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Abstract In this paper we examine the probabilistic behavior of two quantities
closely related to market crashes. The first is the drawdown of an asset and the
second is the duration of time between the last reset of the maximum before the
drawdown and the time of the drawdown. The former is the first time the current
drop of an investor’s wealth from its historical maximum reaches a pre-specified level
and has been used extensively as a path-dependent measure of a market crash in the
financial risk management literature. The latter is the speed at which the drawdown
occurs and thus provides a measure of how fast a market crash takes place. We call
this the speed of market crash. In this work we derive the joint Laplace transform
of the last visit time of the maximum of a process preceding the drawdown, the
speed of market crash, and the maximum of the process under general diffusion
dynamics. We discuss applications of these results in the pricing of insurance claims
related to the drawdown and its speed. Our applications are developed under
the drifted Brownian motion model and the constant elasticity of variance (CEV)
model.
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1 Introduction

In this paper we derive the joint Laplace transform of the last visit time of the
maximum of a process preceding the drawdown, the speed of market crash, and
the maximum of the process under general diffusion dynamics. The drawdown of
an asset is the first time that its drawdown process reaches a pre-specified level K
and is denoted by τ D

K . The drawdown process of the process {Xt}t≥0 is defined as
its current drop from the running maximum Xt. We define the speed of a market
crash as the difference between the drawdown and the last reset of the maximum
preceding it. The last reset of the maximum preceding the drawdown is denoted by
ρ and is the last time preceding the drawdown at which the maximum was reset.
A key result in our derivations is the fact that conditional on the level of the
process attained at ρ, Xρ , the process can be decomposed into two independent
pieces the path before and after ρ. We then separately study the probabilistic
behavior of the process before and after ρ. Using this path decomposition we are
also able to derive analytical formulas for the Laplace transforms of the random
time ρ and of the speed of market crash conditional on Xρ , namely the difference
S = τ D

K − ρ under general diffusion dynamics. We then combine these results to
derive our joint Laplace transform. We finally discuss applications of our results
in the pricing of insurance claims based on the drawdown and its speed under a
drifted Brownian motion model and a constant elasticity of variance (CEV) model
(see Jeanblanc et al. 2009).

Our results extend the work of Taylor (1975), Lehoczky (1977) and Nikeghbali
(2006) from which it is possible to extract the Laplace transform of the random vari-
able Xρ under drifted Brownian motion dynamics and general diffusion dynamics.
In our derivation of the Laplace transform of ρ we use the method of progressive
enlargement of filtration developed in Jeulin and Yor (1978, 1985) and Jeulin (1980).
Related work also includes Kardaras (2010) who is concerned with the projection
of the random times on the natural filtration. However, none of these works are
concerned with random times related to the drawdown or the drawdown itself. In
Tanré and Vallois (2006) the method of path decomposition is used to derive the
last visit time of the extreme values of a drifted Brownian motion before the first
range time. The drawdown and its probabilistic properties have been extensively
studied in the standard Brownian motion model by Douady et al. (2000) and in
the drifted Brownian motion by Graversen and Shiryaev (2000) as well as Magdon-
Ismail et al. (2004). Quantities of interest related to the joint distribution of the
drawdown and the drawup have been extensively studied and derived in Hadjiliadis
and Vecer (2006), where a closed-form formula is derived for the probability that the
drawdown precedes the drawup in a drifted Brownian motion model. This result
was later extended to diffusion processes in Pospisil et al. (2009). In Zhang and
Hadjiliadis (2010), the authors obtain the probability that the drawup of a units
precedes the drawdown of equal units in a drifted Brownian motion model in a
finite time-horizon. This result was later extended in Zhang and Hadjiliadis (2011) to
the analytical derivation of the joint distribution of the drawdown when it precedes
the drawup in general diffusions. Another work related to the joint distribution of
the maximum drawdown and the maximum drawup in a drifted Brownian motion
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model is Salminen and Vallois (2007). Other important properties of drawdowns that
renders them extremely important in the financial risk management literature have
also been studied for instance by Meilijson (2003) who proved that the drawdown
can be viewed as the optimal exercise time of a certain type of look-back American
put option.

