F ,P) be a probability
space, {Wt } a Brownian motion, and {X t } a unique strong solution of the following stochastic
differential equation:

dX t = µ(X t )dt + σ(X t )dWt , X0 = x ∈ I, (1)

where X t ∈ I for all t ≥ 0. Moreover, we will assume that functions µ(.) and σ(.) meet the
following conditions:

σ(y) > 0, for ∀y ∈ I, (2)∫ r

x

Ψ(x, z)∫ z
z−a Ψ(x, y)dy

dz = ∞, for all a > 0 such that x − a ∈ I, (3)∫ x

l

Ψ(x, z)∫ z+b
z Ψ(x, y)dy

dz = ∞, for all b > 0 such that x + b ∈ I, (4)

where Ψ(u, z) = e−2
∫ z

u γ (y)dy and γ (y) = µ(y)
σ 2(y)

. Drifted Brownian motion, Ornstein–Uhlenbeck
process, and Cox–Ingersoll–Ross process are examples of diffusion processes satisfying these
assumptions. Functions µ(.) and σ(.) will be referred to as the drift and the volatility functions.
Note that a process given by (1) has the strong Markov property. If we need to emphasize that x
is the starting value of {X t }, we will write Px [ . ].

Let us define the running maximum, {Mt }, and the running minimum, {mt }, of process {X t }

as:

Mt = sup
s∈[0,t]

Xs, mt = inf
s∈[0,t]

Xs .

The drawdown and the drawup of {X t } are defined as:

DDt = Mt − X t , DUt = X t − mt .

We denote by TD(a) and TU (b) the first passage times of the processes {DDt } and {DUt } to the
levels a and b respectively, where a > 0, b > 0, x − a ∈ I , and x + b ∈ I . We set TD(a) = ∞
or TU (b) = ∞ if process DDt does not reach a or process DUt does not reach b:

TD(a) = inf {t ≥ 0; DDt = a} , TU (b) = inf {t ≥ 0; DUt = b} .

Conditions (3) and (4) ensure that

Px [TD(a) <∞] = lim
v→r−

Px [MTD(a) ≤ v] = 1,

Px [TU (b) <∞] = lim
u→l+

Px [mTU (b) > u] = 1.

Thus, we assume that TD(a) <∞ and TU (b) <∞ almost surely for any a > 0 and b > 0, such
that x − a ∈ I and x + b ∈ I.
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In the following sections, we derive the joint distribution of (mTD(a),MTD(a)) (Section 3) and
a formula for the probability Px [TD(a) < TU (b)] (Section 4).

3. Joint distribution of the running minimum and the running maximum stopped at TD(a)

The distribution of random variable MTD(a) was derived in [3]. In our paper, we focus on the
joint distribution of (mTD(a),MTD(a)).

Note that the running minimum stopped at time TD(a) is bounded by x − a and x : x − a ≤
mTD(a) ≤ x . The joint distribution of the running minimum and maximum stopped at time TD(a)
will be denoted as H :

H x (u, v) = Px [mTD(a) > u,MTD(a) > v],

where u ∈ [x − a, x] and v ∈ [x,∞). In the following theorem, we will express H in terms of
function Ψ(u, z) = e−2

∫ z
u γ (y)dy , where γ (y) = µ(y)

σ 2(y)
.

Theorem 3.1. Let a > 0 such that x − a ∈ I . The random variables mTD(a) and MTD(a) have
the following joint distribution:

H x (u, v) =

∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
e
−
∫ v

u+a
Ψ(u+a,z)∫ z

z−a Ψ(u+a,y)dy
dz
, (5)

where u ∈ [x−a, x], v ∈ [u+a,∞),Ψ(u, z) = e−2
∫ z

u γ (y)dy and γ (y) = µ(y)
σ 2(y)

. If u ∈ [x−a, x]
and v ∈ [x, u + a), then:

H x (u, v) =

∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
. (6)

Proof. The process {X t } is given by (1) and X0 = x . First, let us assume that u ∈ [x − a, x]
and v ∈ [u + a,∞). The event

