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Drawdowns preceding rallies in the Brownian

motion model
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We study drawdowns and rallies of Brownian motion. A rally is defined as the difference of the
present value of the Brownian motion and its historical minimum, while the drawdown is
defined as the difference of the historical maximum and its present value. This paper deter-
mines the probability that a drawdown of a units precedes a rally of b units. We apply this
result to examine stock market crashes and rallies in the geometric Brownian motion model.
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1. Introduction

In this paper we determine the probability that a
drawdown precedes a rally in the Brownian motion
model. The probabilities are computed by means of the
distribution function of the random variables yþT1ðaÞ

and
y�T2ðbÞ

, where yþT1ðaÞ
represents the value of the upward rally

when the drawdown process reaches the level a for the
first time, and y�T2ðbÞ

represents the value of the drawdown
when the upward rally process reaches the level b for the
first time. Using the results of Taylor (1975) and
Lehoczky (1977) concerning the distribution of a stopped
drifted Brownian motion at the first time of the downfall
of level a, we are able to show that the probability density
functions of yþT1ðaÞ

and y�T2ðbÞ
are exponential, but with a

discrete mass at 0. The paper concludes with a solution to
the problem of computing the probability that a drop of
ð100 � �Þ% from the running maximum of a stock price
occurs before a rally of ð100 � �Þ% from its running
minimum, given that the stock price follows a geometric
Brownian motion.

Risk management of drawdowns and portfolio
optimization with drawdown constraints is becoming
increasingly important among practitioners. Chekhlov
et al. (2005) studied drawdown measures in portfolio
optimization. Magdon-Ismail et al. (2004) determined

the distribution of the maximum drawdown of
Brownian motion.

Our results are related to a recent paper by Meijilson
(2003), where the results of Taylor (1975) and Lehoczky
(1977) are used to derive the expected time to a given
drawdown of Brownian motion, as well as the stationary
distribution of the drawdown process. An alternative
derivation of the above expected value based on the
expected delay of the CUSUM stopping time appears
in Hadjiliadis and Moustakides (2005). The CUSUM
stopping time was first proposed by Page (1954) and
was used subsequently as a means of detecting a regime
change in the Brownian motion model (Beibel 1996,
Shiryaev 1996, Moustakides 2004).

In the next section we first outline the main results
of the paper. We then proceed to give an example of an
application of these results in the examination of
stock market crashes and rallies. We finally give some
concluding remarks.

2. Results

Consider the process Xt with the following dynamics:

Xt ¼ �Wt þ �t,

where �, � 2 R and Wt is a standard Brownian motion
process.*Corresponding author. Email: vecer@stat.columbia.edu
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The quantity

Xt � inf
s2½0, t�

Xs

measures the size of the rally, comparing the present value
of the process with its historical minimum, while the
quantity

sup
s2½0, t�

Xs � Xt

measures the size of the drawdown, comparing the
present value of the process with its historical maximum.

The aim of this section is to determine the probability
that a drawdown of size a precedes a rally of size b.
We introduce the stopping times:

T1ðaÞ ¼ inf t � 0: sup
s2½0, t�

Xs � Xt ¼ a, a 2 Rþ

( )
,

and

T2ðbÞ ¼ inf t � 0: Xt � inf
s2½0, t�

Xs ¼ b, b 2 Rþ

� �
:

Consider the stopping time Tða, bÞ ¼ T1ðaÞ ^ T2ðbÞ.
The stopping times T1(a) and T2(b) indicate, respectively,
the first time that the drawdown process reaches the
critical level a, T1(a), and the first time the upward rally
process reaches the critical level b, T2(b). In this section,
we compute the probabilities of the event fTða, bÞ ¼
T1ðaÞg, which represents the event that a drawdown
of size a occurs before the rally of size b, and
fTða, bÞ ¼ T2ðbÞg, which represents the event that a rally
of size b occurs before the drawdown of size a.

