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Abstract In this work we derive the probability that a rally of a units precedes a
drawdown of equal units in a random walk model and its continuous equivalent, a
Brownian motion model in the presence of a finite time-horizon. A rally is defined
as the difference of the present value of the holdings of an investor and its historical
minimum, while the drawdown is defined as the difference of the historical maximum
and its present value. We discuss applications of these results in finance and in
particular risk management.
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1 Introduction

In this paper we first derive the probability that a rally of a units (T1(a)) precedes a
drawdown (T2(a)) of equal units in a finite time-horizon T. The assumed underlying
model considered is a random walk model. For this model we provide a closed-form
formula for this probability both in the case of a symmetric random walk and in the
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case of a non-symmetric random walk. We then derive a closed-form formula for this
probability in the case of a Brownian motion model. We use this result to address the
problem of computing the probability that a rally of (100 × α)% from the running
minimum of a stock price occurs before a drawdown of (100 × β)% from its running
minimum, given that the stock price follows a geometric Brownian motion.

Drawdowns provide a dynamic measure of risk in that they measure the drop
of a stock price, index or value of a portfolio from its running maximum. They thus
provide portfolio managers a tool with which to assess the risk taken by a mutual fund
during a given economic cycle, i.e. a peak followed by a trough followed by a peak.
The fact that they are reset to 0 every time a cycle of a peak and a trough followed
by a peak is completed, renders them unbiased with respect to time, contrary to the
maximum drawdown which is a measure that is non-decreasing with respect to time
and thus has an increasing bias.

In general, risk management of drawdowns and portfolio optimization with
drawdown constraints has become increasingly important among the practition-
ers. Chekhlov et al. (2005) studied drawdown measures in portfolio optimization.
Magdon-Ismail et al. (2004) determined the distribution of the maximum drawdown
of Brownian motion, based on which they described another time-adjusted measure
of performance based known as the the Calmar ratio (Magdon-Ismail and Atiya
2004). Related works include Vecer (2006, 2007), Pospisil and Vecer (2008) and
Pospisil et al. (2009). An overview of the existing techniques for analysis of market
crashes as well as a collection of empirical studies of the drawdown and the maximum
drawdown please refer to Sornette (2003).

Drawdowns also provide investors a measure of “relative regret” while rallies can
be perceived as measures of “relative satisfaction”. Thus the first time of a drawdown
or a rally of a certain number of units may signal the time in which an investor may
choose to change his/her investment position depending on his/her perception of
future moves of the market and his/her risk aversion. The probability computed in
this paper can be thought of as the probability that an investor who makes decisions
based on the relative change in his/her wealth will exit on an upward rally (or a
drawdown) of his wealth given a finite time-horizon in which investment can take
place. One can view this problem as an extension of the classical gambler’s ruin
problem (Ross 2008), in which investors with a finite time-horizon make decisions
based on the relative wealth process.

This paper extends the results of Hadjiliadis (2005) in discrete time and of
Hadjiliadis and Vecer (2006) in the continuous time drifted Brownian motion model.
It addresses the same question but in the more realistic setting of a finite time-
horizon, which is usually available to investors.

In Section 2 we compute the probability of a rally preceding a drawdown in a finite
time-horizon both in the case of a symmetric and in the case of a non-symmetric
random walk. In Section 3 we extend these results to the continuous time Brownian
motion model. In Section 4 we use the results of Section 3 to address the question of
computing the probability that a rally of (100 × α)% from the running minimum of
a stock price occurs before a drawdown of (100 × β)% from its running minimum,
given that the stock price follows a geometric Brownian motion. We finally conclude
with some closing remarks in Section 5.
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2 Rallies and Drawdowns in the Random Walk Model

We begin with a mathematical definition of a rally and a drawdown. To this effect
consider the following random walk

Xn =
n∑

i=1

Zi, X0 = 0, (1)

where

Zi =
{

1 with probability p,

−1 with probability q.

