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We study drawdowns and rallies of Brownian motion. A rally is defined as the difference of the
present value of the Brownian motion and its historical minimum, while the drawdown is
defined as the difference of the historical maximum and its present value. This paper deter-
mines the probability that a drawdown of « units precedes a rally of b units. We apply this
result to examine stock market crashes and rallies in the geometric Brownian motion model.
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1. Introduction

In this paper we determine the probability that a
drawdown precedes a rally in the Brownian motion
model. The probabilities are computed by means of the
distribution function of the random variables y}’l(a) and
VTy(5)» Where y?l () Tepresents the value of the upward rally
when the drawdown process reaches the level a for the
first time, and y7, ;) represents the value of the drawdown
when the upward rally process reaches the level b for the
first time. Using the results of Taylor (1975) and
Lehoczky (1977) concerning the distribution of a stopped
drifted Brownian motion at the first time of the downfall
of level a, we are able to show that the probability density
functions of y}rl(u) and yr7,() are exponential, but with a
discrete mass at 0. The paper concludes with a solution to
the problem of computing the probability that a drop of
(100 - @)% from the running maximum of a stock price
occurs before a rally of (100-8)% from its running
minimum, given that the stock price follows a geometric
Brownian motion.

Risk management of drawdowns and portfolio
optimization with drawdown constraints is becoming
increasingly important among practitioners. Chekhlov
et al. (2005) studied drawdown measures in portfolio
optimization. Magdon-Ismail es al. (2004) determined
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the distribution of the maximum drawdown of
Brownian motion.

Our results are related to a recent paper by Meijilson
(2003), where the results of Taylor (1975) and Lehoczky
(1977) are used to derive the expected time to a given
drawdown of Brownian motion, as well as the stationary
distribution of the drawdown process. An alternative
derivation of the above expected value based on the
expected delay of the CUSUM stopping time appears
in Hadjiliadis and Moustakides (2005). The CUSUM
stopping time was first proposed by Page (1954) and
was used subsequently as a means of detecting a regime
change in the Brownian motion model (Beibel 1996,
Shiryaev 1996, Moustakides 2004).

In the next section we first outline the main results
of the paper. We then proceed to give an example of an
application of these results in the examination of
stock market crashes and rallies. We finally give some
concluding remarks.

2. Results
Consider the process X, with the following dynamics:
X, =oW,+ yt,

where y, 0 € R and W, is a standard Brownian motion
process.
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The quantity

X, — inf X,
sef0,

measures the size of the rally, comparing the present value
of the process with its historical minimum, while the
quantity

sup Xy — X;
sel0, 1]

measures the size of the drawdown, comparing the
present value of the process with its historical maximum.

The aim of this section is to determine the probability
that a drawdown of size a precedes a rally of size b.
We introduce the stopping times:

Ti(a)=inf{t>0: sup X, — X, =a, acR, ¢,
sel0, 1]

and

T2(b)=inf{120z X, — i[réf]Xyzb, be[R+}.
s€l0, ¢

Consider the stopping time 7(a,b) = T (a) A T>(b).
The stopping times 7T(a) and 7,(b) indicate, respectively,
the first time that the drawdown process reaches the
critical level a, T(a), and the first time the upward rally
process reaches the critical level b, T>(b). In this section,
we compute the probabilities of the event {7(a,b) =
Ti(a)}, which represents the event that a drawdown
of size a occurs before the rally of size b, and
{T(a,b) = T5(b)}, which represents the event that a rally
of size b occurs before the drawdown of size a.

In order to simplify notation we introduce the
following processes:

m; = inf X,,
s€l0, 1]

m; = inf (—X;) = — sup X,
s€l0, 1] €0, 1]

y;r = Xt - n/l;ra

v ==X, —m,.

Using the above notation, the stopping times 7'(a) and
T-(b) become

Tiy(a) =inf{r > 0:y;, =a, a e R},
Ty(b) = inflt > 0:yf = b, beR, ).

Theorem 2.1: Let X,=ocW,+yt be a standard
Brownian motion with drift parameter y € R, and variance
parameter 0 € R; T, T\ and T, are the stopping times
defined above. We distinguish the following two cases:

(1) b>a>0
The probability of the drawdown preceding the
rally, or the rally preceding the drawdown, is given,
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respectively, by

P(T(a,b) =T\(a)) =m,+ (1 —my)

2y/0”
X |:1 —exp(—4e(2y/zz/)a - -(b—a))i|,

(1)
_ _ 2y/0’
P(T(a,b) = T5(b)) =(1 —m,) -exp <—W -(b— a)),
2
where
_ e ayjot)a— 1 3)
T @v/eNa 4 o=Qylata _p
2) a=b>0

The probability of the drawdown preceding the
rally, or the rally preceding the drawdown, is given,
respectively, by

P(T(a,b) = T\(a)) = (1 —mp)

2)//02
Xe""(‘m‘““) @

P(T(a,b) = Tx(b)) =mp+ (1 —mp)

X [1 —exp(—l_zey/(za;az)b~(a—b)>:|,
)

where
e2rieb _ Qy/oH)b —1

B= 0o o @rih _ o

The proof of the
proposition.