In order to simplify notation we introduce the
following processes:

mþ
t :¼ inf

s2½0, t�
Xs,

m�
t :¼ inf

s2½0, t�
ð�XsÞ ¼ � sup

s2½0, t�
Xs,

yþt :¼ Xt �mþ
t ,

y�t :¼ �Xt �m�
t :

Using the above notation, the stopping times T1(a) and
T2(b) become

T1ðaÞ ¼ inf t � 0: y�t ¼ a, a 2 Rþ

� �
,

T2ðbÞ ¼ inf t � 0: yþt ¼ b, b 2 Rþ

� �
:

Theorem 2.1: Let Xt ¼ �Wt þ �t be a standard
Brownian motion with drift parameter � 2 R, and variance
parameter � 2 R; T, T1 and T2 are the stopping times
defined above. We distinguish the following two cases:

(1) b � a > 0
The probability of the drawdown preceding the
rally, or the rally preceding the drawdown, is given,

respectively, by

PðTða,bÞ ¼T1ðaÞÞ ¼mAþð1�mAÞ

� 1� exp �
2�=�2

eð2�=�
2Þa� 1

� ðb� aÞ

 !" #
,

ð1Þ

PðTða,bÞ ¼T2ðbÞÞ ¼ ð1�mAÞ � exp �
2�=�2

eð2�=�
2Þa� 1

� ðb� aÞ

 !
,

ð2Þ

where

mA ¼
e�ð2�=�2

Þa
þ ð2�=�2

Þa� 1

eð2�=�
2Þa þ e�ð2�=�2Þa � 2

: ð3Þ

(2) a � b > 0
The probability of the drawdown preceding the
rally, or the rally preceding the drawdown, is given,
respectively, by

PðTða,bÞ ¼T1ðaÞÞ ¼ ð1�mBÞ

� exp �
2�=�2

1� e�ð2�=�2Þb
� ða� bÞ

 !
, ð4Þ

PðTða,bÞ ¼T2ðbÞÞ ¼mBþð1�mBÞ

� 1� exp �
2�=�2

1� e�ð2�=�2Þb
� ða� bÞ

 !" #
,

ð5Þ

where

mB ¼
eð2�=�

2
Þb
� ð2�=�2

Þb� 1

eð2�=�
2Þb þ e�ð2�=�2Þb � 2

: ð6Þ

The proof of the theorem uses the following
proposition.

Proposition 2.2: The probability distribution functions of
the random variables yþT1ðaÞ

and y�T2ðbÞ are given by

ð1Þ Pð yþT1ðaÞ
¼ 0Þ ¼ mA, ð7Þ

Pð yþT1ðaÞ
2 drÞ ¼ ð1�mAÞ �

"
2�=�2

eð2�=�
2Þa � 1

� exp �
2�=�2

eð2�=�
2Þa � 1

� r

 !#
dr, r > 0,

ð8Þ

where mA is given by equation (3).

ð2Þ Pð y�T2ðbÞ
¼ 0Þ ¼ mB, ð9Þ

Pð y�T2ðbÞ
2 drÞ ¼ ð1�mBÞ �

"
2�=�2

1� e�ð2�=�2Þb

� exp �
2�=�2

1� e�ð2�=�2Þb
� r

 !#
dr, r > 0,

ð10Þ

where mB is given by equation (6).
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Before we proceed to the proof of the two above
results, let us notice that all of equations (1)–(6), as well
as the distributions of the random variables yþT1ðaÞ

and
y�T2ðbÞ, as they appear in Proposition 2.2, depend on the
ratio 2�=�2. This ratio is called the adjustment coefficient
and appears in the insurance risk literature (Asmussen
2000). To illustrate the probabilities that appear in
Theorem 2.1, we include a graph of the densities of the
random variables yþT1ðaÞ

and y�T2ðbÞ
(see figure 1).

In order to prove Proposition 2.2 and Theorem 2.1,
we will need the following two lemmas.