Yet, the most important reason for the popularity of the drawdowns in financial
risk management is due to the fact that they provide a dynamic measure of risk.
Related works discussing precisely this aspect include Magdon-Ismail and Atiya
(2004) who described a closely related time-adjusted measure of risk based on
the drawdown known as the the Calmar ratio. Other relevant literature includes
Vecer (2006, 2007). Drawdowns measure the drop of a stock price, index or value
of a portfolio from its running maximum and thus provide portfolio managers a
tool with which to assess the risk taken by a mutual fund during a given eco-
nomic cycle, i.e. a peak followed by a trough followed by a peak. It is for this
reason that drawdown processes have also been used as constraints in portfolio
optimization (see, for example, Grossman and Zhou 1993, Cvitanic and Karatzas
1995, Chekhlov et al. 2005). Due to their dynamic and path-dependent nature,
they can also be used as a way to describe market crashes. An overview of the
existing techniques for analysis of market crashes related to the drawdown and the
maximum drawdown can be found in Sornette (2003). It is also conceivable that a
portfolio or hedge-fund manager may want to insure against such market crashes as
measured by large realizations of the drawdown. The pricing and dynamic hedging
of insurance claims based are developed in Pospisil and Vecer (2010). Recently,
static replication strategies for hedging digital options based on large realizations
of the drawdown are developed in Carr et al. (2010). Yet, the issue of how fast a
market crash occurred is of vital importance to investors and portfolio or hedge-
fund managers. This is because a slow transition from the maximum-to-date to a
drop of a pre-specified level (i.e. a drawdown) is far easier to absorb or react to
than a dramatic one. Therefore, the speed at which the drawdown is realized is a
very relevant quantity in the description of a market crash. This is precisely the
motivation of our paper which for the first time studies quantities related to the
joint distribution of the drawdown and the speed at which it is realized. Our work
thus provides the analytical basis for the pricing of insurance claims based on the
drawdown and its speed and which can be used to hedge against dramatic market
crashes.

In Section 2 we begin by the mathematical set-up of our problem and provide
the main result, which is an analytical formula of the joint Laplace tranform of
Xρ , ρ and S = τ D

K − ρ. In Section 3 we provide the proof of the main results
using the tools of progressive enlargement of filtrations and path decomposition.
We also derive analytical formulas for the conditional Laplace transforms of ρ

and of the speed of market crash S given Xρ . As applications, in Section 4 we
propose and price an innovative drawdown insurance using Carr’s randomiza-
tion (Carr and Madan 1999). We provide analytical formula for the randomized
claim price in the special cases of a drifted Brownian motion and a constant
elasticity of variance model. We finally conclude with some closing remarks in
Section 5.
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2 Mathematical Formulation and Main Results

We begin with a filtered probability space (�, F, P) with filtration F = {Ft}t≥0. Let
X· = {Xt}t≥0 be an one dimensional linear diffusion on interval I = (a, b) ⊂ R on
this probability space:

dXt = μ(Xt)dt + σ(Xt)dWt, X0 = x. (1)

where {Wt}t≥0 is a standard Brownian motion with respect to F, μ(·) and σ(·) are
real-valued continuous functions and σ(u) > 0 for all u ∈ I. We assume that the
boundaries a and b are either natural or entrance (see, for example, Mckean 1956).
We denote the running maximum of X· by

Xt := sup
s∈[0,t]

Xs. (2)

The drawdown process of X·, which is denoted by D·, is defined as the drop of Xt

from its running maximum Xt. That is,

Dt := Xt − Xt, t ≥ 0. (3)

In this work, we will denote by τY
L the first hitting time1 to a level L of any continuous

process Y·:

τY
L := inf{t ≥ 0|Yt = L}. (4)

For any K > 0 such that x − K ∈ I, the drawdown of level K is defined as the first
time at which the drawdown process D· reaches level K:

τ D
K = inf{t ≥ 0|Dt = K}. (5)

The last visit time of the maximum before the stopping time τ D
K is denoted by ρ. That

is,

ρ := sup
{

t ∈ [
0, τ D

K

] |Xt = Xt

}
. (6)

The time elapsed between ρ and τ D
K is called the speed of market crash, which we

denote by S :

S := τ D
K − ρ. (7)

The random variable Xρ is well studied (see Lehoczky 1977, Nikeghbali 2006).
However, the fact that the random time ρ is not a stopping time makes it difficult to
analyze. The main contribution of this work is the derivation of an analytical formula
for the joint Laplace transform of random variables ρ, S and Xρ :

Ex exp(−αρ − β · S − γ Xρ).