(6)

theorem wuses the following

Proposition 2.2: The probability distribution functions of
the random variables y}r] (@ and yr,p) are given by
(D) POy = 0) = my, (M

2)//(72

PO € dn = =m,)- [m

2)//(72 )
x eXp<_ Seria _ ] ")}dr’ r>0,
®)
where m 4 is given by equation (3).
(2) P(yr,p) = 0) = mp, )
_ 2)//02
P(yr,p € dr) = (1 —mp)- {W
2)//02
X exp(—i1 T r):|dr, r>0,
(10)

where mpy is given by equation (6).
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(b)

a>b

0 a-b

Figure 1. (a) Distribution of the random variable y;l(a), and
the gray area marks P(7(a,b) = Ti(a)), in the case where
b > a. (b) Distribution of the random variable y7,(), and the
gray area marks P(7(a,b) = T,(b)), in the case where a > b.

Before we proceed to the proof of the two above
results, let us notice that all of equations (1)—(6), as well
as the distributions of the random variables yT @ and
VTyp)> aS they appear in Proposition 2.2, depend on the
ratio 2y/o°. This ratio is called the adjustment coefficient
and appears in the insurance risk literature (Asmussen
2000). To illustrate the probabilities that appear in
Theorem 2.1, we include a graph of the densities of the
random variables y}’l(a) and y7,( (see figure 1).

In order to prove Proposition 2.2 and Theorem 2.1,
we will need the following two lemmas.

Lemma 2.3: For a,b e R,, we have

17 2y /6%Va — 1
EIT\(@)] = Grjede=1
(2y/o%)
~Qy/a*)b 2
e + Q2y/o)b —1
EITy(0)] = Cr/o) (12)
(2y/o%)
Proof: Let g(x) = ¢ @/ o 4 (2y/o?)x — 1. By applying

It&’s rule to the process g(y;) we get

dg(yh) = o (¥HAW, + yg' (y)Hdt — g (yi)dm

2

—l—;og(y )dz. (13)
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We notice that the third term on the right-hand side of the
above equality disappears because dm; # 0 only when
¥ =0 and g'(0) = 0. We also notice that the function g
satisfies the second-order differential equation

2

70 +50°(x) = (14)

Solving equation (13), we get

20— g(O)—/ag(y Ydw, +/(yg<y 4380 ))dv.
(15)
Let

2,2
Sn:inf{tzo;lzlzn}.
o

Let T7(b) = T»(b) A S,,. Obviously, T5(b) is a.s. finite. On
the event {T%(h) > t}, we have {y; < b}. Consequently,

T3 (b)
E[/O 2yzg(y3)ds}s(g/(b»2n<oo. (16)

Evaluating (15) at 75 (b), and taking expectations while
using equations (14) and (16), we get

E [g (ﬁ;(b))] i

[T5(b)].
But

¢0) = E[¢(vizm)] a7

Hence we have that

2% 2y*
g) = T EIT0) = T3 E[ L)

Letting n — co and using the bounded convergence
theorem, we deduce that 75(b) is finite a.s. as well.

Evaluating both sides of equation (15) at 7,(b), and
taking expectations of both sides, while using
equation (14), and the fact that the quadratlc variation
of the stochastic integral f TZ(b)g( yH)dW, is finite (this
follows from equation (16) and the a.s. finiteness of
T5(b)), we get

2

2
g(b) = - E[Ty(b)] (18)
Consequently,

_ &)

E[Ty(0)] = 0 (19)
Similarly, we can show that

8(=a)

ET@]= ) s (20)

This concludes the proof of the lemma. O
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Lemma 2.4: We have

v+ = maX{supyf, supys}.

s<t s<t

Proof: Observe that
yi v =—mi —my. @1
We notice that the process y; 4+ y, can only increase
when either X, = m; or —X, = m, , both of which cannot
happen at the same time, since that would imply that
yi +y; is 0. Therefore, y; +y; is a constant as a func-
tion of time unless either y; =0 or y, =0, at which
instant ¢, we simultaneously have

(D maX{)’f,erf} = max{isupsétyj, Supsfty;}}a
(2) supy, (s +ys) =2+

This completes the proof of the lemma. ]

As a consequence of this lemma we have

+ +
= —a|vO 22
YT\ <t1_g1;11(xa)yf a) , (22)
o) = . —b)vO. 23
YTy (b) <IT<T1T521(>1<’)J/[ ) (23)
Finally, in order to proceed to the proof of

Proposition 2.2 and Theorem 2.1, we will use the results
of Taylor (1975) and Lehoczky (1977). Taylor computes
the bivariate Laplace transform of Xz, and T)(a),
where T is defined as above. Lehoczky pointed out that
the random variable X7 ) +a=sup,.r, X, has the
exponential distribution

2)//02
X1y +a~ exp(m .

