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One Shot Schemes for Decentralized Quickest
Change Detection

Olympia Hadjiliadis, Hongzhong Zhang, and H. Vincent Poor, Fellow, IEEE

Abstract—This work considers the problem of quickest detection
with� distributed sensors that receive sequential observations ei-
ther in discrete or in continuous time from the environment. These
sensors employ cumulative sum (CUSUM) strategies and commu-
nicate to a central fusion center by one shot schemes. One shot
schemes are schemes in which the sensors communicate with the
fusion center only once, via which they signal a detection. The com-
munication is clearly asynchronous and the case is considered in
which the fusion center employs a minimal strategy, which means
that it declares an alarm when the first communication takes place.
It is assumed that the observations received at the sensors are in-
dependent and that the time points at which the appearance of a
signal can take place are different. Both the cases of the same and
different signal distributions across sensors are considered. It is
shown that there is no loss of performance of one shot schemes as
compared to the centralized case in an extended Lorden min-max
sense, since the minimum of� CUSUMs is asymptotically optimal
as the mean time between false alarms increases without bound.
In the case of different signal distributions the optimal threshold
parameters are explicitly computed.

Index Terms—Cumulative sum (CUSUM), one shot schemes, op-
timal sensor threshold selection, quickest detection.

I. INTRODUCTION

T HE problem of decentralized sequential detection with
data fusion dates back to the 1980s with the works of [1]

and [2]. We are interested in the problem of quickest detection
in an -sensor network in which the information available is
distributed and decentralized, a problem introduced in [7] and
[29]. We consider the situation in which the onset of a signal
occurs at different times in the sensors; that is, the change
points are different for each of the sensors. We also consider
the case of equal-strength and unequal-strength signals across
sensors, which in discrete-time models corresponds to the cases
of the same and different out-of-control distributions. We as-
sume that each sensor runs a cumulative sum (CUSUM) algo-
rithm as suggested in [16], [25]–[28] and communicates with a
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central fusion center only when it is ready to signal an alarm.
In other words, each sensor communicates with the central fu-
sion center through a one shot scheme. We assume that the
sensors receive independent observations, which constitutes an
assumption consistent with the fact that the change points
can be different. This setup has numerous applications espe-
cially in the detection of structural damage [3]–[5], [9], [11],
[12], [18]. So far in the literature of this type of problem (see
[16], [25]–[28]) it has been assumed that the change points are
the same across sensors. Recently, the case was also considered
of change points that propagate in a sensor array [20]. However,
in this configuration the propagation of the change points de-
pends on the unknown identity of the first sensor affected. In this
paper, we consider the case in which the central fusion center
employs a minimal strategy; that is, it reacts when the first com-
munication from the sensors takes place. We demonstrate that,
in the situation described above, at least asymptotically, there
is no loss of information at the fusion center by employing the
minimal one shot scheme. That is, we demonstrate that the min-
imum of CUSUMs is asymptotically optimal in detecting the
minimum of the different change points, as the mean time be-
tween false alarms tends to , with respect to an appropriately
extended Lorden criterion [14] that incorporates the possibility
of different change points. It is interesting that the asymp-
totic optimality obtained in the case of unequal-signal strengths
is stronger than that in the case of equal-signal strengths. In par-
ticular, it is seen that in the case of equal-strength signals across
sensors, the difference in performance of the -CUSUM stop-
ping rule with equal thresholds across sensors and the unknown
optimal stopping rule is bounded by a constant as the mean time
between false alarms increases without a bound. This constant is
inversely proportional to the square of the signal strength and in-
creases logarithmically as the number of sensors increases. On
the other hand, in the case of unequal-strength signals across
sensors, the difference in performance of the -CUSUM stop-
ping rule tends to as the mean time between false alarms in-
creases without bound.

The communication structure considered in this paper is sum-
marized in Fig. 1, in which for denote stopping
rules associated with alarms at sensors , respec-
tively.

In the next two sections we formulate the problem and state
our results on the asymptotic optimality (as the mean time be-
tween false alarms tends to ), in an extended min-max Lorden
sense, of the minimum of -CUSUM stopping rules in the case
of centralized detection. We then discuss the implications of
these results for decentralized detection.

0018-9448/$25.00 © 2009 IEEE
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Fig. 1. One shot communication in a decentralized system of � sensors.