That is, the process {Xn}n≥1 is a simple random walk with parameter p. The upward
rally (or rally) and drawdown processes are then defined respectively as

U Rn = Xn − min
0≤k≤n

Xk, (2)

DDn = max
0≤k≤n

Xk − Xn. (3)

A rally of a units and a drawdown of b units are then defined respectively as

T1(a) = min{n ≥ 1| U Rn = a}, a = 1, 2, . . . . (4)

T2(b) = min{n ≥ 1| DDn = b}, b = 1, 2, . . . . (5)

In the next theorem we compute the probability that a rally of a units precedes
a drawdown of equal units in a pre-specified finite time-horizon T, where T > a. It
is important to point out that this probability is asymmetric with respect to T1(a)

and T2(a). This is seen through the fact that it can be expressed as P(T1(a) ∧ T <

T2(a) ∧ T), or as P(T1(a) < T2(a) ∧ T).

Theorem 1 Let a, T ∈ N ∗, Xn = ∑n
i=1 Zi be a simple random walk with parameter p

and Ti(a), i = 1, 2, be the stopping times of Eqs. 4 and 5 respectively. Define

℘(T; a, p) = P(T1(a) ∧ T < T2(a) ∧ T). (6)

The probability that an upward rally of a units proceeds a drawdown of equal units
before time T > a is given by

1. for a = 1,

℘(T; 1, p) = p. (7)

2. for a = 2,

℘(T; 2, p) = p2 + qp2 + pqp2 + . . . + . . . qpqp2

︸ ︷︷ ︸
(T−1)terms

. (8)
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3. for a ≥ 3,

℘(T; a, p) = pa +
T∑

L=a+2

a∑

i=1

L−a−1∑

k=0

ca,L−a−k−1
i,1 · ca−1,a+k−3

1,a−2 · p
L+a−i

2 q
L−a+i−2

2 , (9)

where for m, k, i, j ∈ N ,

cm,k
i, j = 2k+1

m + 1

m∑

ι=1

(
cos

πι

m + 1

)k

sin
iπι

m + 1
sin

jπι

m + 1
. (10)

In order to proceed with the proof of this theorem, we will need to make use
of two preliminary lemmas. In the first lemma we compute the probability that a
random walk, which starts at 0 reaches a specific level −1 ≤ v ≤ B in N steps, while
remaining within a positive strip of a pre-specified height A.

Lemma 1 For u, v, A, N ∈ N and 0 ≤ u, v ≤ A, we have

P(XN = v, 0 ≤ Xk ≤ A for ∀k ≤ N|X0 = u) = cA+1,N
u+1,v+1 · p

N−u+v
2 q

N+u−v
2 , (11)

where cA+1,N
u+1,v+1 is defined in Eq. 10.

Proof The 1-step transition matrix of a simple random walk on [0, A] is the Toeplitz
matrix MA+1 generated by column vector c and row vector r, where

c = (0, q, 0, . . . , 0︸ ︷︷ ︸
A+1

) r = (0, p, 0, . . . , 0︸ ︷︷ ︸
A+1

).

The N-step transition matrix is the N-th power of that matrix. The probability
in Eq. 11 is the (u + 1, v + 1)-th entry of this N-step transition matrix. Using
Theorem 2.3 on page 1064 of Salkuyeh (2006), the result follows. �	

In the second lemma we compute the probability that a random walk, which starts
at 0 reaches a specific level v in N steps while its minimum reaches the exact level v −
B and its maximum never exceeds v + 1. We denote this probability by g(N, v; B).

Lemma 2 For B, N ∈ N with B ≤ N, and v = −1, 0, . . . , B, define

g(N, v; B) = P(XN = v, max
k≤N

Xk ≤ v + 1, min
k≤N

Xk = v − B|X0 = 0). (12)

We have

g(N, v; B) =
N−B∑

k=0

cB+2,N−B−k
B−v+1,1 · cB+1,B+k−1

1,B · p
N+v

2 q
N−v

2 , (13)

with coefficient cm,k
i, j defined in Eq. 10.
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Proof With g(N, v; B) as in Eq. 12 we notice that

g(N,−1; B) = q · g(N − 1, 0; B), (14)

g(N, B; B) = p · g(N − 1, B − 1; B) + p · g(N − 1, B − 1; B − 1), (15)

and for −1 < v < B that,

g(N, v; B) = p · g(N − 1, v − 1; B) + q · g(N − 1, v + 1; B). (16)

To see Eq. 15, we observe that g(N, B; B) is the probability of an event that only
includes paths on which the process remains non-negative. Equation 15 represents
the decomposition of these paths into the ones on which the process stays strictly
positive after the first upward step, and the ones on which it does not. Equation 16
follows by conditioning on the first step being up or down respectively.