1As usual, we set inf ∅ = ∞.
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Here Px(·) = P(·|X0 = x) defines the distribution on a suitable path space of the
diffusion process started at x. In particular, we have:

Theorem 1 Let α, β, γ > 0 be positive numbers, then for the dif fusion in Eq. 1, we
have

Ex exp(−αρ − β · S − γ Xρ) =
∫ b

x

e−γ ms
′
(m)

gβ(m − K)hβ(m) − gβ(m)hβ(m − K)

· exp

(
−

∫ m

x

gα(u − K)h
′
α(u) − g

′
α(u)hα(u − K)

gα(u − K)hα(u) − gα(u)hα(u − K)
du

)
dm, ∀x ∈ (a, b), (8)

where s(·) is a scale function of the dif fusion in Eq. 1, gλ(·) and hλ(·) (λ = α, β) are
any two independent solutions of 1

2σ 2(u) f
′′ + μ(u) f

′ = λ f , such that their Wronskian
satisf ies

gλ(u)h
′
λ(u) − g

′
λ(u)hλ(u) = s

′
(u), ∀u ∈ (a, b). (9)

It is worth pointing out that, by letting α = β = λ in Eq. 8, we obtain Lehoczky’s
joint Laplace transform of τ D

K and Xρ (1977):

Corollary 1 let λ, γ > 0 be positive numbers, s(·), gλ(·) and hλ(·) be the same as in
Theorem 1, then we have

Ex exp(−λτ D
K − γ Xρ) =

∫ b

x

e−γ ms
′
(m)

gλ(m − K)hλ(m) − gλ(m)hλ(m − K)
·

· exp

(
−

∫ m

x

gλ(u − K)h
′
λ(u) − g

′
λ(u)hλ(u − K)

gλ(u − K)hλ(u) − gλ(u)hλ(u − K)
du

)
dm, ∀x ∈ (a, b). (10)

In the next section, we will use the method of progressive enlargement of filtration
developed in Jeulin and Yor (1978, 1985), Jeulin (1980), to study ρ, S , as well as the
path decomposition of X· before and after the random time ρ. To this end, we prove
our main result in Eq. 8.

3 Proof of the Main Results

In this section we prove the main result through optional projection and path
decomposition. More specifically, we consider the optional projection of the random
process 1I{ρ>t} on the natural filtration F,

Yρ
t := Px(ρ > t|Ft). (11)

The fact that 1I{ρ>t} is non-increasing implies that the process Yρ· = {Yρ
t }t≥0 is a

supermartingale, so a decomposition of the Doob–Meyer type exists. That is,

Yρ
t = Mρ

t + Aρ
t , (12)

where {Mρ
t }t≥0 is a local martingale and {Aρ

t }t≥0 is a predictable non-increasing
process. Using the scale function for linear diffusions (see for example, Borodin and
Salminen 2002), it is convenient to derive analytical formulas for Yρ, Mρ and Aρ . In
particular, we have
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Proposition 1 Let s be a scale function of the process in Eq. 1, then

Yρ
t = s(Xt) − s(Xt − K)

s(Xt) − s(Xt − K)
1I{t<τ D

K }, (13)

Mρ
t = 1 +

∫ t∧τ D
K

0

s
′
(Xu)σ (Xu)dWu

s(Xu) − s(Xu − K)
, (14)

Aρ
t =

∫ t∧τ D
K

0

−s
′
(Xu)dXu

s(Xu) − s(Xu − K)
. (15)

Proof We notice that, {ρ > t} means that, {t < τ D
K } and the path of X· will revisit Xt

before it reaches Xt − K. Let s be a scale function of X·, then {s(Xu)}u≥t is a local
martingale. So we have:

Yρ
t = Px(ρ > t|Ft) = s(Xt) − s(Xt − K)

s(Xt) − s(Xt − K)
1I{t<τ D

K }. (16)

This proves Eq. 13. We then apply Itô’s lemma to process Yρ· to obtain that, for any
t < τ D

K

dYρ
t = d[s(Xt) − s(Xt − K)]

s(Xt) − s(Xt − K)
− s(Xt) − s(Xt − K)

[s(Xt) − s(Xt − K)]2
d[s(Xt) − s(Xt − K)].

It is easily seen that ds(Xt) = s
′
(Xt)σ (Xt)dWt, and

d[s(Xt) − s(Xt − K)] = [s′
(Xt) − s

′
(Xt − K)]dXt.