{
mTD(a) > u,MTD(a) > v

}
occurs if and only if the process {X t }

attains u + a without dropping below u and then exceeds v before the drawdown reaches a. Due
to the Markov property of the process {X t }, we can write the probabilities of these events as
follows:

H x (u, v) = Px [mTD(a) > u,MTD(a) > v]

= Px [Xτ(u,u+a) = u + a] Pu+a[MTD(a) > v]

=

∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
e
−
∫ v

u+a
Ψ(u+a,z)∫ z

z−a Ψ(u+a,y)dy
dz
, (7)

where τ(u, u + a) = inf {t ≥ 0; X t = u or X t = u + a} . The formula for the first probability
in (7) follows from [1], page 110. The second probability in (7), representing the survival
function of MTD(a), was derived in [3], page 602. Finally, if v < u + a, we have{
mTD(a) > u,MTD(a) > v

}
=

{
mTD(a) > u

}
=

{
Xτ(u,u+a) = u + a

}
because MTD(a) ≥

mTD(a) + a. Thus,

H x (u, v) =

∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
. �
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The distribution function, the survival function, and the density function of mTD(a) will be
denoted as F, F , and f , respectively:

F x (u) = 1− Fx (u) = Px [mTD(a) > u], fx (u) =
dFx (u)

du
,

where u ∈ [x − a, x]. We can derive the marginal distribution of mTD(a) from the results in
Theorem 3.1.

Corollary 3.2. Let a > 0 such that x − a ∈ I . The distribution function, the density function,
and the expected value of random variable mTD(a) are:

F x (u) =

∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
, (8)

fx (u) =
Ψ(u, u + a)

∫ x
u Ψ(u, z)dz +

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 , (9)

Ex
[
mTD(a)

]
= x −

∫ x

x−a

∫ u+a
x Ψ(u, z)dz∫ u+a
u Ψ(u, z)dz

du, (10)

where u ∈ [x − a, x], Ψ(u, z) = e−2
∫ z

u γ (y)dy , and γ (y) = µ(y)
σ 2(y)

.

Let us denote the distribution function and the survival function of the running maximum
stopped at TD(a) as G and G:

Gx (v) = 1− Gx (v) = Px [MTD(a) > v], x ≤ v < r.

Note that the joint distribution of (mTD(a),MTD(a)) can be represented by the marginal
distributions F and G :

H x (u, v) = F x (u) Gu+a(v), (11)

where u ∈ [x−a, x] and v ∈ [u+a,∞). Let us calculate the derivative of H x (u, v) with respect
to u, which will be used in the proof of the main theorem.

Lemma 3.3. Let a > 0 such that x − a ∈ I . Let u ∈ [x − a, x] and v ≥ u + a. Then

−
∂H x

∂u
(u, v) = e

−
∫ v

u+a
Ψ(u+a,z)∫ z

z−a Ψ(u+a,y)dy
dz

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 , (12)

where Ψ(u, z) = e−2
∫ z

u γ (y)dy and γ (y) = µ(y)
σ 2(y)

.

Proof. According to (11),

∂H x

∂u
(u, v) =

∂F x (u)

∂u
Gu+a(v)+ F x (u)

∂Gu+a(v)

∂u
.

Note that the function Ψ has the following property: Ψ(a, b)Ψ(b, c) = Ψ(a, c). Therefore,∫ .
. Ψ (u,z)dz∫ .
. Ψ (u,z)dz

=

∫ .
. Ψ (C,z)dz∫ .
. Ψ (C,z)dz

and Ψ (u,y)∫ .
. Ψ (u,z)dz

=
Ψ (C,y)∫ .
. Ψ (C,z)dz

for any constant C . Thus, the first variable
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of Ψ is redundant in such fractions and can be omitted during the calculation of their derivative
with respect to u. Using formula (9), we have

∂F x (u)

∂u
= − fx (u) =

−
∫ u+a

x Ψ(u, z)dz −Ψ(u, u + a)
∫ x

u Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 .

The derivative of Gu+a(v) with respect to u is given by:

∂Gu+a(v)

∂u
=

1∫ u+a
u Ψ(u + a, z)dz

e
−
∫ u+a

x
Ψ(u+a,z)∫ z

z−a Ψ(u+a,y)dy
dz

=
Ψ(u, u + a)∫ u+a

u Ψ(u, z)dz
Gu+a(v).