II. THE CENTRALIZED PROBLEM:
THE BROWNIAN MOTION MODEL

In this section, we consider a continuous-time Brownian mo-
tion model. We begin with the case of equal-strength signals
across sensors and proceed to treat the case of unequal-strength
signals across sensors.

A. Equal-Strength Signals

We sequentially observe the processes for all
with the following dynamics:

(1)

where is known and represents the signal strength,1

are independent standard Brownian motions, and the ’s
are unknown constants, with representing the time point of
onset of the signal in sensor .

An appropriate measurable space is
and , where

is the filtration of the observations with
. Notice that in the case of centralized de-

tection, the filtration consists of the totality of the observations
that have been received up until the specific point in time .

On this space, we have the following family of probability
measures , where corresponds to the mea-
sure generated on by the processes when
the change in the -tuple process occurs at time point

. Notice that the measure corresponds to the
measure generated on by independent Brownian motions
without drifts.

Our objective is to find a stopping rule that balances the
tradeoff between a small detection delay subject to a lower
bound on the mean time between false alarms and will ulti-
mately detect .2

As a performance measure we consider the following gener-
alization of Lorden’s performance index [14]:

(2)

1Due to the symmetry of Brownian motion, without loss of generality, we can
assume that � � �.

2In what follows we will use � � � � � � � to denote ����� � � � � � � �.

where the supremum over is taken over the set
in which . That is, we consider the
worst detection delay over all possible realizations of paths
of the -tuple of stochastic processes up to

and then consider the worst detection delay
over all possible -tuples over a set in which
at least one of them is forced to take a finite value. This is
because is a stopping rule meant to detect the minimum of
the change points and therefore if one of the processes
undergoes a regime change, any unit of time by which delays
in reacting, should be counted towards the detection delay.

The performance index presented in (2) results in the corre-
sponding stochastic optimization problem of the form

subject to (3)

We notice that the expectation in the above constraint is
taken under the measure . This is the measure gener-
ated on the space in the case that none of the processes

changes regime. Therefore, is
the mean time between false alarms, and is the minimal
acceptable value for this quantity.

The optimal solution to (3), , must be an equalizer rule.
That is, it must display the same detection delay regardless of
which of the processes undergoes a
change first.

More specifically, let

for . That is, is the detection delay of the
stopping rule when . Then

(4)

The optimal solution to (3), , satisfies

(5)

To see this, let us consider the case when . Let be a
stopping rule such that . Consider another
stopping rule , which stops as does, but observes in
place of and in place of . It follows that

and

We trivially also have that

Now let us use a binary random variable , which is
independent of , to construct a randomized stopping rule
adapted to

(6)

It is easy to observe that

and
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which, implies

by (4). Therefore, the optimal solution to (3) must satisfy (5).3

In the case of only a single observation process (say ),
the problem becomes one of detecting a one-sided change in
a sequence of Brownian observations, whose optimal solution
was found in [6] and [21]. The optimal solution is the contin-
uous-time version of Page’s CUSUM stopping rule, namely, the
first passage time of the process

where (7)

(8)

and

(9)

The CUSUM stopping rule is thus

(10)

where is chosen so that , with
(see, for example, [10]) and

(11)

The fact that the worst detection delay is the same as that in-
curred in the case in which the change point is exactly is a
consequence of the nonegativity of the CUSUM process, from
which it follows that the worst detection delay occurs when the
CUSUM process at the time of the change is at [10].

We remark here that if the change points were the same
then the problem (3) would be equivalent to observing only one
stochastic process which is now -dimensional. Thus, in this
case, the solution is the same as that given in the above para-
graph with replaced by the projection of
onto the -vector of all ’s.

Returning to problem (3), it is easily seen that in seeking so-
lutions to this problem, we can restrict our attention to stopping
rules that achieve the false alarm constraint with equality [17].
The optimality of the CUSUM stopping rule in the presence of
only one observation process suggests that a CUSUM type of
stopping rule might display similar optimality properties in the
case of multiple observation processes. In particular, an intu-
itively appealing rule, when the detection of
is of interest, is , where is the CUSUM
stopping rule for the process for .
That is, we use what is known as a multi-chart CUSUM stop-
ping rule [23], which can be written as

(12)

3Although �� of (6) is measurable with respect to the enlarged filtration � �� �,
the optimal solution to (3) must be adapted to the original filtration �� �.

where

and the are the respective restrictions of the measure
to .