Lemma 2.3: For a, b 2 Rþ, we have

E ½T1ðaÞ� ¼
eð2�=�

2
Þa
� ð2�=�2

Þa� 1

ð2�=�2Þ
2

, ð11Þ

E ½T2ðbÞ� ¼
e�ð2�=�2

Þb
þ ð2�=�2

Þb� 1

ð2�=�2Þ
2

: ð12Þ

Proof: Let gðxÞ ¼ e�ð2�=�2
Þx
þ ð2�=�2

Þx� 1. By applying
Itô’s rule to the process gð yþt Þ we get

dgð yþt Þ ¼ �g0ð yþt ÞdWt þ �g0ð yþt Þdt� g0ð yþt Þdm
þ
t

þ
1

2
�2g00ð yþt Þdt: ð13Þ

We notice that the third term on the right-hand side of the
above equality disappears because dmþ

t 6¼ 0 only when
yþt ¼ 0 and g0ð0Þ ¼ 0. We also notice that the function g
satisfies the second-order differential equation

�g0ðxÞ þ
1

2
�2g00ðxÞ ¼

2�2

�2
: ð14Þ

Solving equation (13), we get

gðyþt Þ�gð0Þ ¼

Z t

0

�g0ðyþs ÞdWsþ

Z t

0

�g0ðyþt Þþ
1

2
g00ðyþt Þ

� �
ds:

ð15Þ

Let

Sn ¼ inf t � 0;
2�2

�2
t � n

( )
:

Let Tn
2 ðbÞ ¼ T2ðbÞ ^ Sn. Obviously, Tn

2 ðbÞ is a.s. finite. On
the event fTn

2 ðbÞ � tg, we have fyþt � bg. Consequently,

E

Z Tn
2 ðbÞ

0

2�2

�2
g0ð yþs Þds

" #
� ðg0ðbÞÞ2n < 1: ð16Þ

Evaluating (15) at Tn
2 ðbÞ, and taking expectations while

using equations (14) and (16), we get

E g yþTn
2
ðbÞ

� �h i
¼

2�2

�2
E ½Tn

2 ðbÞ�:

But

gðbÞ � E g yþTn
2
ðbÞ

� �h i
: ð17Þ

Hence we have that

gðbÞ �
2�2

�2
E ½Tn

2 ðbÞ� �
2�2

�2
E
	
1fTn

2
¼1g



:

Letting n ! 1 and using the bounded convergence
theorem, we deduce that T2(b) is finite a.s. as well.

Evaluating both sides of equation (15) at T2(b), and
taking expectations of both sides, while using
equation (14), and the fact that the quadratic variation
of the stochastic integral

R T2ðbÞ

0 g0ð yþt ÞdWt is finite (this
follows from equation (16) and the a.s. finiteness of
T2(b)), we get

gðbÞ ¼
2�2

�2
E ½T2ðbÞ�: ð18Þ

Consequently,

E ½T2ðbÞ� ¼
gðbÞ

2�2=�2
: ð19Þ

Similarly, we can show that

E ½T1ðaÞ� ¼
gð�aÞ

ð2�=�2Þ
2
: ð20Þ

This concludes the proof of the lemma. œ

Figure 1. (a) Distribution of the random variable yþT1ðaÞ
, and

the gray area marks PðTða, bÞ ¼ T1ðaÞÞ, in the case where
b � a. (b) Distribution of the random variable y�T2ðbÞ, and the
gray area marks PðTða, bÞ ¼ T2ðbÞÞ, in the case where a � b.
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Lemma 2.4: We have

yþt þ y�t ¼ max sup
s�t

yþs , sup
s�t

y�s

� �
:

Proof: Observe that

yþt þ y�t ¼ �mþ
t �m�

t : ð21Þ

We notice that the process yþt þ y�t can only increase
when either Xt ¼ mþ

t or �Xt ¼ m�
t , both of which cannot

happen at the same time, since that would imply that
yþt þ y�t is 0. Therefore, yþt þ y�t is a constant as a func-
tion of time unless either yþt ¼ 0 or y�t ¼ 0, at which
instant t, we simultaneously have

(1) maxfyþt , y
�
t g ¼ maxffsups�t y

þ
s , sups�t y

�
s gg,

(2) sups�tðy
þ
s þ y�s Þ ¼ yþt þ y�t .