Equations 14, 15, and 16 can be summarized by

G(B)

N = MB+2 · G(B)

N−1 + Y(B)

N−1, (17)

where MB+2 is the 1-step transition matrix of a simple random walk on [−1, B + 1]
which appears in the proof of Lemma 1, G(B)

N and Y(B)

N are the (B + 2) × 1 vectors

G(B)

N = (g(N, B; B), g(N, B − 1; B), . . . , g(N,−1; B))τ , (18)

and

Y(B)

N = (p · g(N, B − 1; B − 1), 0, . . . , 0)τ , (19)

respectively, while

G(B)

B = Y(B)

B−1 = (pB, 0, . . . , 0)τ , (20)

We can now use Eq. 17 recursively to obtain

G(B)

N = [MB+2]N−B · G(B)

B +
N−B−1∑

k=0

[MB+2]N−B−k−1 · Y(B)

B+k

=
N−B∑

k=0

[MB+2]N−B−k · Y(B)

B+k−1. (21)

Equation 13 now follows from Eq. 21, Theorem 2.3 on page 1064 of Salkuyeh (2006),
and Lemma 1. �	

We can now proceed to the proof of Theorem 1.

Proof of Theorem 1 Equations 7 and 8 are easy to see. For a ≥ 3 it is also easy to see
that

℘(a + 1; a, p) = pa. (22)
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In order to establish Eq. 9, it suffices to determine

�(T; a, p) = ℘(T; a, p) − ℘(T − 1; a, p)

= P(T1(a) = T − 1, max
k≤T−1

DDk ≤ a − 1), (23)

for any a, T ∈ N ∗ and T > a + 1 ≥ 4.
We begin by examining the properties of all paths which are included in the event

of Eq. 23.

1. For all such paths,

XT−1 ∈ {1, 2, . . . , a},
for otherwise, a drawdown of a units precedes a rally of equal size, or the range
is less than a at time T − 1.

2. Let us assume XT−1 = x ∈ {1, 2, . . . , a}, then

min
k≤T−1

Xk = x − a.

3. Assume XT−1 = x ∈ {1, 2, . . . , a}, then

XT−2 = x − 1, XT−3 = x − 2, max
k≤T−3

Xk ≤ x − 1.

This is because the rally (which precedes the drawdown) is achieved by an
upward move of the random walk {Xn}n≥1; moreover, the highest position of
the random walk before T − 1 can be at most x − 1.

These properties give rise to the following representation

�(T; a, p) = p2 ·
a−2∑

v=−1

g(T − 3, v; a − 2). (24)

Using Lemma 2, the result follows. This completes the proof of Theorem 1. �	

In the case that an investor is not restricted by a finite time-horizon, the probability
that his/her wealth makes a rally of a units before a drawdown of equal units
is summarized in the following corollary. This result is easier derived by using
martingale arguments (Hadjiliadis 2005) and is displayed for completeness.

Corollary 1 In the case of an infinite time-horizon we have

P(T1(a) < T2(a)) =
(

p
q

)a+1 − (a + 1)
(

p
q

)
+ a

[
1 −

(
p
q

)a] [(
q
p

)a+1 − 1

] , (25)

The next corollary draws a connection of our result to the range process which is
defined to be the difference of the running maximum and the running minimum.
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Corollary 2 Let Rn = maxk≤n Xk − mink≤n Xk be the range process of a random walk
with parameter p. Then for T > a, we have

1. for a = 2,

P(RT−1 < 2) = 1 − p2(1 + q + pq + . . . + . . . qpq︸ ︷︷ ︸
(T−3)terms

)

− q2(1 + p + qp + . . . + . . . pqp︸ ︷︷ ︸
(T−3)terms

). (26)

2. for a ≥ 3,

P(RT−1 <a)= 1− pa−qa−
T∑

L=a+2

a∑

i=1

L−a−1∑

k=0

{
ca,L−a−k−1

i,1 · ca−1,a+k−3
1,a−2

× (pq)
L−2

2

[
p

(
p
q

) a−i
2

+q
(

q
p

) a−i
2

]}
.