It is easily seen that

(13)

This is because the worst detection delay occurs when only
one of the processes changes regime. The reason for this lies
in the fact that the CUSUM process is a monotone function of

, resulting in a longer on average passage time if [19].
Thus, the worst detection delay will occur when none of the
other processes changes regime, and due to the nonnegativity of
the CUSUM process the worst detection delay will occur when
the CUSUM process of the remaining one process is at . We
also point out that the proposed rule (12) also satisfies (5). That
is, it is an equalizer rule.

Notice that the threshold is used for the multi-chart
CUSUM stopping rule (12) in order to distinguish it from , the
threshold used for the one sided CUSUM stopping rule (10).

In what follows, we will demonstrate the asymptotic opti-
mality of (12) as . In view of the discussion in the pre-
vious paragraph, in order to assess the optimality properties of
the multi-chart CUSUM rule (12) we will thus need to begin by
evaluating and .

Since the processes , are independent, it
is possible to obtain a closed-form expression through the for-
mula

(14)

Similarly

(15)

where . In other words, the
evaluation of (14) and (15) is possible through the probability
density function of the random variable for arbi-
trary fixed , which appears in [15].

In order to demonstrate the asymptotic optimality of (12) we
bound the detection delay of the unknown optimal stop-
ping rule by

(16)
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Fig. 2. (Left) Case of � � ���. (Middle) Case of � � �. (Right) Case of � � �. (Note that the differences between the upper and the lower bounds are all
bounded as � increases). (a) � � ��� (b) � � � (c) � � �.

where is chosen so that

(17)

It is also obvious that is bounded from below by the
detection delay of the one CUSUM when there is only one ob-
servation process, say only the first one, in view of the fact that

where . Notice that the above inequality
holds for all adapted to the filtration . The stopping
rule that minimizes is the
CUSUM stopping rule of (10), with chosen so as to satisfy

(18)

We will demonstrate that the difference between the upper and
the lower bounds

(19)

is bounded by a constant as , with and satisfying
(17) and (18), respectively.

Lemma 1: We have

(20)

as ,
Proof: Please refer to Appendix A for the proof.

Moreover, it is easily seen from (11) that

(21)

Thus, we have the following result.

Theorem 1: The difference in detection delay of the
unknown optimal stopping rule and the detection delay of

of (12) with satisfying (17) is bounded above by

as .
Proof: The proof follows from Lemma 1 and (21).

Remark: Since increases without bound as
, Theorem 1 asserts the asymptotic optimality of .

The upper and the lower bounds on detection delay for the
optimal stopping rule, when is and , in the case that

are shown in Fig. 2.
We now proceed to treat the case of unequal-strength signals

across sensors.

B. Unequal-Strength Signals

In this subsection, we consider the case in which the signal
strengths can be different across sensors. That is, we sequen-
tially observe the processes for all
with the following dynamics:

(22)

where are known, with

and and ’s are as before.
In order to incorporate the fact that we may have different

signal strengths after the onset of a signal, we employ a general-
threshold -CUSUM stopping rule

(23)

where is used to denote the vector of
thresholds.

The constraint (17), namely

(24)

does not uniquely determine the vector . However, (13) implies
that the optimal choice of thresholds satisfies

(25)

We provide an explicit condition on thresholds such that (25)
holds.

Lemma 2: For such that

(26)
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Fig. 3. (Left) Case of � � ���� � � ���� . (Middle) Case of � � �� � � ���� . (Right) Case of � � �� � � ���� . (Note that the differences between
the upper and the lower bounds converge to zero as � increases). (a) � � ���� � � ���� . (b) � � �� � � ���� . (c) � � �� � � ���� .

(25) holds asymptotically, and

(27)

as .
Proof: Please refer to Appendix A for the proof.

Not surprisingly, Lemma 2 suggests common thresholds
across sensors in the case of equal-strength signals. In the case
of unequal-strength signals, we discuss the optimality of the

-CUSUM with thresholds determined by (24) and (26).
Without loss of generality, let . We

will demonstrate the asymptotic optimality of (23) when
.

We begin by bounding the detection delay of the un-
known optimal stopping rule both above and below by

(28)

where are chosen so that

(29)

We will demonstrate that the difference between the upper and
the lower bounds tends to zero as , with and satis-
fying (24), (26), and (29).

Lemma 3: For satisfying (24) and (26)

(30)

as .
Proof: Please refer to Appendix A for the proof.