Since the measure dXt is supported on {t|Xt = Xt}, we further have that

dYρ
t = s

′
(Xt)σ (Xt)dWt

s(Xt) − s(Xt − K)
− s

′
(Xt − K)dXt

s(Xt) − s(Xt − K)
− s

′
(Xt) − s

′
(Xt − K)

s(Xt) − s(Xt − K)
dXt

= s
′
(Xt)σ (Xt)dWt

s(Xt) − s(Xt − K)
− s

′
(Xt)dXt

s(Xt) − s(Xt − K)
. (17)

Equations 14 and 15 then follow from the fact that limt→τ K
D

Yρ
t = 0. ��

The random time ρ is an honest time. This is because, on the event {ρ ≤ t}, one
has ρ = sup{s ≤ t|Xs∧τ D

K
= Xt∧τ D

K
}, which is Ft-measurable.2 To enlarge the filtration

in order to make ρ a stopping time, we define

Fρ
t := Ft ∨ σ {ρ ∧ t}, t ≥ 0. (18)

Under the enlarged filtration F
ρ := {Fρ

t }, a square integrable F-martingale is a
semimartingale since ρ is an honest time. In particular, we have:

2See page 373 of Protter (2005).
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Lemma 1 Let {Nt}t≥0 be a square integrable F-martingale, then it is a F
ρ-

semimartingale. Moreover, Nt has a Doob–Meyer decomposition

Nt =
(

Nt −
∫ t∧ρ

0

1

Yρ
s

d〈N, Mρ〉s + 1I{t≥ρ}
∫ t

ρ

1

1 − Yρ
s

d〈N, Mρ〉s

)

+
( ∫ t∧ρ

0

1

Yρ
s

d〈N, Mρ〉s − 1I{t≥ρ}
∫ t

ρ

1

1 − Yρ
s

d〈N, Mρ〉s

)
. (19)

Here the f irst line of the right hand size is a F
ρ-martingale, and the second line of the

right hand size is a process with f inite variation.

Proof See Theorem 18 on page 375 of Protter (2005). ��

As a result of Lemma 1, the driving Brownian motion of a diffusion process is now
a semimartingale. Using Lévy’s characterization of Brownian motion (see Revuz and
Yor 1999), we can see that the martingale part of this semimartingale is in fact a
standard F

ρ-Brownian motion. This will enable us to separately study the law of the
diffusion path in Eq. 1 during the period [0, ρ] and the period [ρ, τ D

K ], conditional on
the event {Xρ = M}.

In particular, we can prove the following result:

Proposition 2 Conditionally on Xρ = M, {Xt}t∈[0,ρ] is a process with the same law as
the unique weak solution of the following stochastic dif ferential equation, stopped at
the f irst hitting time of a level M, τ Z

M .

dZt =
(

μ(Zt) + s
′
(Zt)σ

2(Zt)

s(Zt) − s(Z t − K)

)
dt + σ(Zt)dBt, Z0 = x, (20)

where {Bt}t≥0 is a standard F
ρ-Brownian motion.

Proof Using Eq. 19 we know that for any t ∈ [0, ρ], the process defined as

Bt = Wt −
∫ t

0

s
′
(Xu)σ (Xu)du

s(Xu) − s(Xu − K)
, (21)

is a standard F
ρ-Brownian motion. Therefore, for any t ∈ [0, ρ], we have

dXt = μ(Xt)dt + σ(Xt)dBt + s
′
(Xt)σ

2(Xt)dt

s(Xt) − s(Xt − K)

=
(

μ(Xt) + s
′
(Xt)σ

2(Xt)

s(Xt) − s(Xt − K)

)
dt + σ(Xt)dBt. (22)

To finish the proof, we need to show that the stochastic differential equation in
Eq. 20 admits a unique weak solution. To this effect, consider a stopping time for any
given ε > 0:

τε = inf{t ≥ 0|Z t − Zt ≥ K − ε}. (23)

Then the Theorem 5.5.15 of Karatzas and Shreve (1991) implies that there is a unique
weak solution {Zt}t≥0 satisfying Eq. 20 and initial condition Z0 = x, until time τε . We
let ε → 0+ and the assertion is proved. This concludes the proof of Proposition 2. ��
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A consequence of Proposition 2 is that, the Laplace transform of the random time
ρ conditional on {Xρ = M} is the same as the Laplace transform of the stopping time
τ Z

M . More specifically, we have:

Proposition 3 Conditionally on Xρ = M, the Laplace transform of the random time
ρ is given by

Ex{e−λρ |Xρ = M}

= exp

( ∫ x

M

( −s
′
(u)

s(u) − s(u − K)
+ g(u − K)h

′
(u) − g

′
(u)h(u − K)

g(u − K)h(u) − g(u)h(u − K)

)
du

)
, (24)

where g(·) and h(·) are any two independent solutions of 1
2σ 2(u) f

′′ + μ(u) f
′ = λ f .

