Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000	0000	0000000	000000	00

Forecasting prices from level-I quotes in the presence of hidden liquidity

S. Stoikov, M. Avellaneda and J. Reed

December 5, 2011

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
•000000	0000	00000000	000000	00
Backgrou	nd			

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US
 - U.S. Securities and Exchange Commission (SEC) authorized electronic exchanges in 1998
 - Archipelago-Arca-NYSE, Island-Instinet-Inet-NASDAQ, BATS, CME, Tokyo stock exchange, Eurex, London stock exchange

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
•000000	0000	00000000	000000	00
Backgrou	hd			

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US
 - U.S. Securities and Exchange Commission (SEC) authorized electronic exchanges in 1998
 - Archipelago-Arca-NYSE, Island-Instinet-Inet-NASDAQ, BATS, CME, Tokyo stock exchange, Eurex, London stock exchange

- Algorithmic trading
 - Brokers executing client transactions
 - "Optimally" splitting of client orders

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
•000000	0000	00000000	000000	00
Background	ł			

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US
 - U.S. Securities and Exchange Commission (SEC) authorized electronic exchanges in 1998
 - Archipelago-Arca-NYSE, Island-Instinet-Inet-NASDAQ, BATS, CME, Tokyo stock exchange, Eurex, London stock exchange
- Algorithmic trading
 - Brokers executing client transactions
 - "Optimally" splitting of client orders
- High frequency trading
 - Computerized trading strategies characterized by extremely short position-holding periods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Market-making
- Flash crash!

Introduction 000000

Discrete model 0000 Continuous limit

Data analysis 000000

Conclusion 00

Market in the 90s

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000	0000	00000000	000000	00
Market tod	av			

		Bid						Ask	
MM Name	Price	Size	Curn Size	Avg Price	MM Name	Price	Size	Cum Size	Avg Price
				47.960 🖓	NSDQ				47.970
				47.960	EDGEA				47.970
BATS				47.960	CHX				47.970
				47.960	CBSX				47.970
				47.960	NSX				47.970
				47.952	BEX				47.970
				47.952	ARCA				47.970
				47.952	BATS				47.970
				47.952	DRCTEDGE				47.970
				47.951	NSDQ				47.973
				47.951	ARCA				47.974
				47.946	NSDQ				47.977
				47.945	ARCA				47.978
				47.941	NSDQ				47.981
				47.940	ARCA				47.983
TMBR				47.940	NSDQ				47.985
				47.937	ARCA				47.987
				47.935	NSDQ				47.990
				47.935	NSDQ				47.992
				47.935	NSDQ				47.995
				47.932	TMBR				47.995
				47.929	UBSS				47.995
				47.925	NSDQ				47.998
				47.922	HOSN				47.998
				47.919	NSDQ				48.000
				47.916	NSDQ				48.004
				47.916	UBSS				48.004
				47.913	NSDQ				48.007
				47,909	NSDQ				48.010
				47.906	UBSS				48.010
				47.906	NSDQ				48.012
NSDO	47.82	520	21,308	47 904 0	NSDO	48.11	482	25 927	48.014

(ロ)、(型)、(E)、(E)、 E) の(の)

This is often referred to as "the order book"

Introduction 0000000 Discrete mode 0000 Continuous limit

Data analysis 000000 Conclusion 00

A simplified view of the trading world

Agent	Type of decision	Data
Mutual/hedge fund	Investment	Daily close prices
Banks, brokers	Order splitting	5 min prices
Algorithms, HFT	Market vs. limit, order routing	Level I trades and quotes
Electronic market	Order matching, messenging	Level II trades and quotes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000000	00
Literature				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Price impact and optimal execution
 - Almgren and Chriss (2000)
 - Schied and Schoneborn (2007)
 - Bouchaud (2009)

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000000	00
Literature				

- Price impact and optimal execution
 - Almgren and Chriss (2000)
 - Schied and Schoneborn (2007)
 - Bouchaud (2009)
- Market microstructure and the information content of the order book

- Hasbrouck (1993)
- Parlour and Seppi (2008)
- Hellstroem and Simonsen (2009)
- Cao, Hansch and Wang (2009)

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000000	00
Literature				

- Price impact and optimal execution
 - Almgren and Chriss (2000)
 - Schied and Schoneborn (2007)
 - Bouchaud (2009)
- Market microstructure and the information content of the order book
 - Hasbrouck (1993)
 - Parlour and Seppi (2008)
 - Hellstroem and Simonsen (2009)
 - Cao, Hansch and Wang (2009)
- Limit order book models, zero-intelligence
 - Smith, Farmer, Gillemot, and Krishnamurthy (2003)