It is worth pointing out that Lemma 3 justifies us in ignoring
signals with stronger strength as long as only asymptotic be-
havior is concerned. Comparing the result of Lemma 3 with (21)
for , we have the following result.

Theorem 2: The difference in detection delay of the
unknown optimal stopping rule and the detection delay of

of (23) with satisfying (24) and (26) converges to zero as
.

Proof: Clearly, the asymptotic lower bound in (28) is
. From Lemma 3 and (21) we obtain

as .

The upper and the lower bounds on detection delay for the
optimal stopping rule, when and
and and , for the case
are shown in Fig. 3. An important observation is that the con-
vergence of the upper and the lower bounds is faster for stronger
signal strength, and for larger ratio between the stronger signal
strength and weaker signal strength.

We now treat more general cases in which

(31)

with .4 In such cases, the -CUSUM with thresh-
olds chosen by (26) behaves asymptotically like the -CUSUM
with equal thresholds. This is because, as far as the asymptotic
behavior is concerned, only the first processes with weakest
signal strengths need consideration and all the other pro-
cesses with stronger signal strengths can be ignored.

More specifically, we have.

Lemma 4: Under (31), for satisfying
(24) and (26)

(32)

as .
Proof: Please refer to Appendix A for the proof.

By examining the asymptotic difference of the upper and the
lower bounds in (28), we obtain the following.

Theorem 3: When the number of signals with weakest
strengths is , the difference in detection delay of the
unknown optimal stopping rule and the detection delay of

of (23) with satisfying (24) and (26) is bounded above by

as .
Proof: The asymptotic lower bound in (28) is .

From (21) and Lemma 4, we obtain

as .

4The case of � � � and that of � � � are already treated in Theorem 1 and
Theorem 2, respectively.
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The consequence of Theorems 1, 2, and 3 is the asymptotic
optimality of (23) in the case in which all of the information
becomes directly available through the filtration at the fu-
sion center. We notice, however, that this asymptotic optimality
holds for any finite number of sensors . Moreover, the more
diverse the signal strengths are, the better the asymptotic opti-
mality we achieve.

We now discuss the results under discrete observation.

III. THE CENTRALIZED PROBLEM: THE DISCRETE-TIME

MODEL

In this section, we consider a discrete-time model. It is as-
sumed that the in-control distributions of the observations are
the same across sensors. We then treat separately the cases in
which the out-of-control distributions are the same and different
across sensors.

A. Common Out-of-Control Distributions

We sequentially observe mutually independent processes
, , with the following probability

density functions (with respect to a -finite measure ):

(33)

where and for all , rep-
resent the distributions of the observations before and after the
onset of the change in sensor , and the ’s are unknown pos-
itive integers, with representing the time point of onset of the
change in sensor .

An appropriate measurable space is
and , where is the filtration of the observa-
tions with . Notice that in the
case of centralized detection, the filtration consists of the totality
of the observations that have been received up until the specific
point in time .

Analogously to the Brownian motion observation model, on
this space, we can define the family of probability measures

as before. In order to appropriately formulate this
problem in discrete time we need to specify assumptions re-
garding the probability density functions and . To
this effect, let us consider the projection of on the th
component of , with special attention to and , for all

. Let us also define the log-likelihood ratio

(34)

for which we assume that for all

(35)

(36)

and that the ’s are nonarithmetic with respect to and
. We note that is the Kullback–Leibler diver-

gence , which can also be written as

(37)

Our objective is to find a stopping rule that balances the
tradeoff between a small detection delay subject to a lower
bound on the mean time between false alarms and will ulti-
mately detect .

As a performance measure we consider the following gener-
alization of Lorden’s performance index [14]:

(38)

where the supremum over is taken over the set in
which . The performance index pre-
sented in (38) results in the corresponding stochastic optimiza-
tion problem of the form

subject to (39)

Then similar arguments as before apply. In particular, the op-
timal solution to (39), , still satisfies (5).