Combining these results yields formula (12). �

Formula (9) allows us to decompose the density of mTD(a) into two parts:

fx (u)du = Px [DUTD(a) > 0,mTD(a) ∈ (u, u + du)]

+Px [DUTD(a) = 0,mTD(a) ∈ (u, u + du)]. (13)

The set
{

DUTD(a) = 0
}

corresponds to the event that the process attained its running minimum at
time TD(a) : XTD(a) = mTD(a). In the following lemma, we calculate the probabilities introduced
in (13).

Lemma 3.4. Let a > 0 such that x − a ∈ I . Then

Px [DUTD(a) > 0,mTD(a) ∈ (u, u + du)] =

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du, (14)

Px [DUTD(a) = 0,mTD(a) ∈ (u, u + du)] =
Ψ(u, u + a)

∫ x
u Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du, (15)

Px [DUTD(a) = 0] =
∫ x

x−a

Ψ(u, u + a)
∫ x

u Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 du, (16)

where Ψ(u, z) = e−2
∫ z

u γ (y)dy and γ (y) = µ(y)
σ 2(y)

.

Proof. Let us use the relationship MTD(a) = mTD(a) + DUTD(a) + a to rewrite probability (14)
in terms of the function H x (u, v):

Px [DUTD(a) > 0,mTD(a) ∈ (u, u + du)] = Px [MTD(a) > u + a,mTD(a) ∈ (u, u + du)]

= −
∂Hx

∂u
(u, u + a)du

for u ∈ [x − a, x]. Thus, result (14) follows from Lemma 3.3. Formula (15) can be obtained
using the decomposition of f in (13) and Eqs. (9) and (14). The result (15) also implies (16):

Px [DUTD(a) = 0] =
∫ x

x−a
Px [DUTD(a) = 0,mTD(a) ∈ (u, u + du)]. �
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Remark 3.5. If a > 0 such that x − a ∈ I,

Px [DUTD(a) = 0] = −
∂

∂a
Ex
[
mTD(a)

]
. (17)

Proof. Formula (17) can be verified by calculating the derivative of Ex [mTD(a)], which is given
by (10), and comparing the result with (16). �

Let us heuristically explain Remark 3.5 using the following expression:

mTD(a) = (MTD(a) − a) I{DUTD (a)=0
} + mTD(a)I{DUTD (a)>0

}.
Shifting a by a small number h has an impact on mTD(a) only if the process {X t } attained its
running minimum m at time TD(a):

DUTD(a) = XTD(a) − mTD(a) = 0.

In this case, mTD(a) = MTD(a)−a and the change in mTD(a) is−h because the running maximum
MTD(a) remains the same. On the other hand, if {X t } is greater than mTD(a), that is, DUTD(a) > 0,
then small changes in a do not affect mTD(a). As a result,

mTD(a+h) − mTD(a) ≈ −h I{DUTD (a)=0
}

for h small. Applying the expected value to this relationship and letting h → 0 lead to
Eq. (17).

The knowledge of the joint distribution H x (u, v) allows us to determine the distribution and
the expected value of the range process, Rt = Mt − mt , stopped at time TD(a).

Corollary 3.6. Let a > 0 such that x − a ∈ I . The distribution of the range process Rt =

Mt − mt , stopped at time TD(a) is:

Px [RTD(a) > r ] =
∫ x

x−a
Gu+a(u + r)

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du, (18)

Px [RTD(a) = a] =
∫ x

x−a

Ψ(u, u + a)
∫ x

u Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 du, (19)

where r > a. The expected value of RTD(a):

Ex [RTD(a)] =

∫
∞

x
Gx (v)dv +

∫ x

x−a

∫ u+a
x Ψ(u, z)dz∫ u+a
u Ψ(u, z)dz

du, (20)

where

Gu+a(v) = e
−
∫ v

u+a
Ψ(u+a,z)∫ z

z−a Ψ(u+a,y)dy
dz
,

Ψ(u, z) = e−2
∫ z

u γ (y)dy, and γ (y) =
µ(y)

σ 2(y)
.
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4. Probability of a drawdown preceding a drawup

In this section, we derive formulas for the probabilities that a drawdown of size a precedes
a drawup of size b and vice versa. The calculation is based on the knowledge of the joint
distribution of (mTD(a),MTD(a)), which appears in Theorem 3.1.