This completes the proof of the lemma. œ

As a consequence of this lemma we have

yþT1ðaÞ
¼ max

t�T1ðaÞ
yþt � a

� �
_ 0, ð22Þ

y�T2ðbÞ ¼ max
t�T2ðbÞ

y�t � b

� �
_ 0: ð23Þ

Finally, in order to proceed to the proof of
Proposition 2.2 and Theorem 2.1, we will use the results
of Taylor (1975) and Lehoczky (1977). Taylor computes
the bivariate Laplace transform of XT1ðaÞ and T1(a),
where T1 is defined as above. Lehoczky pointed out that
the random variable XT1ðaÞ þ a ¼ supt�T1ðaÞ

Xt has the
exponential distribution

XT1ðaÞ þ a � exp
2�=�2

eð2�=�
2Þa � 1

 !
: ð24Þ

Note that the exponential parameter becomes equal to 1/a
in the case when �¼ 0. Now we can proceed to the proof
of Proposition 2.2 and then to the proof of Theorem 2.1.

Proof (Proof of Proposition 2.2): We will only compute
the probability density function of the random variable
yþT1ðaÞ

since the computation of the probability density
function of the random variable y�T2ðbÞ

is done in a similar
way. From equation (22), it follows that

Pð yþT1ðaÞ
¼ 0Þ ¼ P max

t�T1ðaÞ
yþt < a

� �
, ð25Þ

while

Pð yþT1ðaÞ
2 drÞ ¼ P max

t�T1ðaÞ
yþt � a

� �

� P yþT1ðaÞ
2 dr

��� max
t�T1ðaÞ

yþt � a

� �

¼ PðyþT1ðaÞ
> 0Þ � PðyþT1ðaÞ

2 drj yþT1ðaÞ
> 0Þ,

r > 0: ð26Þ

In the following discussion we first demonstrate

Lð yþT1ðaÞ
j yþT1ðaÞ

> 0Þ ¼ LðXT1ðaÞ þ aÞ: ð27Þ

To see this, let

R1 ¼ sup t � T1ðaÞ; y
þ
t ¼ 0

� �
: ð28Þ

Fix r > 0. Then

P yþT1ðaÞ
2 drj yþT1ðaÞ

> 0
� �

¼
P XT1ðaÞ � infs�T1ðaÞ Xs 2 dr
� 

P maxt�T1ðaÞ y

þ
t � a

� 

¼

PðXT1ðaÞ � XR1
2 drjR1 < T1ðaÞÞ

P maxt�T1ðaÞ Xt � XR1
� ajR1 < T1ðaÞ

� 

¼

P XT1ðaÞ � XR1
2 drjR1 < T1ðaÞ

� 

P maxR1�t�T1ðaÞ Xt � XR1

� ajR1 < T1ðaÞ
� 


¼
PðXT1ðaÞ 2 drÞ

Pðmaxt�T1ðaÞ Xt � aÞ

¼
�e��re��adr

e��a ¼ �e��rdr ¼ PðXT1ðaÞ þ a 2 drÞ,

where

� ¼
2�=�2

1� e�ð2�=�2Þa
:

Note that the third equality holds because conditional on
R1<T1ðaÞ, infs�T1ðaÞ Xs ¼ infs�R1

Xs, and makt�T1ðaÞXt ¼

maxR1 � t�T1ðaÞXt.
Therefore, we get

Pð yþT1ðaÞ
2 drj yþT1ðaÞ

> 0Þ � exp
2�=�2

eð2�=�
2Þa � 1

 !
, r > 0:

ð29Þ

From equation (22), it follows that

Pð yþT1ðaÞ
¼ 0Þ ¼ PðT1ðaÞ < T2ðaÞÞ: ð30Þ

To compute PðT1ðaÞ < T2ðaÞÞ, we first notice that

T1ðaÞ ¼ Tða, bÞ þ ðT1ðaÞ � Tða, bÞÞ1fTða, bÞ¼T2ðbÞg, ð31Þ

T2ðbÞ ¼ Tða, bÞ þ ðT2ðbÞ � Tða, bÞÞ1fTða, bÞ¼T1ðaÞg: ð32Þ

Taking expectations we get

E ½T1ðaÞ� ¼ E ½Tða, bÞ� þ E ½ðT1ðaÞ � Tða, bÞÞ1fTða, bÞ¼T2ðbÞg�,

ð33Þ

E ½T2ðbÞ� ¼ E ½Tða, bÞ� þ E ½ðT2ðbÞ � Tða, bÞÞ1fTða, bÞ¼T1ðaÞg�:

ð34Þ

With a¼ b and equation (22), it follows that

E ½T1ðaÞ� ¼ E ½Tða, aÞ� þ E ½T1ðaÞ� � PðT2ðaÞ < T1ðaÞÞ, ð35Þ

E ½T2ðaÞ� ¼ E ½Tða, aÞ� þ E ½T2ðaÞ� � PðT1ðaÞ < T2ðaÞÞ: ð36Þ

Using

PðT1ðaÞ < T2ðaÞÞ þ PðT2ðaÞ < T1ðaÞÞ ¼ 1

406 O. Hadjiliadis and J. Vec̆er̆



and equations (35) and (36), we conclude that

PðT1ðaÞ < T2ðaÞÞ ¼
E ½T2ðaÞ�

E ½T2ðaÞ� þ E ½T1ðaÞ�
: ð37Þ

The result now follows by substituting (29), (30) and (37)
into equations (26) and (25), while using Lemma 2.3.
This completes the proof of Proposition 2.2. œ

Proof (Proof of Theorem 2.1): We will prove the
theorem in the case that b � a since the proof is similar
in the case a � b. Suppose that b � a.

From Lemma 2.4 and equation (22), it follows that,
on the event fT1ðaÞ < T2ðbÞg, we have

yþT1ðaÞ
¼

0, if max
s�T1ðaÞ

yþs < a,

max
s�T1ðaÞ

yþs � a, if a � max
s�T1ðaÞ

yþs < b:

8><
>: ð38Þ

Therefore,

PðT1ðaÞ < T2ðbÞÞ ¼ Pð yþT1ðaÞ
¼ 0Þ þ

Z b�a

0þ
Pð yþT1ðaÞ

2 drÞ,

ð39Þ

and the result is obtained from Proposition 2.2. This
completes the proof of Theorem 2.1. œ

Corollary 2.5: Let Xt¼Wt be a standard Brownian
motion and let T, T1 and T2 be stopping times defined as
above. We distinguish the following two cases

(1) b � a > 0
The probability of the drawdown preceding the
rally, or the rally preceding the drawdown, is given,
respectively, by

PðTða, bÞ ¼ T1ðaÞÞ ¼
1

2
þ
1

2
� 1� e�ð1=aÞðb�aÞ
h i

, ð40Þ

PðTða, bÞ ¼ T2ðbÞÞ ¼
1

2
� e�ð1=aÞðb�aÞ: ð41Þ

(2) a � b > 0
The probability of the drawdown preceding the rally,
or the rally preceding the drawdown, is given, respec-
tively, by

PðTða, bÞ ¼ T1ðaÞÞ ¼
1

2
� e�ð1=bÞða�bÞ, ð42Þ

PðTða, bÞ ¼ T2ðbÞÞ ¼
1

2
þ
1

2
� 1� e�ð1=bÞða�bÞ
h i

: ð43Þ

Proof: It is a simple consequence of Theorem 2.1 by
taking the limit as � ! 0. œ

Corollary 2.6: Let Xt¼Wt be a standard Brownian
motion. The probability distribution function of the random
variables yþT1ðaÞ