In the case of only a single observation process (say ),
the problem becomes one of detecting a one-sided change in the
distribution of a sequence of discrete observations, whose op-
timal solution was found in [17]. The optimal solution is Page’s
CUSUM stopping rule, namely, the first passage time of the
process

where (40)

(41)

and

(42)

The CUSUM stopping rule is thus

(43)

where is chosen so that . Then
. Stopping rules involving likelihood ratios of discrete

time models of the type described in (33), are characterized by
overshoot of the threshold . For this reason we define5

(44)

(45)

and

5� is also the limiting expectation of overshoots of the one-sided sequential
probability ratio test (SPRT), i.e., � � ��� � �� � ��; see [23, p.
323] and [30, Theorem 4.1] for details.
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(46)

where . From Lemma 1 of [23] (or
Theorem 3 of [13]) we have that as

(47)

and using similar arguments to the ones in [23, p. 323], it follows
that

(48)

Returning to problem (39), we will focus on the performance
of the -CUSUM stopping rule (12). Just as in the Brownian
motion case, we have

(49)

Moreover

(50)

where and satisfy (17) and (18), respectively. We will
demonstrate that the difference between the upper and the
lower bounds is bounded by a constant as .

Lemma 5: We have

(51)

as .
Proof: Please refer to Appendix B for the proof.

Moreover, it is easily seen from (47) and (48) that

(52)

as . Thus, we have the following result.

Theorem 4: The difference in detection delay of the
unknown optimal stopping rule and the detection delay of

of (12) with satisfying (17) is bounded above by

as .
Proof: The proof follows from Lemma 5 and (52).

Since increases without bound as , The-
orem 4 asserts the asymptotic optimality of .

We now proceed to treat the case of different out-of-control
distributions across sensors.

B. Different Out-of-Control Distributions

In this subsection, we consider the case in which the
out-of-control distributions can be different across sensors.
That is, we sequentially observe mutually independent
processes , , with the following
probability density functions (with respect to a -finite measure

):

(53)

where and represent the distributions of the ob-
servations before and after the onset of the signal in sensor ,
with

and the ’s are as before.
We will focus on the performance of the -CUSUM stopping

rule (23) with satisfying (24) and

(54)

We provide an explicit condition on thresholds such that (54)
holds.

Lemma 6: For such that

(55)

(54) holds asymptotically, and

(56)

as .
Proof: Please refer to Appendix B for the proof.

It is easily seen that Lemma 6 suggests common thresholds
across sensors in the case of common out-of-control distribu-
tions. In the case of different out-of-control distributions, we
discuss the optimality of the -CUSUM with thresholds deter-
mined by (24) and (55).

Without loss of generality, let . We will
demonstrate the asymptotic optimality of (23) when

.
Just as in the Brownian motion case, we have

(57)

where are chosen according to (29). We will demon-
strate that the difference between the upper and the lower
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bounds tends to zero as , with and satisfying (24),
(55), and (29).

Lemma 7: For satisfying (24) and (55)

(58)

as .
Proof: Please refer to Appendix B for the proof.

It is worth pointing out that Lemma 7 justifies us in ignoring
changes with larger Kullback–Leibler divergences as long as
only asymptotic behavior is considered. Comparing the result
of Lemma 7 with (52), we have the following result.

Theorem 5: The difference in detection delay of the
unknown optimal stopping rule and the detection delay of

of (23) with satisfying (24) and (55) converges to zero as
.

Proof: Clearly, the asymptotic lower bound in (57) is
. From Lemma 7 and (52) we obtain

as .

We now treat more general cases in which

(59)

with .6 Without loss of generality, we also assume
that

(60)

Thus, by (52)

(61)

In such cases, we have the following.

Lemma 8: Under (59) and (60), for
satisfying (24) and (55), as

(62)

where

Proof: Please refer to Appendix B for the proof.

By examining the asymptotic difference of the upper and the
lower bounds in (57), we obtain the following.

6The case of � � � is already treated in Theorem 5.

Theorem 6: When (59) and (60) hold, the difference in detec-
tion delay of the unknown optimal stopping rule and
the detection delay of of (23) with satisfying (24) and (55)
is bounded above by

as .
Proof: The asymptotic lower bound in (57) is .

From (52) and Lemma 8 we obtain

as .

The consequence of Theorems 4–6 is the asymptotic opti-
mality of (23) in the discrete-time models described in (53).
We notice, however, that this asymptotic optimality holds for
any finite number of sensors . Moreover, the more diverse the
out-of-control distributions are, the better the asymptotic opti-
mality we achieve.

We now discuss the implications of the above results for de-
centralized detection in the case of one shot schemes.