(27)

Proof We observe that

P(RT−1 ≥ a) = P(T1(a) ∧ T < T2(a) ∧ T) + P(T1(a) ∧ T > T2(a) ∧ T), (28)

where the first term of the right hand side is given in Theorem 1 and the second term
of the right hand side is given in Theorem 1 when p is replaced by q. �	

The result in Corollary 2 can be compared with Proposition 14 of Vallois (1996).

Remark 1 In the case of a symmetric random walk (p = q = 1
2 ) we notice that we

can write

P(T1(a) ∧ T < T2(a) ∧ T) = 1

2
P(θ(a) < T), (29)

where θ(a) = inf{n ≥ 1|Rn ≥ a}. It is now easy to deduce that as T → ∞ Eq. 29
reduces to 1

2 as expected. Finally, the case of a symmetric random walk (p = q = 1
2 )

is summarized in the following corollary for any pre-specified time-horizon T.

Corollary 3 Let a, T ∈ N ∗. For the symmetric random walk the probability that a rally
of a units proceeds a drawdown of equal units before time T is given by

1. for a = 1,

P(T1(1) ∧ T < T2(1) ∧ T) = 1

2
. (30)

Table 1 The probability of
Eq. 6 for T = 30

a ↓ p = 0.3 p = 0.5 p = 0.7

5 0.0630 0.4684 0.6382
10 0.0012 0.1040 0.3772
20 1.0945 × 10−8 1.6319 × 10−4 0.0272
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Table 2 The probability of
Eq. 6 for T = 50

a ↓ p = 0.3 p = 0.5 p = 0.7

5 0.0640 0.4981 0.6413
10 0.0023 0.2609 0.4595
20 2.3012 × 10−7 0.0064 0.2586

2. for a = 2,

P(T1(2) ∧ T < T2(2) ∧ T) = 1

2

(
1 − 1

2T−1

)
. (31)

3. for a ≥ 3,

P(T1(a) ∧ T < T2(a) ∧ T) = 1

2a
+ 1

2

T∑

L=a+2

a∑

i=1

L−a−1∑

k=0

da,L−a−k−1
i,1 · da−1,a+k−3

1,a−2 (32)

where for m, k, i, j ∈ N ,

dm,k
i, j = 1

m + 1

m∑

ι=1

(
cos

πι

m + 1

)k

sin
iπι

m + 1
sin

jπι

m + 1
. (33)

Proof The proof is seen by substituting p = q = 1
2 . �	

In Tables 1 and 2 we calculate the probability of Eq. 6 for specific values of
the parameters p, a, and T. We notice that both Tables 1 and 2 increase across
rows reflecting the fact that as p increases so does the probability of Eq. 6. On the
other hand, as the threshold a increases, the probability of Eq. 6 typically decreases.
However, in the case that p = 0.7(> 0.5) the probability of Eq. 6 experiences a slight
increase from a = 1 to a = 2 followed by a dramatic decrease. This is seen in Fig. 1.
Finally, as the time-horizon T increases the probability of Eq. 6 increases as well.
However, for small values of a, the increase is not as dramatic as for larger values
of a.

We now proceed to the continuous time case.
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Fig. 1 A graph of the probability of Eq. 6 for Left: T = 30 and Right: T = 50
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3 Rallies and Drawdowns in a Brownian Motion Model

In this section we consider the case of a continuous time Brownian motion with drift
parameter ν and diffusion parameter σ . In particular, let

dXt = νdt + σdWt, X0 = 0, (34)

where ν ∈ R is the drift coefficient and σ > 0 is the diffusion coefficient.
Similarly to the discrete-time random walk model, we define an upward rally (or

rally) process as

Xt − inf
s≤t

Xs, (35)

and a drawdown process as

sup
s≤t

Xs − Xt. (36)

A rally of a units and a drawdown of b units are then defined respectively as

T1(a) = inf{ t ≥ 0| Xt − inf
s≤t

Xs = a}, a ∈ R+ (37)

T2(b) = inf{ t ≥ 0| sup
s≤t

Xs − Xt = b}, b ∈ R+. (38)

In the theorem that follows we compute the probability that a rally of a units
precedes a drawdown of equal units in a pre-specified finite time-horizon T. This
probability is asymmetric with respect to T1(a) and T2(a) since it can be expressed as
P(T1(a) ∧ T < T2(a) ∧ T), or as P(T1(a) < T2(a) ∧ T).