- Cont, Stoikov and Talreja (2010)
- Cont, De Larrard (2011)

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
00000€0	0000	00000000	000000	00
NA 11 11				

Model objectives

- Making short term price predictions
 - 1 Given the best bid/ask quotes
 - 2 Given statistics on the arrival rates of orders
 - **3** Given a single *hidden liquidity* parameter

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
00000€0	0000	00000000	000000	00
NA 1 1 1 1				

Model objectives

- Making short term price predictions
 - 1 Given the best bid/ask quotes
 - 2 Given statistics on the arrival rates of orders
 - **3** Given a single *hidden liquidity* parameter
- Improving the micro-price or "fair" price

$$p_{micro} = p_{bid} \left(rac{q_{ask}}{q_{ask} + q_{bid}}
ight) + p_{ask} \left(rac{q_{bid}}{q_{ask} + q_{bid}}
ight)$$

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
00000€0	0000	00000000	000000	00
NA 1 1 1 1				

Model objectives

- Making short term price predictions
 - 1 Given the best bid/ask quotes
 - 2 Given statistics on the arrival rates of orders
 - **3** Given a single *hidden liquidity* parameter
- Improving the micro-price or "fair" price

$$p_{micro} = p_{bid} \left(rac{q_{ask}}{q_{ask} + q_{bid}}
ight) + p_{ask} \left(rac{q_{bid}}{q_{ask} + q_{bid}}
ight)$$

• Comparing the quality of various exchanges

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
00000€0	0000	00000000	000000	00
NA 1 1 1 1				

Model objectives

- Making short term price predictions
 - **1** Given the best bid/ask quotes
 - 2 Given statistics on the arrival rates of orders
 - **3** Given a single *hidden liquidity* parameter
- Improving the micro-price or "fair" price

$$p_{micro} = p_{bid} \left(rac{q_{ask}}{q_{ask} + q_{bid}}
ight) + p_{ask} \left(rac{q_{bid}}{q_{ask} + q_{bid}}
ight)$$

- Comparing the quality of various exchanges
- Estimating hidden liquidity

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000●	0000	00000000	000000	00
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 The discrete model

- A queuing model for level 1 quotes
- The probability of an upward move in price

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000		00000000	000000	00
Outline				

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 The discrete model

- A queuing model for level 1 quotes
- The probability of an upward move in price

2 The diffusion limit

- Diffusion approximation
- Hidden liquidity and boundary conditions
- Closed form solution

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
○○○○○○●	0000	00000000	000000	00
Outline				

1 The discrete model

- A queuing model for level 1 quotes
- The probability of an upward move in price
- 2 The diffusion limit
 - Diffusion approximation
 - Hidden liquidity and boundary conditions
 - Closed form solution
- 3 Data analysis
 - Trades and quotes (TAQ) data
 - Estimating hidden liquidity

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
○○○○○○●	0000	00000000	000000	00
Outline				

1 The discrete model

- A queuing model for level 1 quotes
- The probability of an upward move in price
- 2 The diffusion limit
 - Diffusion approximation
 - Hidden liquidity and boundary conditions
 - Closed form solution
- 3 Data analysis
 - Trades and quotes (TAQ) data
 - Estimating hidden liquidity
- 4 Conclusion

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	●000	0000000	000000	00

Modeling Level I quotes

Assume the bid-ask spread is 1 tick One of the following must happen first:

- 1 The ask queue is depleted and the price "moves up".
- 2 The bid queue is depleted and the price "moves down".

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	0000000	000000	00

A continuous-time Markov chain

Let (X_t, Y_t) be the bid and ask sizes. Changes in the bid and ask sizes occur at exponential times with rates:

- λ = arrival rate of orders at the ask (bid)
- μ = departure rate of orders at the ask (bid)
- $\eta =$ rate of simultaneous arrival at the bid (ask) and departure at the ask (bid)

h = minimum order size

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000	0000	0000000	000000	00

Infinitesimal means and variances

$$E [X_{t+\Delta t} - X_t | X_t, Y_t] = h(\lambda - \mu) \Delta t + o(\Delta t)$$

$$E [Y_{t+\Delta t} - Y_t | X_t, Y_t] = h(\lambda - \mu) \Delta t + o(\Delta t)$$

$$E [(X_{t+\Delta t} - X_t)^2 | X_t, Y_t] = h^2 (\lambda + \mu + 2\eta) \Delta t + o(\Delta t)$$

$$E [(Y_{t+\Delta t} - Y_t)^2 | X_t, Y_t] = h^2 (\lambda + \mu + 2\eta) \Delta t + o(\Delta t)$$

$$E [(X_{t+\Delta t} - X_t)(Y_{t+\Delta t} - Y_t) | X_t, Y_t] = h^2 (2\eta) \Delta t + o(\Delta t).$$