and y�T2ðbÞ
are given by

ð1Þ Pð yþT1ðaÞ
¼ 0Þ ¼

1

2
, ð44Þ

Pð yþT1ðaÞ
2 drÞ ¼

1

2
�

1

a
e�ð1=aÞr

� �
dr, r > 0: ð45Þ

ð2Þ Pð y�T2ðbÞ
¼ 0Þ ¼

1

2
, ð46Þ

Pð y�T2ðbÞ
2 drÞ ¼

1

2
�

1

b
e�ð1=bÞr

� �
dr, r > 0: ð47Þ

Proof: The above corollary is a consequence of
Proposition 2.2 by letting �=�2

! 0. œ

A graph of the distribution of each of the random
variables yþT1ðaÞ

and y�T2ðbÞ
is shown in figure 2.

Example 2.7 (Stock market crashes and
rallies): Suppose that we have a stock St whose
dynamics follow a geometric Brownian motion:

dSt ¼ �Stdtþ �StdWt: ð48Þ

What is the probability that this stock would drop by
ð100 � �Þ% before it incurs a rally of ð100 � �Þ%? We can
solve this problem by using Theorem 2.1. First observe
that

St ¼ S0 exp ��
1

2
�2

� �
tþ �Wt

� �
¼ S0 expð�XtÞ, ð49Þ

where

Xt ¼ Wt þ
�

�
�
�

2

� �
t:

Let U1ð�Þ be the first time the stock drops by ð100 � �Þ%
from its running maximum and U2ð�Þ be the first time the
stock rallies by ð100 � �Þ% from its running minimum. Let

Mt ¼ sup
0�s�t

Ss,

and

Nt ¼ inf
0�s�t

Ss:

Notice that

U1ð�Þ ¼ infft � 0: St � ð1� �ÞMtg

¼ inf t � 0: sup
0�s�t

Xs � Xt � �
1

�
logð1� �Þ

� �

¼ T1 �
1

�
logð1� �Þ

� �
, ð50Þ

and

U2ð�Þ ¼ infft � 0: St � ð1þ �ÞNtg

¼ inf t � 0: Xt � inf
0�s�t

Xs �
1

�
logð1þ �Þ

� �

¼ T2

1

�
logð1þ �Þ

� �
: ð51Þ
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Thus

PðU1ð�Þ < U2ð�ÞÞ ¼ P

 
T1 �

1

�
logð1� �Þ

� �

< T2

1

�
logð1þ �Þ

� �!
, ð52Þ

and we can apply Theorem 2.1 with the following param-
eters: a ¼ �ð1=�Þ logð1� �Þ, b ¼ ð1=�Þ logð1þ �Þ and
� ¼ ð�=�Þ � ð�=2Þ. The resulting probability is given by

PðU1ð�Þ < U2ð�ÞÞ

¼
ð1þ �Þ�½2ð�=�2Þ�1�

þ ½2ð�=�2
Þ � 1� � logð1þ �Þ � 1

ð1þ �Þ�½2ð�=�2Þ�1�
þ ð1þ �Þ½2ð�=�

2Þ�1�
� 2

� ½ð1� �Þð1þ �Þ�½2ð�=�
2
Þ�1�=½1�ð1þ�Þ�½2ð�=�

2
Þ�1�

, ð53Þ

when � � �=ð1þ �Þ, and

PðU1ð�Þ < U2ð�ÞÞ

¼ 1�
ð1� �Þ�½2ð�=�2Þ�1�

þ ½2ð�=�2
Þ � 1� � logð1� �Þ � 1

ð1� �Þ�½2ð�=�2Þ�1�
þ ð1� �Þ½2ð�=�

2Þ�1�
� 2

� ½ð1� �Þð1þ �Þ�½2ð�=�
2
Þ�1�=½1�ð1��Þ�½2ð�=�

2
Þ�1�

, ð54Þ

when � � �=ð1þ �Þ. In the case when � ¼ ð1=2Þ�2, the
above formulae simplify to

PðU1ð�Þ < U2ð�ÞÞ ¼
1

2
½ð1� �Þð1þ �Þ�1= logð1þ�Þ, ð55Þ

when � � �=ð1þ �Þ, and

PðU1ð�Þ < U2ð�ÞÞ ¼ 1�
1

2
½ð1� �Þð1þ �Þ�1= logð1��Þ,

ð56Þ

when � � �=ð1þ �Þ.