Theorem 4.1. Assume that {X t } is a unique strong solution of Eq. (1) and that conditions (2)–(4)
are satisfied. Let b ≥ a > 0 such that x − a ∈ I and x + b ∈ I . Then:

Px [TD(a) < TU (b)] = 1−
∫ x

x−a
Gu+a(u + b)

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du, (21)

Px [TD(a) > TU (b)] =
∫ x

x−a
Gu+a(u + b)

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du, (22)

where

Gu+a(v) = e
−
∫ v

u+a
Ψ(u+a,z)∫ z

z−a Ψ(u+a,y)dy
dz
,

Ψ(u, z) = e−2
∫ z

u γ (y)dy, and γ (y) =
µ(y)

σ 2(y)
.

Proof. Let b ≥ a > 0. First, we will show that

{TD(a) < TU (b)} =
{
0 < DUTD(a) < b − a

}
∪
{

DUTD(a) = 0
}
. (23)

The range of the process {X t } at t is defined as Rt = Mt −mt , which implies Rt = DUt + DDt .
One can also prove that

Rt = max

{
sup
[0,t]

DUu, sup
[0,t]

DDu

}
. (24)

The process on the right-hand side of (24) is non-decreasing and equals zero at time t = 0.
Moreover, it increases only if sup[0,t] DUu or sup[0,t] DDu changes, which occurs when either
X t = Mt or X t = mt . In this case, the right-hand side is Mt − mt , which justifies (24).

According to the formula (24), DUTD(a)+ a = max
{
sup[0,TD(a)] DUu, a

}
. Thus, DUTD(a) =

max
{
sup[0,TD(a)] DUu − a, 0

}
and

{TD(a) < TU (b)} =

{
sup

[0,TD(a)]
DUu < b

}
=
{
0 < DUTD(a) < b − a

}
∪
{

DUTD(a) = 0
}
,

which proves (23). Furthermore, using the relationship MTD(a) = mTD(a) + DUTD(a) + a, we
have:

Px [DUTD(a) > b − a,mTD(a) ∈ (u, u + du)]

= Px [MTD(a) > u + b,mTD(a) ∈ (u, u + du)] = −
∂H x

∂u
(u, u + b)du.
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Now let us calculate the probability of the event {TD(a) < TU (b)} :

Px [TD(a) < TU (b)] = Px [DUTD(a) = 0] + Px [0 < DUTD(a) < b − a]

= 1− Px [DUTD(a) > b − a]

= 1−
∫ x

x−a
Px [DUTD(a) > b − a,mTD(a) ∈ (u, u + du)]

= 1−
∫ x

x−a
Px [MTD(a) > u + b,mTD(a) ∈ (u, u + du)]

= 1−
∫ x

x−a

{
−
∂Hx

∂u
(u, u + b)

}
du. (25)

The derivative of H is calculated in Lemma 3.3. If we replace
{
−
∂Hx
∂u (u, u + b)

}
in (25) with

that result, we obtain formula (21). Probability (22) is the complement of (21). �

If b < a, the formula for Px [TD(a) < TU (b)] is a modification of (21).

Theorem 4.2. Assume that {X t } is a unique strong solution of Eq. (1) and that conditions (2)–(4)
are satisfied. Let 0 < b < a such that x − a ∈ I and x + b ∈ I . Then:

Px [TD(a) < TU (b)] =
∫ x+b

x
G∗v−b(v − a)

∫ x
v−b Ψ(v, z)dz(∫ v
v−b Ψ(v, z)dz

)2 dv, (26)

Px [TD(a) > TU (b)] = 1−
∫ x+b

x
G∗v−b(v − a)

∫ x
v−b Ψ(v, z)dz(∫ v
v−b Ψ(v, z)dz

)2 dv, (27)

where

G∗v−b(u) = e
−
∫ v−b

u
Ψ(v−b,z)∫ z+b

z Ψ(v−b,y)dy
dz
,

Ψ(u, z) = e−2
∫ z

u γ (y)dy, and γ (y) =
µ(y)

σ 2(y)
.