Theorem 2 Let dXt = νdt + σdWt be the Brownian motion with drift coefficient ν

and diffusion coefficient σ , and let Ti(a), i = 1, 2, be stopping times of Eqs. 37 and 38
respectively. Define

℘(T; a, ν, σ ) = P(T1(a) ∧ T < T2(a) ∧ T). (39)

Then,

℘(T; a, ν, σ )

=
∞∑

n=1

2n2π2

C2
n

{
(1 − (−1)ne

νa
σ2 )

(
1 − 4ν2a2

σ 4Cn

)
− (−1)n νa

σ 2
e

νa
σ2 − exp

(
−σ 2Cn

2a2
T

)

×
[
(1 − (−1)ne

νa
σ2 )

(
1 + n2π2σ 2T

a2
− 4ν2a2

σ 4Cn

)
− (−1)n νa

σ 2
e

νa
σ2

]}
, (40)

where Cn = n2π2 + ν2a2/σ 4, n ∈ N .
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The proof of the above theorem makes use of the following proposition:

Proposition 1 For t > 0 and 0 < x ≤ a, we have

P(T1(a) ∈ dt, T2(a) > t, Xt ∈ dx) = g(t, x; a, ν, σ )dtdx, (41)

where

g(t, x; a, ν, σ ) = σ 2

a5

∞∑

n=1

nπ exp

(
−σ 2Cn

2a2
t + ν

σ 2
x
)

×
{
(n2π2σ 2t − 2a2) sin

(nπ

a
x
)

− nπax cos
(nπx

a

)}
, (42)

with Cn , n ∈ N defined as above.

In order to prove Proposition 1 and Theorem 2, we will need the following lemma.

Lemma 3 For 0 < x ≤ a, define

τx = inf{t ≥ 0|Xt = x}. (43)

We have

P(τx ∈ dt, inf
s≤t

Xs ≥ x − a) = h(t, x; a, ν, σ )dt, (44)

where

h(t, x; a, ν, σ ) = 1

σ t
3
2

exp

(
ν

σ 2
x − ν2

2σ 2
t
) ∞∑

k=−∞
(x + 2ka)φ

(
x + 2ka

σ
√

t

)

= σ 2

a2
exp

(
ν

σ 2
x − ν2

2σ 2
t
) ∞∑

n=1

(nπ) exp

(
−n2π2σ 2

2a2
t
)

sin
(nπx

a

)
.

(45)

Proof The proof follows by recognizing that, h(t, x; a, ν, σ ) appears in Anderson
(1960), Theorem 5.1. In particular, h(t, x; a, ν, σ ) is dP1(t)/dt of Eq. 5.3 with
parameters γ1 = x/σ, γ2 = (x − a)/σ and δ1 = δ2 = −ν/σ . More specifically, after
substitution and some algebra, we obtain

1

t
3
2

φ

(
δ1t + γ1√

t

) ∞∑

k=0

e−(2k/t)[(k+1)γ1−kγ2][δ1t+γ1−(δ2t+γ2)][(2k + 1)γ1 − 2kγ2]

= 1

σ t
3
2

exp

(
ν

σ 2
x − ν2

2σ 2
t
) ∞∑

k=0

(x + 2ka)φ

(
x + 2ka

σ
√

t

)
,



Methodol Comput Appl Probab (2010) 12:293–308 303

while

1

t
3
2

φ

(
δ1t + γ1√

t

) ∞∑

k=0

e−[2(k+1)/t][kγ1−(k+1)γ2][δ1t+γ1−(δ2t+γ2)][(2k + 1)γ1 − 2(k + 1)γ2]

= 1

σ t
3
2

exp

(
ν

σ 2
x − ν2

2σ 2
t
) ∞∑

k=0

[−x + 2(k + 1)a]φ
(

x − 2(k + 1)a

σ
√

t

)
.