If $\lambda = \mu$, drifts and the variances of the queue sizes are given by

$$m_X = m_Y = 0$$

$$\sigma_X^2 = \sigma_Y^2 = 2h^2 (\lambda + \eta)$$

$$\rho = \frac{-\eta}{\lambda + \eta}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 0000000 Discrete model

Continuous limit

Data analysis 000000

Conclusion 00

The probability of an upward move in price

- τ_X is the first time the bid size hits zero
- τ_Y is the first time the ask size hits zero
- The probability that the price moves up before it moves down

 $Prob.\{\Delta P > 0 \,|\, X_t, Y_t\} = Prob.\{\tau_Y < \tau_X \,|\, X_t, Y_t\} = p(X_t, Y_t)$

- This probability may be computed using Laplace transform methods (see Cont. et al. (2010))
- Here we will look at the diffusion limit.

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	•0000000	000000	00
<u> </u>				

Continuous limit

- Assume that the average queue sizes are much larger than the minimum size < X >=< Y >≫ h
- Assume that the frequency of orders per unit time is high, $\lambda,\eta\gg 1.$
- Define the coarse-grained variables

$$x = X / \langle X \rangle, \quad y = Y / \langle Y \rangle,$$

 $\sigma^2 = \frac{2h^2(\lambda + \eta)}{\langle X \rangle^2},$

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	•0000000	000000	00
. .				

Continuous limit

- Assume that the average queue sizes are much larger than the minimum size < X >=< Y >≫ h
- Assume that the frequency of orders per unit time is high, $\lambda,\eta\gg 1.$
- Define the coarse-grained variables

$$x = X / \langle X \rangle, \ y = Y / \langle Y \rangle,$$

 $\sigma^2 = rac{2h^2(\lambda + \eta)}{\langle X \rangle^2},$

• The process (x_t, y_t) can be approximated by the diffusion

$$dx_t = \sigma dW_t$$
$$dy_t = \sigma dZ_t$$
$$E(dWdZ) = \rho dt,$$

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000	0000	0000000	000000	00

The diffusion limit

X= bid size Y = ask size

 $X_{t} = \sigma W_{t}$ $Y_{t} = \sigma Z_{t}$ $E(dW_{t}dZ_{t}) = \rho dt$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

х

Introduction 0000000	Discrete model	Con 000	tinuous limit 00000	D 0	ata analysis 00000	Conclusion 00
— .	 					

The partial differential equation

• Let $u(x, y) = P(\tau_y < \tau_x | x_t = x, y_t = y)$ be the probability that the next price move is up, given the bid and ask sizes.

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	0000000	000000	00

The partial differential equation

- Let $u(x, y) = P(\tau_y < \tau_x | x_t = x, y_t = y)$ be the probability that the next price move is up, given the bid and ask sizes.
- It solves the following PDE:

$$\sigma^2 (u_{xx} + 2\rho u_{xy} + u_{yy}) = 0, \quad x > 0, \ y > 0,$$

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000	0000	0000000	000000	00

The partial differential equation

- Let u(x, y) = P(τ_y < τ_x | x_t = x, y_t = y) be the probability that the next price move is up, given the bid and ask sizes.
- It solves the following PDE:

$$\sigma^2 (u_{xx} + 2\rho u_{xy} + u_{yy}) = 0, \quad x > 0, \ y > 0,$$

Boundary conditions

$$u(0, y) = 0$$
, for $y > 0$,
 $u(x, 0) = 1$, for $x > 0$.

The price moves as soon as x_t or y_t hit zero

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000		000000	00
Hidden li	auidity			

• Empirically, the probability of the price going up when the ask size is small does not tend to zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000		000000	00
Hidden li	auidity			

- Empirically, the probability of the price going up when the ask size is small does not tend to zero.
- Orders on other exchanges prevent the price from moving up (REG NMS)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000		000000	00
Hidden li	auiditv			

- Empirically, the probability of the price going up when the ask size is small does not tend to zero.
- Orders on other exchanges prevent the price from moving up (REG NMS)
- Hidden or iceberg orders

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	0000€000	000000	00
Boundary co	ondition			

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• We model a fixed hidden liquidity H