Proof We apply the Feynman–Kac theorem (see Karatzas and Shreve 1991) to
the “inhomogeneous” diffusion in Eq. 20. To this effect, we search for a locally
bounded function on {z, m ∈ (a, b)|m ≥ z, m − z < K} satisfying the following par-
tial differential equation for any given λ > 0:

1

2
σ 2(z)

∂2 fλ
∂z2

+
(

μ(z) + s
′
(z)σ 2(z)

s(z) − s(m − K)

)
∂ fλ
∂z

= λ fλ(z, m), (25)

∂ fλ
∂m

∣∣∣∣
m=z

= 0. (26)

Let us consider a function

fλ(z, m) = exp

(∫ m ( −s
′
(u)

s(u) − s(u − K)
+ g(u − K)h

′
(u) − g

′
(u)h(u − K)

g(u − K)h(u) − g(u)h(u − K)

)
du

)

· g(m − K)h(z) − g(z)h(m − K)

g(m − K)h(m) − g(m)h(m − K)
· s(m) − s(m − K)

s(z) − s(m − K)
, (27)

Then it is straightforward to check that fλ(·) is a locally bounded solution of the
partial differential equation in Eq. 25. Moreover, it can be shown that fλ in Eq. 27
satisfies boundary condition in Eq. 26. In terms of this solution, we can now express
the conditional Laplace transforms of ρ as:

Ex{e−λρ |Xρ = M} = Ex{e−λτ Z
M } = fλ(x, x)

fλ(M, M)
, (28)

which gives Eq. 24. ��

On the other hand, the Brownian path during the drawdown, [ρ, τ D
K ], can be

similarly described by conditioning on {Xρ = M}. In particular, we give the law of
{Xt+ρ − M}t∈[0,S].

Proposition 4 Conditionally on Xρ = M, the law of {M − Xt+ρ}t∈[0,S] is the same as
the unique positive weak solution of the following stochastic dif ferential equation,
stopped at the f irst hitting time to level K, τ J

K.

dJt =
(

− μ(M − Jt) + s
′
(M − Jt)σ

2(M − Jt)

s(M) − s(M − Jt)

)
dt − σ(M − Jt)dBt, J0 = 0 (29)
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where {Bt}t≥0 is a standard {Fρ
ρ+t}-Brownian motion. Moreover, the processes

{Xt}t∈[0,ρ] and {Xt}t∈[ρ,τ D
K ] are independent.

Proof Using Eq. 19 we know that for any t ∈ [0,S], the process defined as

Bt+ρ = Wt+ρ − Wρ +
∫ t+ρ

ρ

s
′
(Xu)σ (Xu)du

s(M) − s(Xu)
, (30)

is a {Ft+ρ}-standard Brownian motion. Therefore, for any t ∈ [ρ, τ D
K ], we have

dXt = μ(Xt)dt + σ(Xt)dBt − s
′
(Xt)σ

2(Xt)

s(M) − s(Xt)
dt

=
(

μ(Xt) − s
′
(Xt)σ

2(Xt)

s(M) − s(Xt)

)
dt + σ(Xt)dBt. (31)

Since {Bt+ρ}t≥0 is independent of Fρ
ρ , {Bt+ρ}t≥0 is independent of Xρ and {Xt}t∈[0,ρ].