By combining the above two identities we obtain the upper expression in Eq. 45. The
last expression in Eq. 45 is obtained by a Fourier transform. �	

We now proceed to the proof of Proposition 1.

Proof of Proposition 1 Observe that

{T1(a) ∈ dt, T2(a) > t, Xt ∈ dx} = {τx ∈ dt, inf
s≤t

Xs ∈ x − da}, (46)

from which we obtain

g(x, t; a, ν, σ ) = ∂

∂a
h(t, x; a, ν, σ ). (47)

This completes the proof of Proposition 1. �	

We can now proceed to the proof of Theorem 2.

Proof of Theorem 2 We use Proposition 1 to obtain

P(T1(a) ∧ T < T2(a) ∧ T) =
∫ T

0

∫ a

0
P(T1(a) ∈ dt, T2(a) > t, Xt ∈ dx), (48)

which completes the proof of Theorem 2. �	

In the case that an investor is not restricted by a finite time-horizon, the probability
that his/her wealth makes a rally of a units before a drawdown of equal units in the
model of Eq. 34 is summarized in the following corollary. This result is easier derived
by using martingale arguments (Hadjiliadis 2005; Hadjiliadis and Vecer 2006) and is
displayed here for completeness.

Corollary 4 In the case of an infinite time-horizon we have

P(T1(a) < T2(a)) = e
2ν

σ2 a − 2ν
σ 2 a − 1

e
2ν

σ2 a + e− 2ν

σ2 a − 2
.

The next corollary draws a connection of our result to the range process of a
Brownian motion.
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Corollary 5 Let Rt = sups≤t Xs − infs≤t Xs be the range process of Eq. 34. Then

P(R(T) ≤ a) =
∞∑

n=1

4n2π2

C2
n

exp

(
−σ 2Cn

2a2
T

){ (
1 − (−1)n cosh(νa/σ 2)

)

×
(

1 + n2π2σ 2

a2
T − 4ν2a2

σ 4Cn

)
− (−1)n νa

σ 2
sinh(νa/σ 2)

}
. (49)

Proof Define the first passage time of range process Rt by

θ(a) = inf{t ≥ 0|Rt = a}, (50)

then
θ(a) = T1(a) ∧ T2(a). (51)

Therefore, we have

P(R(T) ≤ a) = P(θ(a) ≥ T) = 1 − P(θ(a) < T)

= 1 − P(T1(a) ∧ T < T2(a) ∧ T) − P(T1(a) ∧ T > T2(a) ∧ T)

= 1 − ℘(T; a, ν, σ ) − ℘(T; a,−ν, σ ). (52)

The result follows from Theorem 2. �	

The result in Corollary 5 is also seen in Tanré and Vallois (2006). The density of
the range in the special case of a Brownian motion without a drift can be found in
Eq. 3.6 of Feller (1951).

The case of a Brownian motion without a drift is summarized in the following
corollary:

Corollary 6

P(T1(a)∧T <T2(a) ∧ T) = 1

2
−

∑

n≥1,odd

4

n2π2
exp

(
−n2π2σ 2

2a2
T

)
·
(

1 + n2π2σ 2

a2
T

)
.

(53)
We notice that Eq. 53 of Corollary 6 reduces to 1

2 as T → ∞ as expected.
We now proceed to apply these results in the case of a geometric Brownian motion

model.

4 Applications

Consider the case of a stock with geometric Brownian motion dynamics:

dSt = μStdt + σ StdWt, S0 = 1. (54)

Table 3 The probability of
Eq. 60 for σ = 15% and T = 1

100 × α ↓ ν = 10% ν = 12% ν = 15%

20% 0.6173 0.6610 0.7228
30% 0.3449 0.3906 0.4623
50% 0.0575 0.0736 0.1040
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Table 4 The probability of
Eq. 60 for σ = 20% and T = 1