Proof. The proof is analogous to the proof of Theorem 4.1. �

The procedure we used in the proof of Theorem 4.1 allows us to interpret Eqs. (21) and (22)
as follows:

Px [TD(a) < TU (b)] = 1−
∫ x

x−a
Px [MTD(a) > u + b,mTD(a) ∈ (u, u + du)]

=

∫ x

x−a
Px [MTD(a) ≤ u + b,mTD(a) ∈ (u, u + du)],

Px [TD(a) > TU (b)] =
∫ x

x−a
Px [MTD(a) > u + b,mTD(a) ∈ (u, u + du)].

Let us discuss this interpretation. If mTD(a) lies in a neighborhood of u, the event of
{TD(a) > TU (b)} coincides with

{
MTD(a) > u + b

}
. Probability Px [TD(a) > TU (b)] is then

the integral of Px [MTD(a) > u + b,mTD(a) ∈ (u, u + du)] over all possible values of mTD(a).



2572 L. Pospisil et al. / Stochastic Processes and their Applications 119 (2009) 2563–2578

Table 1
Function Ψ(u, z) for examples of diffusion processes.

Process I µ(y) σ (y) Ψ(u, z)

Brownian motion R µ σ e
−

2µ
σ2 (z−u)

Ornstein–Uhlenbeck process R κ(θ − y) σ e
κ

σ2

[
(z−θ)2−(u−θ)2

]
Cox–Ingersoll–Ross process (0,∞) κ(θ − y) σ

√
y

( z
u
)− 2κθ

σ2 e
2κ
σ2 (z−u)

When a = b in (21) and (22), we have {TD(a) < TU (a)} =
{

DUTD(a) = 0
}
:

Px [TD(a) < TU (a)] =
∫ x

x−a

Ψ(u, u + a)
∫ x

u Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 du,

Px [TD(a) > TU (a)] =
∫ x

x−a

∫ u+a
x Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du.

5. Application of the results

In this section, we apply the results from Corollary 3.2 and Theorem 4.1 to the
following examples of diffusion processes: Brownian motion, Ornstein–Uhlenbeck process and
Cox–Ingersoll–Ross process. We also present an application of the result in Theorem 4.1 to the
problem of quickest detection and identification of two-sided changes in the drift of general
diffusion processes.

5.1. Examples of diffusion processes

The formulas for Gx (v), F x (v), H x (u, v), and Px [TD(a) < TU (b)] depend on function
Ψ(u, z). Table 1 shows specific forms of this function for several examples of diffusion processes
dX t = µ(X t )dt + σ(X t )dWt , where X t ∈ I and X0 = x .

We assume that conditions (2)–(4) are satisfied for all these processes. In the cases of a
drifted Brownian motion and an Ornstein–Uhlenbeck process, the conditions hold true for any
combination of the parameters. In the case of a Cox–Ingersoll–Ross process, we need to make
an additional assumption: kθ > σ 2/2.

One can derive an analytical expression of the function H x (u, v) and the probability
Px [TD(a) < TU (b)] for Brownian motion:

H x (u, v) =
e

2µ
σ2 a
− e

2µ
σ2 (u−(x−a))

e
2µ
σ2 a
− 1

exp

{
−(v − x)

2µ
σ 2

e
2µ
σ2 a
− 1

}
,

where u ∈ [x − a, x] and v ∈ [u + a,∞), implying

Gx (v) = Px [MTD(a) > v] = exp

{
−(v − x)

2µ
σ 2

e
2µ
σ2 a
− 1

}
, v ∈ [x,∞),



L. Pospisil et al. / Stochastic Processes and their Applications 119 (2009) 2563–2578 2573

F x (u) = Px [mTD(a) > u] =
e

2µ
σ2 a
− e

2µ
σ2 (u−(x−a))

e
2µ
σ2 a
− 1

, u ∈ [x − a, x],

Ex
[
mTD(a)

]
= x −

σ 2

2µ
+

a

e
2µ
σ2 a
− 1

,

Px [TD(a) < TU (b)] = 1− exp

{
−(b − a)

2µ
σ 2

e
2µ
σ2 a
− 1

}
e

2µ
σ2 a
−

2µ
σ 2 a − 1

e
2µ
σ2 a
+ e−

2µ
σ2 a
− 2

,

where b ≥ a > 0. If a = b,

Px [TD(a) < TU (a)] =
e−

2µ
σ2 a
+

2µ
σ 2 a − 1

e
2µ
σ2 a
+ e−

2µ
σ2 a
− 2

.