3. Concluding remarks

In this paper, we are able to compute the probability that
a drawdown of size a occurs before an upward rally of
size b in the drifted Brownian motion model and use this
result to compute the probability that a drop of a given
percentage � from the running maximum of a stock
occurs before a rise of a given percentage � from the
running minimum of a stock.

In the case of a more general model, such as, for exam-
ple, a general Markovian or non-Markovian model, there
are some useful formulae that do result from renewal
considerations, but we might not be able to obtain closed
form expressions as they appear in Theorem 2.1. To be
more specific, let us assume that we are in the case that
b> a. Then the following equation holds regardless of
the underlying model dynamics:

PðT2ðbÞ < T1ðaÞÞ ¼ PðT2ðaÞ < T1ðaÞÞ � PðT2ðbÞ

< T1ðaÞj T2ðaÞ < T1ðaÞÞ, ð57Þ

where PðT2ðaÞ < T1ðaÞÞ can be readily computed using
equation (37). This equation, in turn, is computed using
equations (35) and (36), both of which follow by a
renewal type of argument and hold regardless of the
underlying model. However, the term PðT2ðbÞ <
T1ðaÞj T2ðaÞ < T1ðaÞÞ will very clearly depend on the
underlying model. This represents the probability that
the rally process yþt will reach level b before the draw-
down process y�t reaches level a, given that yþt reached
level a before y�t did. That is the same as the probability
that the underlying process travels an extra upward
distance of b� a before it drops below its running
maximum by a units. We can hope for a closed-form
formula of this probability only in the case that the
underlying process has independent increments. Notice
that, in the case of independent increments, both the
drawdown process and the rally process are Markovian.
However, if the assumption of independent increments
does not hold, the above conditional probability will be
path dependent in even in a Markovian model, resulting
in potentially complicated computations.

Similarly, it is important to notice that (27) is true
regardless of the underlying model (the proof of this
result is also based on renewal type of arguments and
appears in the long equation before (29)). However,

Figure 2. (a) Distribution of the random variable yþT1ðaÞ
for

�¼ 0, and the gray area marks PðTða, bÞ ¼ T1ðaÞÞ, in the case
where b � a. (b) Distribution of the random variable y�T2ðbÞ

for
�¼ 0, and the gray area marks PðTða, bÞ ¼ T2ðbÞÞ, in the case
where a � b.
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the exact distribution of XT1ðaÞ þ a ¼ supt�T1ðaÞ
Xt will

depend heavily on the assumption of the underlying
model. Our results can be applied in a straightforward
way for diffusion models for which the distribution of
supt�T1ðaÞ

Xt is explicitly known, which is a fairly large
class of diffusions (see, for instance, Lehoczky (1977)).

As a consequence of the fact that our results address
diffusion models that satisfy the conditions that appear
in Lehoczky (1977), important financial models of a
mean-reverting character or drift-varying character with
a constant adjustment coefficient are included. For
instance, the Cox–Ingersoll–Ross model for interest
rates falls into this setting. From that perspective our
results might be used quite universally. Moreover, even
in more general types of jump models that result in fat-
tailed distributions, equations (57) and (37), as well as
(27), all hold true, and could be used as starting points
in the estimation of the probabilities of the events in
Theorem 2.1.

Finally, it is worth pointing out that, using these
results, one can compute the expected time of the
minimum of the stopping times T1(a) and T2(b). This is
of great interest for detecting a regime change in the case
of two-sided alternatives. Stopping times such as the
minimum of T1(a) and T2(b) resemble the 2-CUSUM
stopping rule that has traditionally been used in the
detection of regime changes in the presence of two-sided
alternatives (see, for example, Tartakovsky (1994) and
Hadjiliadis and Moustakides (2005)).
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