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000000	00

Boundary condition

- We model a fixed hidden liquidity H
- This translates in

$$\sigma^2 \left(p_{xx} + 2\rho p_{xy} + p_{yy} \right) = 0, \quad x > -H, \ y > -H,$$

with the boundary condition

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000000	00

Boundary condition

- We model a fixed hidden liquidity H
- This translates in

$$\sigma^2 \left(p_{xx} + 2\rho p_{xy} + p_{yy} \right) = 0, \quad x > -H, \ y > -H,$$

with the boundary condition

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	0000000	000000	00

Boundary condition

- We model a fixed hidden liquidity H
- This translates in

$$\sigma^2 \left(p_{xx} + 2\rho p_{xy} + p_{yy} \right) = 0, \quad x > -H, \ y > -H,$$

with the boundary condition

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

• In other words we can solve the problem with boundary conditions at zero and use the relation

$$p(x, y; H) = u(x + H, y + H)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000		000000	00
Solution				

Theorem

The probability of an upward move in the mid price is given by

$$p(x, y; H) = u(x + H, y + H),$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where

$$u(x,y) = \frac{1}{2} \left(1 - \frac{\operatorname{Arctan}\left(\sqrt{\frac{1+\rho}{1-\rho}}\frac{y-x}{y+x}\right)}{\operatorname{Arctan}\left(\sqrt{\frac{1+\rho}{1-\rho}}\right)} \right).$$
(2)

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000000	00

Uncorrelated queues ($\rho = 0$)

Problem

$$p_{xx} + p_{yy} = 0, \quad x > -H, \ y > -H,$$

and

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Discrete model	Continuous limit	Data analysis	Conclusio
0000000	0000			00

Uncorrelated queues ($\rho = 0$)

Problem

$$p_{xx} + p_{yy} = 0, \quad x > -H, \ y > -H,$$

and

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

Solution

$$p(x, y; H) = \frac{2}{\pi} Arctan\left(\frac{x+H}{y+H}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusio
0000000	0000	0000000	000000	00

Perfectly negatively correlated queues (ho = -1)

Problem

$$p_{xx} - 2p_{xy} + p_{yy} = 0, \quad x > -H, \ y > -H,$$

and

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

Introduction	Discrete model	Continuous limit	Data analysis	Conclusio
0000000	0000	0000000	000000	00

Perfectly negatively correlated queues (ho = -1)

Problem

$$p_{xx} - 2p_{xy} + p_{yy} = 0, \quad x > -H, \ y > -H,$$

and

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

Solution

$$p(x, y; H) = \frac{x + H}{x + y + 2H}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	●00000	00
The data				

• Best bid and ask quotes for tickers QQQQ, XLF, JPM, and AAPL, over the first five trading days in 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	●00000	00
The data				

- Best bid and ask quotes for tickers QQQQ, XLF, JPM, and AAPL, over the first five trading days in 2010
- All four tickers are traded on various exchanges (NASDAQ, NYSE and BATS)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Best bid and ask quotes for tickers QQQQ, XLF, JPM, and AAPL, over the first five trading days in 2010
- All four tickers are traded on various exchanges (NASDAQ, NYSE and BATS)
- Using the perfectly negatively correlated queues model, i.e.

$$p(x, y; H) = \frac{x + H}{x + y + 2H}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

we obtain the "implied hidden size" for each ticker and exchange.

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	0●0000	00
Data sam	nple			

Obtained from the consolidated quotes of the NYSE-TAQ database, provided by WRDS $% \left({{\left({{{\rm{A}}} \right)_{\rm{A}}}} \right)$

symbol	date	time	bid	ask	bsize	asize	exchange
QQQQ	2010-01-04	09:30:23	46.32	46.33	258	242	Т
QQQQ	2010-01-04	09:30:23	46.32	46.33	260	242	Т
QQQQ	2010-01-04	09:30:23	46.32	46.33	264	242	Т
QQQQ	2010-01-04	09:30:24	46.32	46.33	210	271	Р
QQQQ	2010-01-04	09:30:24	46.32	46.33	210	271	Р
QQQQ	2010-01-04	09:30:24	46.32	46.33	161	271	Р

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
000000	0000	0000000	00000	00

Summary statistics

Ticker	Exchange	num qt	qt/sec	spread	bsize+asize	price
XLF	NASDAQ	0.7M	7	0.010	8797	15.02
XLF	NYSE	0.4M	4	0.010	10463	15.01
XLF	BATS	0.4M	4	0.011	7505	14.99
QQQQ	NASDAQ	2.7M	25	0.010	1455	46.30
QQQQ	NYSE	4.0M	36	0.011	1152	46.27
QQQQ	BATS	1.6M	15	0.011	1055	46.28
JPM	NASDAQ	1.2M	11	0.011	87	43.81
JPM	NYSE	0.7M	6	0.012	47	43.77
JPM	BATS	0.6M	5	0.014	39	43.82
AAPL	NASDAQ	1.3M	13	0.034	9.1	212.50
AAPL	NYSE	0.4M	4	0.046	5.7	212.66
AAPL	BATS	0.6M	6	0.054	4.5	212.43