Random variable MTD(a) has an exponential distribution on [x,∞) and mTD(a) has a truncated
exponential distribution on [x − a, x]. Note that the formula for Px [TD(a) < TU (b)] is identical
with the results presented in [4].

When the drift µ equals zero, the formulas further reduce to:

H x (u, v) = Px [mTD(a) > u,MTD(a) > v] =
x − u

a
e−

v−(u+a)
a ,

where u ∈ [x − a, x] and v ∈ [u + a,∞), implying

Gx (v) = Px [MTD(a) > v] = e−
v−x

a , v ∈ [x,∞),

F x (u) = Px [mTD(a) > u] =
x − u

a
and Ex

[
mTD(a)

]
= x −

a

2
,

Px [TD(a) < TU (b)] = 1−
1
2

e−
b−a

a ,

where b ≥ a > 0. If a = b,

Px [TD(a) < TU (a)] = Px [TD(a) > TU (a)] =
1
2
.

Hence, MTD(a) has an exponential distribution on [x,∞) with parameter 1
a and mTD(a) has a

uniform distribution on [x − a, x].
Calculation of Px [TD(a) < TU (b)] for an Ornstein–Uhlenbeck process and a

Cox–Ingersoll–Ross process involves numerical integration.
In Figs. 1, 3 and 5, we have plotted densities of MTD(a) and mTD(a) for various diffusion

processes. Figs. 2, 4 and 6 capture dependence of the probability Px [TD(a) < TU (b)] on the
parameters of the processes.

Let us discuss the interpretation of Fig. 4, which shows the probability Px [TD(1) < TU (1)]
as a function of κ/σ 2. When κ = 0, the drift term of {X t } vanishes and the probability is 1

2 .
Moreover, if the process starts at its long-term mean, x = θ , it is symmetric and Px [TD(1) <
TU (1)] = 1

2 for any value of κ/σ 2. Now let us assume that x = θ + 1. As κ/σ 2 increases, the
drift term will prevail over the volatility term and the process will be pushed down from x to θ .
As a result, a drawdown of size 1 will tend to occur before a drawup of size 1, which explains
the convergence of Px [TD(a) < TU (a)] to 1 as κ/σ 2

→∞. A similar reasoning can be used to
justify the convergence of Px [TD(1) < TU (1)] to 0 if x = θ − 1.
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Fig. 1. Densities of MTD(a) and mTD(a), where a = 1, for a drifted Brownian motion: X t = µt + σWt . The densities

depend on the parameters through ratio µ/σ 2. MTD(a) has an exponential distribution on [0,∞), while mTD(a) has a
uniform distribution on [−1, 0] if µ = 0 and a truncated exponential distribution on [−1, 0] otherwise.

Fig. 2. Probability Px [TD(a) < TU (b)] as a function of µ/σ 2 for different values of a and b. We assume that {X t } is a
drifted Brownian motion, X t = µt + σWt . Note that Px [TD(1) < TU (1)] = 0.5 for µ = 0.

5.2. The problem of quickest detection and identification

In this example, we present the problem of quickest detection and identification of two-
sided changes in the drift of a general diffusion process. More specifically, we give precise
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Fig. 3. Densities of MTD(a) and mTD(a), where a = 1, assuming that {X t } is an Ornstein–Uhlenbeck process:

dX t = κ(θ − X t )dt + σdWt , X0 = x . The densities depend on parameters κ and σ through ratio κ/σ 2. Note that
if x = θ , process {X t } is symmetric and consequently, mTD(a) has a symmetric distribution.