To finish the proof, we need to show that the stochastic differential equation in Eq. 29
has a unique positive weak solution. This is seen using Theorem 5.5.15 of Karatzas
and Shreve (1991). ��

As a consequence of Proposition 4, the Laplace transform of the random variable
S can be derived by solving for the Laplace transform of the stopping time τ J

K.
Therefore we have:

Proposition 5 Conditionally on Xρ = M, the Laplace transform of the random vari-
able S is given by

Ex{e−λS |Xρ = M} = s(M) − s(M − K)

g(M − K)h(M) − g(M)h(M − K)
, (32)

where g(·) and h(·) are any two independent solutions of 1
2σ 2(u) f

′′ + μ(u) f
′ = λ f ,

such that their Wronskian satisf ies

g(u)h
′
(u) − g

′
(u)h(u) = s

′
(u), ∀u ∈ (a, b). (33)

Proof We apply the Feynman–Kac theorem (see Karatzas and Shreve 1991) to the
process in Eq. 29 and search for a locally bounded function on (0, M − a) which
satisfies the following partial differential equation for any given λ > 0:

1

2
σ 2(M − p)

∂2 fλ
∂p2

+
(

− μ(M − p) + s
′
(M − p)σ 2(M − p)

s(M) − s(M − p)

)
∂ fλ
∂p

= λ fλ(p). (34)

Let us consider a function defined as

fλ(p) = g(M − p)h(M) − g(M)h(M − p)

s(M) − s(M − p)
. (35)
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Then it is straightforward to check that fλ(·) is a locally bounded solution of the
partial differential equation in Eq. 34. In terms of this solution, we can express the
conditional Laplace transform of S as:

Ex{e−λS |Xρ = M} = Ex{e−λτ J
K } = fλ(0)

fλ(K)
, (36)

which gives Eq. 32. ��

Finally, using the independence of path before and after the random time ρ, as
well as individual Laplace transforms of ρ and S given Xρ , we are able to compute
their joint Laplace transform in Eq. 8 from Eqs. 28 and 36. In particular, notice that

Lemma 2 For the linear dif fusion in Eq. 1, we have that

Px(Xρ ≥ M) = exp

(
−

∫ M

x

s
′
(u)

s(u) − s(u − K)
du

)
, ∀M > x. (37)

Proof See Eq. 3 on page 602 of Lehoczky (1977), or Eq. 4.4 on page 930 of
Nikeghbali (2006). ��

By applying the results in Propositions 2, 4, and Lemma 2, we obtain our main
result in Eq. 8.

4 Applications

In this section we propose and price an innovative claim which can be used as a means
of insurance against market crashes. More specifically, let X· denote the underlying
price process. We consider a perpetual barrier claim with a pre-specified knockout
barrier H > X0 = x and a pre-specified strike T > 0. This claim will pay one dollar
at τ D

K , if and only if, both the underlying has not been knocked out by time τ D
K , and

the speed of market crash of the underlying is smaller than the strike T. In the case
τ D

K = ∞, the claim is regarded as delivering zero payoff.
In the presence of no arbitrage, no transaction cost, and a constant risk-free rate

r ≥ 0, the time-0 price of this claim can be evaluated using a risk-neutral measure P.
In particular, let us denote by VH(T) the time-0 price of the above claim, then

VH(T) = Ex{e−rτ D
K · 1I{S<T,Xρ<H}}, (38)

where x is the time-0 price of the underlying.
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Using Carr’s randomization (Carr and Madan 1999) in T, i.e., letting T = ζ

be an exponentially distributed random variable with parameter c > 0, which is
independent of the underlying price process X·, we obtain that

Ex{VH(ζ )} = Ex{e−rτ D
K · 1I{S<ζ,Xρ<H}}

= Ex{e−rτ D
K · 1I{Xρ<H} · Px(S < ζ |S)}

= Ex{e−rτ D
K −cS · 1I{Xρ<H}}

=
∫ H

x
Ex{e−rρ |Xρ = m} · Ex{e−(r+c)S |Xρ = m} · Px(Xρ ∈ dm) (39)

The price VH(T) for a pre-specified T > 0, is then obtained through Laplace
inversion of Ex{VH(ζ )}:

VH(T) = L−1
c

(
1

c
Ex{VH(ζ )}

)
, (40)

where L−1
c is the inversion Laplace operator.

In what follows we consider two examples of dynamics for the underlying. in
the first example, we consider a drifted Brownian motion as the logarithm of the
underlying price process and we are able to provide a closed-form formula for the
randomized price in Eq. 39. We also consider a constant elasticity of variance (CEV)
model in the second example, a prototypical model for a strict local martingale.