Table: Summary statistics

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000●00	00
Estimatio	on procedure			

1 We filter the data set by exchange and ticker

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000●00	00
Estimation	procedure			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1 We filter the data set by exchange and ticker
- 2 We "bucket" the bid and ask sizes in deciles

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000		00000000	000●00	00
Estimatio	n procedure			

- 1 We filter the data set by exchange and ticker
- 2 We "bucket" the bid and ask sizes in deciles
- S For each bucket (i, j), we compute the empirical probability that the price goes up u_{ij}.

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000		00000000	000●00	00
Estimatio	on procedure			

- 1 We filter the data set by exchange and ticker
- 2 We "bucket" the bid and ask sizes in deciles
- **3** For each bucket (i, j), we compute the empirical probability that the price goes up u_{ij} .
- We count the number of occurrences of the (i, j) bucket, and denote this distribution d_{ij}.

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000	0000	00000000	000●00	00
Estimatio	n procedure			

- 1 We filter the data set by exchange and ticker
- 2 We "bucket" the bid and ask sizes in deciles
- **3** For each bucket (i, j), we compute the empirical probability that the price goes up u_{ij} .
- We count the number of occurrences of the (*i*, *j*) bucket, and denote this distribution d_{ij}.
- **5** We minimize least squares for the negatively correlated queues model, i.e.

$$\min_{H} \sum_{i,j=1}^{10} \left[\left(u_{ij} - \frac{i+H}{i+j+2H} \right)^2 d_{ij} \right]$$

and obtain an implied hidden liquidity H for each exchange.

Introduction 0000000 Discrete mode 0000 Continuous limit

Data analysis 0000●0

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Conclusion 00

Empirical probability (XLF on NASDAQ)

decile	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.50	0.38	0.25	0.25	0.32	0.26	0.23	0.23	0.15
0.2	0.61	0.50	0.47	0.41	0.36	0.40	0.38	0.27	0.20
0.3	0.75	0.53	0.50	0.43	0.39	0.37	0.43	0.39	0.28
0.4	0.74	0.58	0.57	0.50	0.42	0.42	0.47	0.46	0.37
0.5	0.68	0.64	0.61	0.58	0.50	0.51	0.48	0.49	0.41
0.6	0.74	0.60	0.63	0.58	0.49	0.50	0.50	0.50	0.49
0.7	0.78	0.62	0.57	0.53	0.52	0.50	0.50	0.60	0.53
0.8	0.77	0.73	0.61	0.54	0.51	0.50	0.40	0.50	0.42
0.9	0.85	0.79	0.72	0.63	0.60	0.51	0.47	0.57	0.50

Introduction 0000000 Discrete mode 0000 Continuous limit

Data analysis 00000●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion 00

Model probabilities (XLF on NASDAQ)

decile	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21	0.19
0.2	0.58	0.50	0.44	0.39	0.35	0.32	0.29	0.27	0.25
0.3	0.64	0.56	0.50	0.45	0.41	0.37	0.35	0.32	0.30
0.4	0.69	0.61	0.55	0.50	0.46	0.42	0.39	0.37	0.34
0.5	0.72	0.65	0.59	0.54	0.50	0.46	0.43	0.41	0.38
0.6	0.75	0.68	0.63	0.58	0.54	0.50	0.47	0.44	0.42
0.7	0.77	0.71	0.65	0.61	0.57	0.53	0.50	0.47	0.45
0.8	0.79	0.73	0.68	0.63	0.59	0.56	0.53	0.50	0.47
0.9	0.81	0.75	0.70	0.66	0.62	0.58	0.55	0.53	0.50

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000		00000000	000000	●○
Results				

Ticker	NASDAQ	NYSE	BATS
XLF	0.15	0.17	0.17
QQQQ	0.21	0.04	0.18
JPM	0.17	0.17	0.11
AAPL $s = 1$	0.16	0.90	0.65
AAPL <i>s</i> = 2	0.31	0.60	0.64
AAPL $s = 3$	0.31	0.69	0.63

Table: Implied hidden liquidity across tickers and exchanges

Introduction	Discrete model	Continuous limit	Data analysis	Conclusion
0000000		00000000	000000	⊙●
Future re	search			

- Level 2 data, predictions on longer time scales
- Bid ask spreads greater than 1
- High frequency volatility estimation
- Optimal execution with limit and market orders
- More general dynamics for the bid and ask processes

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