IV. DECENTRALIZED DETECTION

Let us now suppose that each of the observation processes
become sequentially available at its corresponding

sensor , which then employs an asynchronous communica-
tion scheme to the central fusion center. In particular, sensor
communicates to the central fusion center only when it wants
to signal an alarm, which is elicited according to a CUSUM
rule as in (10). Once again the observations received at the

sensors are independent and can change dynamics at distinct
unknown points . An example of such a case is described
in [5], where the motivation suggested arises in the health
monitoring of mechanical, civil, and aeronautic structures.
In this treatment, the vibration-based and health-monitoring
problems translate into the identification and monitoring of
the eigenstructure of a state transition matrix of a linear dy-
namical state–space system excited by noise [9], [11], [12],
[18]. This is achieved in practice by detecting a change in an
associated residual vector. In [5] it is characteristically pointed
out that the individual subspace-based tests, monitoring each
residual-vector component, appear to behave in a reasonably
decoupled manner and to perform a correct isolation of the com-
ponents of the vector parameter that has changed. This setup
the distinct change points correspond to the change points
of the value of each residual-vector component. The decoupled
manner in which each residual-vector component behaves
corresponds to the fact that there is absence of across-sensor
correlations. The fusion center, whose objective is to detect
the first time when there is a change in at least one of the
residual-vector components, devises a minimal strategy; that is,
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it declares that a change has occurred at the first instance when
one of the sensors communicates an alarm. The implication of
Theorems 1–6 is that in fact this strategy is the best, at least
asymptotically, that the fusion center can devise, and that there
is no loss in performance between the case in which the fusion
center receives the raw data directly and the
case in which the communication that takes place is limited to
the one shown in Fig. 1. To see this, consider the general case
in which the first out of sensors receive the same signal
strength after the onset of a signal or, equivalently, in discrete
time the case in which out of the out-of-control distribu-
tions are the same. Then the rule suggested by Theorem 3 is

with so that, at least asymptoti-
cally, (25) holds. Thus, the detection delay of is the same, at
least asymptotically, regardless of which of the sensors draws
the alarm of detection first. The mean time between false alarms
for the fusion center that uses the rule is thus .
But Theorems 1–6 assert that this rule, namel,y , is asymp-
totically optimal as the mean time between false alarms tends to

in the centralized case for any finite . In other words, the
CUSUM stopping rule is a sufficient statistic (at least asymp-
totically) of the minimum possibly distinct change points.
That is, the stopping rule is an asymptotically optimal solu-
tion to the problems of quickest detection presented in (3) and
(39).

V. SUMMARY

The main contribution of this paper is that it shows that one
can distribute most of the work of change detection in sensor
network to the sensors without any loss of performance, at least
asymptotically, both in the case of continuous-time models and
in the case of discrete-time models. The applications of this
setup are numerous, and we have noted in particular the detec-
tion of the individual components in a vector parameter corre-
sponding to the eigenstructure of linear dynamical state–space
models. Such models have been extensively used to describe
for monitoring the health of mechanical, civil, and aeronau-
tical structures [9], [11], [12], [18]. The assumption of across-
sensor independence is realistic at least in the particular exam-
ples which are described in detail in [5]. Moreover, the setup
treated in this paper is also relevant to the case in which the
change points propagate in a sensor array [20]. This is because
even in this configuration the propagation of the change points
depends on the unknown identity of the first sensor affected.
In our paper, we give explicit formulas for the optimal sensor
threshold selection which becomes particularly relevant in the
general case in which the observation out-of-control distribu-
tions or the signal strengths are different across sensors.

APPENDIX A
THE CONTINUOUS-TIME BROWNIAN MOTION MODEL

As an illustration for the general case, let us prove the results
for . The general case for will be discussed
afterwards.

We begin by writing down the probability distributions of
CUSUM stopping rule for single observation process appearing
in [15]. For , we have

and

where

and

and

Using the above notation, we can use (14) and (15) to derive
expressions for and , where

. In particular, we have

and
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Let us examine the asymptotic behavior of through
as . We have four preliminary results to

help us:

Result 1:

(63)
where

Result 2: For ( resp.),

(64)

Result 3: Asymptotically

(65)

and

(66)

as .

Result 4: If there exists an such that
holds asymptotically as , then we have

(67)

(68)

(69)

In the following paragraph we shall prove our lemmas for
in the order: Lemma 2 Lemma 3 Lemma 1. Then

we discuss the asymptotic behavior of the -CUSUM for
, and prove Lemma 4 at the end.

Proof of Lemma 2: By Result 4, we have under the con-
straint (26) that

(70)

as . So Lemma 2 is proven for .