100 × α ↓ ν = 12% ν = 15% ν = 17%

20% 0.6603 0.7002 0.7254
30% 0.5508 0.6028 0.6367
50% 0.2053 0.2468 0.2770

Using Theorem 2, we are in a position to address the following question:
What is the probability that this stock would rise by (100 × α)% before it incurs a

drop of (100 × β)% in a pre-specified time-horizon T?
First observe that

d log St = νdt + σdWt, log S0 = 0, (55)

where ν = μ − 1
2σ 2 represents the logarithm of the return of the stock (Luenberger

1998).
Now define the running maximum and the running minimum of the stock process

{St}
Mt = sup

s≤t
Ss, (56)

Nt = inf
s≤t

Ss. (57)

We also let U1(α) be the first time the stock rises by (100 × α)% from its historical
low and U2(β) the first time that the stock drops by an amount equal to (100 × β)%
from its historical high, where (1 + α)(1 − β) = 1. That is,

U1(α) = inf{ t ≥ 0| St = (1 + α)Nt}, (58)

U2(β) = inf{ t ≥ 0| St = (1 − β)Mt}. (59)

Thus, it is possible to calculate the exact expression for the probability that
a percentage relative rise of (100 × α)% precedes a relative drop of (100 × β)%
(β = α

1+α
) by noticing that

P(U1(α) ∧ T < U2(β) ∧ T) = P(T1(log(1 + α)) ∧ T < T2(− log(1 − β)) ∧ T),

(60)

the latter of which is given in Theorem 2.
In Tables 3 and 4 we calculate the probability of Eq. 60 for specific values of the

yearly logarithmic return ν of a stock and its volatility σ . We fix the time-horizon
to T = 1 year and give (100 × α)% the values 20%, 30%, and 50% respectively. We
notice that both Tables 3 and 4 increase across rows reflecting the fact that as the
return of the stock increases so does the probability of Eq. 60. Moreover, we notice

Table 5 The probability of
Eq. 60 for σ = 15% and T = 1

100 × α ↓ ν = −10% ν = −12% ν = −15%

20% 0.1990 0.1695 0.1312
30% 0.0561 0.0441 0.0302
50% 0.0023 0.0016 0.0008
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Table 6 The probability of
Eq. 60 for σ = 20% and T = 1

100 × α ↓ ν = −12% ν = −15% ν = −17%

20% 0.3163 0.2785 0.2547
30% 0.1800 0.1486 0.1300
50% 0.0280 0.0204 0.0164

that observing the process of Eq. 55 from one unit of time (say [0, 1]) is equivalent to
observing the process {Yt} on the interval [0, σ 2], where

dYt = ν

σ 2
dt + dW̃t, Y0 = 0, (61)

and {W̃t} is a re-scaled Brownian motion given by W̃σ 2t = σ Wt, because they have
the same law. Thus, in the case in which ν > 0 the effect of increasing the volatility
decreases the drift of the process {Yt} while increasing the interval of observation. A
smaller drift delays an upward rally, while a longer period of observation increases
the probability of observing the rally in a finite time-horizon. The numerical results
of Tables 3 and 4 indicate that the latter effect is typically stronger (especially for
bigger α). In the case in which ν < 0, the effect of increasing the volatility increases
the drift and the interval of observation of {Yt}. Thus, in this case, increasing the
volatility results in higher values of the probability in Eq. 60. This fact is clearly seen
by comparing the entries of Tables 5 and 6. The effect of increasing the threshold
α on the probability of Eq. 60 is seen in Fig. 2 for the case in which the volatility
σ is set to 15% (Left) and σ = 20% (Right). In both figures it is seen that the
probability of Eq. 60 decreases roughly exponentially as α increases. However, an
interesting feature which is seen in Fig. 2 (Right) is that for the smaller values of α

in the neighborhood of 0.20 to 0.22, the probability of Eq. 60 initially experiences a
small increase before exponentially decreasing to 0 as α increases. This fact reflects
that if the volatility of a stock is high, it may be beneficial to an investor who makes
decisions based on a the relative change of his/her wealth to favor rallies of moderate
levels before withdrawing his/her investment as this is more likely to precede a
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Fig. 2 A graph of the probability of Eq. 60 for T = 1 year, Left: σ = 15% and ν = 10% (blue line),
ν = 12% (red line), ν = 15% (green line); and Right: σ = 20%, and ν = 12% (blue line), ν = 15%
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drawdown of a given level β = α
1+α

and that this rally will be realized before a pre-
specified time-horizon T.