4.1 Brownian Motion with Drift

We consider a Brownian motion with drift μ(·) ≡ μ �= 0 and diffusion coefficient
σ(·) ≡ σ > 0:

Xt = x + μt + σ Wt, x ∈ (−∞,∞). (41)

It is known from Borodin and Salminen (2002) that, ∀u ∈ (−∞,∞),

s(u) = e−2δu, (42)

gλ(u) = e(−δ+Sλ
δ,σ )u, (43)

hλ(u) = δ

Sλ
δ,σ

e(−δ−Sλ
δ,σ )u, (44)

where

δ := μ

σ 2
, Sλ

δ,σ :=
√

δ2 + 2λ

σ 2
. (45)

Applying Propositions 3, 5, and Lemma 2 we obtain that, ∀M > x,

Ex{e−λρ |Xρ = M} = e−[Sλ
δ,σ ·coth(Sλ

δ,σ ·K)−δ·coth(δ·K)](M−x), (46)

Ex{e−λS |Xρ = M} = Sλ
δ,σ

δ
· sinh(δ · K)

sinh(Sλ
δ,σ · K)

, (47)

Px(Xρ ≥ M) = exp

(
−2δ(M − x)

e2δK − 1

)
. (48)
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Using Eq. 39 we have:

Ex{VH(ζ )} = Sr+c
δ,σ

sinh(Sr+c
δ,σ · K)

· e−δK · 1 − e−(Sr
δ,σ coth(Sr

δ,σ ·K)−δ)(H−x)

Sr
δ,σ coth(Sr

δ,σ · K) − δ
. (49)

Notice that we only need to invert the first factor in Eq. 49 to get the price VH(T).
And the result of this inversion is available in analytical form (see Borodin and
Salminen 2002).

4.2 CEV Model

In this section we consider a zero drift constant elasticity variance (CEV) model
with parameter 2. More specifically, we consider a nonnegative diffusion with drift
coefficient μ(·) ≡ 0 and diffusion coefficient σ(u) = σu2:

dXt = σ X2
t dWt, X0 = x > K > 0. (50)

where σ > 0 is a constant. It is worth pointing out that, the above CEV model can
be expressed as the strict local martingale {(Rσ 2t)

−1}, where R· = {Rt}t≥0 is a three
dimensional Bessel process starting at 1

x > 0.
It is known from Jeanblanc et al. (2009), and Lebedev (1965) that, ∀u ∈ (0,∞),

s(u) = −u, (51)

gλ(u) = √
uK 1

2

(√
2λ

σu

)
=

√
π

2
· 1

Sλ
0,σ

· u · exp

(
− Sλ

0,σ

u

)
, (52)

hλ(u) = √
uI 1

2

(√
2λ

σu

)
=

√
2

π
· 1

Sλ
0,σ

· u · sinh

(
Sλ

0,σ

u

)
, (53)

where Sλ
0,σ is given in Eq. 45, I 1

2
(·) and K 1

2
(·) are respectively the modified Bessel

functions of the first and second kind of order 1
2 .

Applying Propositions 3, 5, and Lemma 2 we obtain that, ∀M > x,

Ex{e−λρ |Xρ = M} = x
M

exp

(
M − x

K
−

∫ M

x

Sλ
0,σ

u2
coth

(
Sλ

0,σ · K

u(u − K)

)
du

)
(54)

Ex{e−λS |Xρ = M} = Sλ
0,σ · K

M(M − K)
· 1

sinh
(

Sλ
0,σ ·K

M(M−K)

) , (55)

Px(Xρ ≥ M) = exp

(
− M − x

K

)
. (56)

Using Eq. 39 we have:

Ex{VH(ζ )}

=
∫ H

x

Sr+c
0,σ

sinh
(

Sr+c
0,σ ·K

m(m−K)

) ·
x exp

(
− ∫ m

x
Sr

0,σ

u2 coth
(

Sr
0,σ ·K

u(u−K)

)
du

)

m2(m − K)
dm. (57)
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5 Concluding Remarks

In this paper, we derive an analytical formula for the joint Laplace transform of the
last visit time of the maximum preceding the drawdown, the speed of market crash,
and the maximum at the drawdown for a general diffusion process. Using Carr’s
randomization, we apply this result to price an innovative perpetual claim that can
be used as a means of insurance against market crashes. We present formulas of
the randomized claim price in both the drifted Brownian motion model and a CEV
model. A possible extension is to consider finite maturity counterpart of the above
drawdown insurance. This would require a combination of our results and double
Carr’s randomization in both the strike and the maturity. The computational cost of
the involved Laplace inversion will however be slightly expensive.

Acknowledgement The authors are grateful to Dr. Libor Pospisil for the inventive name speed of
market crash given to the difference τ D

k − ρ.
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