Proof of Lemma 3: We will show that
and all converge to zero as

without any constraint on dependence of thresholds, and then
examine how behaves as under con-
straint (26).

First, Result 1 implies that

as (71)

Result 2, as well as (66) in Result 3 imply that

(72)

as . Similarly

as (73)

Now let us assume and we choose according
to (26). By Result 3

`` lower exponents'' (74)

as .
Formulas (70)–(74) imply the asymptotic formula in Lem-

ma 3 for .

Proof of Lemma 1: We need only to change the computa-
tion of in Lemma 3 to get Lemma 1. By Result 3
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(75)

as .
Formulas (70)–(73) and (75) imply the asymptotic formula in

Lemma 1 for .

Let us prove the four preliminary results we have just now
used.

Proof of Result 1: To simplify notation, let us denote
. Then

where

Since
, by monotone decreasing property

of in both variables in the first quadrant, we have

Proof of Result 2: Let us denote . Then

where

Because , and is de-
creasing on the positive half axis, we have

as .

Proof of Result 3: Equation (65) is easily verified. By (65)

(76)

Proof of Result 4: Applying the Schwarz inequality to
, we have

where we used (11) and Result 1 in the last line. Clearly, with
linear dependence between and

as

So (67) is done.
To prove (68), note that

(77)

By (11) and (66), the first term in (77) converges to zero as
. We need to show the integral in the second ab-

solute value tends to zero as . We have

By using the fact that can be bounded
as follows:

which goes to zero as due to (65).
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Moreover

where the last line is because of Result 2. So (68) and (69) (by
similar argument) are done.

Now let us consider the -CUSUM with . With sim-
ilar derivation as above, we can extend our Result 1, Result 2,
and Result 4 to deal with the general case. In this manner, we can
determine the asymptotic formula for the detection delay
(Lemma 2 for ) to be

(78)

and the mean time between false alarm to be

(79)

By using Result 3, we can compare with and obtain the
asymptotic formulas in Lemma 1 and Lemma 3 for any .

Finally, let us prove Lemma 4.

Proof of Lemma 4: From the preceding discussion we need
only to get the asymptotic formula of (79).

This can be seen as shown in (80) at the bottom of the page.
Equations (78)–(80) imply the asymptotic formula in Lemma 4
and finish the proof.

APPENDIX B
THE DISCRETE-TIME MODEL

As before, we prove the results for . The general case
for will be discussed afterwards. We have the following
preliminary result to help us.

Result 5: If there exists an such that
holds asymptotically as , then we have

(81)

(82)

In the following paragraph we shall prove our lemmas for
in the order: Lemma 6 Lemma 7 Lemma 5. Then

we discuss the asymptotic behavior of the -CUSUM for
, and prove Lemma 8 at the end.

Proof of Lemma 6: From Result 5 and (48), we have under
the constraint (55) that

(83)

as . So Lemma 6 is proven for .

Proof of Lemma 7: We begin by using Lemma 1 of [23] (or
Theorem 3 of [13]) to obtain

(84)
as . Now let us assume , and choose
and according to (55). Then

(85)

as .
Formulas (83) and (85) imply the asymptotic formula in

Lemma 7 for .

Proof of Lemma 5: We just need to let
and in (84) to obtain

(86)

as .
Formulas (83) and (86) imply the asymptotic formula in

Lemma 5 for .

Let us prove the preliminary result we have just now used.

Proof of Result 5: Without loss of generality we will only
give the proof of (81). We observe that7

7The integral representation is used for convenience. However, it should be
realized that every integral is actually a summation.

`` lower exponents'' (80)
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To prove (81), it suffices to show tends to zero as
. By using Lemma 1 of [23] (or Theorem 3 of [13]),

we have for large

By using the fact that , we further have

However, it is easily seen from the proof of Theorem 1 of [23]
(also Theorem 4.1 of [8]) that

Therefore

as . This completes the proof of Result 5.

For the -CUSUM with , we can easily extend Re-
sult 5 to address the general case. And by using Lemma 1 of
[23] (or Theorem 3 of [13]), (84) becomes

(87)

as . Then Lemmas 5–7 are proven for
any .

Finally, let us prove Lemma 8.

Proof of Lemma 8: We just need to get the asymptotic for-
mula of (87) when satisfies (55). This can be seen as follows:

(88)

as . Formulas (83) and (88) imply the
asymptotic formula in Lemma 8 and complete the proof.
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