5 Concluding Remarks

In this paper we derive a closed-form expression for the probability that a rally of
a units precedes a drawdown of equal units in a pre-specified finite time-horizon
for a non-symmetric random walk model. We then generalized this result to the
drifted Brownian motion model, a model for which we are able to also derive a
closed-form expression for the probability of the relevant event. We then apply this
result to address the question of what is the probability that a rally of (100 × α) %
precedes a drawdown of (100 × β) % in a pre-specified time-horizon under geometric
Brownian motion dynamics. An investor usually has a finite time-horizon in which
to make decisions regarding withdrawing or investing more of his/her wealth in a
fund. In this paper we derive closed-form expressions for the probability that his/her
wealth may incur a relative rise of a certain percentage before a relative drop of a
certain percentage in a finite time-horizon. Although the geometric Brownian motion
model is very restrictive and in many cases fails to provide an objective model of
stock returns, it has historically been used as a prototypical model. Moreover, our
derivation may be used as a benchmark in more realistic general dependence models
for which the derivation of a closed form expression for the probability in Eq. 60
would be impossible.

Acknowledgements The authors are grateful to the anonymous referee for his helpful suggestions
in improving the paper. The authors are also grateful to Professor Skiadas for facilitating and
maintaining this correspondence.

References

Anderson TW (1960) A modification of the sequential probability ratio test to reduce the sample
size. Ann Math Stat 31(1):165–197

Chekhlov A, Uryasev S, Zabarankin M (2005) Drawdown measure in portfolio optimization. Int J
Theor Appl Financ 8(1):13–58

Feller W (1951) The asymptotic distribution of the range of sums of independent random variables.
Ann Math Stat 22(3):427–432

Hadjiliadis O (2005) Change-point detection of two-sided alternative in a Brownian motion model
and its connection to the gambler’s ruin problem with relative wealth perception. Ph.D. Thesis,
Columbia University, New York

Hadjiliadis O, Vecer J (2006) Drawdowns preceding rallies in a Brownian motion model. J Quant
Finance 5(5):403–409

Luenberger DG (1998) Investment science. Oxford University Press, Oxford
Magdon-Ismail M, Atiya A (2004) Maximum drawdown. Risk 17(10):99–102
Magdon-Ismail M, Atiya A, Pratap A, Abu-Mostafa Y (2004) On the maximum drawdown of

Brownian motion. J Appl Probab 41(1):147–161
Pospisil L, Vecer J (2008) Portfolio sensitivities to the changes in the maximum and the maximum

drawdown. http://www.stat.columbia.edu/∼vecer/portfsens.pdf
Pospisil L, Vecer J, Hadjiliadis O (2009) Formulas for stopped diffusion processes

with stopping times based on drawdowns and drawups. Stoch Process their Appl.
http://userhome.brooklyn.cuny.edu/ohadjiliadis

Ross S (2008) A first course in probability. Prentice Hall, Englewood Cliffs
Salkuyeh KD (2006) Positive Toeplitz matrices. Int Math Forum 1(22):1061–1065

http://www.stat.columbia.edu/~vecer/portfsens.pdf
http://userhome.brooklyn.cuny.edu/ohadjiliadis


308 Methodol Comput Appl Probab (2010) 12:293–308

Sornette D (2003) Why stock markets crash: critical events in complex financial systems. Princeton
University Press, Princeton

Tanré E, Vallois P (2006) Range of Brownian motion with drift. J Theor Probab 19(1):45–69
Vallois P (1996) The range of a simple random walk on Z. Adv Appl Probab 28(4):1014–1033
Vecer J (2006) Maximum drawdown and directional trading. Risk 19(12):88–92
Vecer J (2007) Preventing portfolio losses by hedging maximum drawdown. Wilmott 5(4):1–8


	Drawdowns and Rallies in a Finite Time-horizon
	Abstract
	Introduction
	Rallies and Drawdowns in the Random Walk Model
	Rallies and Drawdowns in a Brownian Motion Model
	Applications
	Concluding Remarks
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