Fig. 4. Probability Px [TD(a) < TU (b)], where a = b = 1, as a function of κ/σ 2. Process {X t } is an
Ornstein–Uhlenbeck process: dX t = κ(θ − X t )dt + σdWt , X0 = x . If x = θ , then the process is symmetric and
the probability is 0.5 for any value of κ/σ 2.

calculations of the probability of misidentification of two-sided alternatives. In particular, let
{X t } be a diffusion process with the initial value X0 = x and the following dynamics up to a
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Fig. 5. Densities of MTD(a) and mTD(a), where a = 1. {X t } is a Cox–Ingersoll–Ross process: dX t = κ(θ − X t )dt +
σ
√

X t dWt , X0 = x . We use the same values of parameters as in Fig. 3.

Fig. 6. Probability Px [TD(a) < TU (b)], where a = b = 1, as a function of κ/σ 2, where κθ > σ 2/2. Process {X t } is
a Cox–Ingersoll–Ross process: dX t = κ(θ − X t )dt + σ

√
X t dWt , X0 = x . We use the same values of parameters as in

Fig. 4.

deterministic time τ :

dX t = σ(X t )dWt , t ≤ τ. (28)
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For t > τ , the process evolves according to one of the following stochastic differential equations:

dX t = µ(X t )dt + σ(X t )dWt t > τ, (29)

dX t = −µ(X t )dt + σ(X t )dWt t > τ. (30)

with initial condition y = Xτ . We assume that the functions µ(.) and σ(.) are known and the
stochastic differential equations (28)–(30) satisfy conditions (2)–(4) stated in Section 1.

The time of the regime change, τ , is deterministic but unknown. We observe the process {X t }

sequentially and our goal is to identify which regime is in effect after τ .
In this context suppose that the first passage time of the drawup process to a threshold a,

TU (a), can be used as a means of detecting the change of dynamics of {X t } from (28) to (29).
Similarly, suppose that the first passage time of the drawdown process to a threshold b, TD(b)
may be used as a means of detecting the change of dynamics of {X t } from (28) to (30) (see [7,
5]). The simplest example is when µ(X t ) = µ.

The probability measures Pτ,(1)x and Pτ,(2)x are the measures generated on the space of
continuous functions C[0,∞) by the process {X t }, if the regime changes at time τ from (28)
to (29) and from (28) to (30), respectively. The stopping rule proposed and used widely in the
literature for detecting such a change is known as the two-sided CUSUM (Cumulative Sum) test,
T (a) = min {TD(a), TU (a)}. This rule was proposed in 1959 by Barnard [22]. Its properties
have been widely studied by many authors [18–21,7] and a version of this rule was also proven
asymptotically optimal in [6]. It is thus the rule that has been established in the literature for
detecting two-sided changes in the set-up described above.

Theorem 4.1 can be used to compute the probability of a false identification of the change.
More specifically,

P0,(1)
x [T (a) = TD(a)] = P0,(1)

x [TD(a) ≤ TU (a)]

=

∫ x

x−a

Ψ(u, u + a)
∫ x

u Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 du, (31)

with Ψ(u, z) = e−2
∫ z

u γ (y)dy and γ (y) = µ(y)
σ 2(y)

, expresses the probability that an alarm indicating
that the regime switched to (30) will occur before an alarm indicating that the regime switched to
(29) given that in fact (29) is the true regime. Thus (31) can be seen as the probability of a false
regime identification. Moreover, in the case that the density of the random variable Xτ admits a
closed-form representation, we can also compute∫

Pτ,(1)y [T (a) = TD(a)] fXτ (y|x)dy =
∫

Pτ,(1)y [TD(a) ≤ TU (a)] fXτ (y|x)dy,

which can be seen as the aggregate probability (or unconditional probability) of a false
identification for any given change point τ .

6. Conclusion

In this paper, we discussed properties of a diffusion process stopped at time TD(a), the first
time when the process drops by amount a from its running maximum. We derived the joint
distribution of the running minimum and the running maximum stopped at time TD(a). This
allowed us to obtain a formula for the probability that a drawdown of size a precedes a drawup
of size b.
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A possible extension of our work is the calculation of the probability that a drawup precedes
a drawdown in a finite time horizon. This would require a combination of our results with the
distributions of times TD(a) and TU (b). We do not expect that this would lead to a closed-form
solution.
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