Note that the exponential parameter becomes equal to 1/a
in the case when y =0. Now we can proceed to the proof
of Proposition 2.2 and then to the proof of Theorem 2.1.

24

Proof (Proof of Proposition 2.2): We will only compute
the probability density function of the random variable
yJ}](a) since the computation of the probability density
function of the random variable y7, ) is done in a similar
way. From equation (22), it follows that

P(y;l(a):()):P<maX yj_ <a>’ (25)

t=T\(a)

while

P(y7,q € dr) = P({glﬁgz)yf > a)

X P(J’;,(a) e dr| max y > a)

1=<T(a)

= P07y > 0) - P07, ) € d71 7,0 > 0),

r>0. (26)
In the following discussion we first demonstrate
LT V@ > 0) = LX 1) + @) (27)
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To see this, let
Ry = sup{r < Ty(a);y/ = 0}. (28)

Fix r > 0. Then
P(y;l(a) € dr|yJTrl(a) > 0)

P(X7,( — infioq, X, € dr)

P(maxng] (a) y;F z a)

P(XTI((I) — XR[ (S d}"| Rl < Tl(a))
P(max,ST](a) X, — Xg, Zal Ry < Tl(a))

P(X7,0) — X&, € dr| Ry < Ty(a))
P(maXngngl(a) X, — XRI >alR, < Tl(a))

. P(XTl(u) (S dl’)
P(max <7, X; = a)

_Ar =2
re e Mdr

—Aa

= e Mdr = P(X1,4+aedr),
e

where

- 2)//(72
T — e Cy/oNa’

Note that the third equality holds because conditional on
R] < T] (a), infSS T (a) XS = infSSRI X_y, and mak,s Tl(a)Xt =
Maxg, << 7,(Xr-

Therefore, we get

P(y7y@ € drl 7@ > 0) ~ exp (%) r>0.
(29)
From equation (22), it follows that
P(yw = 0) = P(Ti(0) < Tx(a)). (30)
To compute P(T(a) < T,(a)), we first notice that
Ti(a) = T(a,b) + (T1(a) — T(a, D)V, =10, (31)
T5(b) = T(a,b) + (T5(b) — T(a, D)V 10, py=1y(py-  (32)

Taking expectations we get

E[T(a)] = E[T(a, b)) + E[(T1(a) — T(a, b)) 114, py=Ty0)1)>

33
E[T5(b)] = E[T(a, b)] + E[(T3(b) — T(a, b))l{T(ﬂ,b)Tl(a)(}]' )
(34)
With a=5 and equation (22), it follows that
E[T\(a)] = E[T(a,a)] + E[T\(a)] - P(Tx(a) < T(a)), (35)
E[Ty(a)] = E[T(a,a)] + E[T(a)] - P(T(a) < T>(a)). (36)

Using
P(T(a) < Ty(a)) + P(Ty(a) < Ti(a)) =1
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and equations (35) and (36), we conclude that

E[T>(a)]
[Th(a)] + E[Ty(a)]

P(Ty(a) < To(@)) = (37
The result now follows by substituting (29), (30) and (37)
into equations (26) and (25), while using Lemma 2.3.
This completes the proof of Proposition 2.2. U

Proof (Proof of Theorem 2.1): We will prove the
theorem in the case that » > a since the proof is similar
in the case a > b. Suppose that b > a.

From Lemma 2.4 and equation (22), it follows that,
on the event {T(a) < T»(b)}, we have

0, if max y;r <a,
y+ B s=Ty(a) (38)
@7 max yf —a, ifa< max yf <b.

s<Ty(a)"" s=<T(a)

Therefore,

b—a
P(y;](a) € dr),

(39)

PT@) < Tob) = Py =00+ |

and the result is obtained from Proposition 2.2. This
completes the proof of Theorem 2.1. |

Corollary 2.5: Let X,=W, be a standard Brownian
motion and let T, Ty and T be stopping times defined as
above. We distinguish the following two cases

() b=a>0
The probability of the drawdown preceding the
rally, or the rally preceding the drawdown, is given,
respectively, by

P(T(a,b) = Ty(a)) = % + % 1= e 0] 4oy

(/@00

1

P(T(a,b) = Ty(b)) = 5 (41)
2) a=b=>0

The probability of the drawdown preceding the rally,

or the rally preceding the drawdown, is given, respec-
tively, by

e~ /DNab)

P(T(a,h) = Ty(@) = 5 42)

P(T(a.b) = Ty(b)) = %Jr % [1—e D] @3

Proof: It is a simple consequence of Theorem 2.1 by
taking the limit as y — 0. O

Corollary 2.6: Let X,=W, be a standard Brownian
motion. The probability distribution function of the random
variables y}'l(a) and y,p are given by

; (44)

. [le_(l/”)r}dr, r>0.
a

(D) P(y1,m=0) =

(45)

| = N —

P(y7, € dr) =

407
_ 1
2 POy, =0) = 3 (46)
I |1 .
P(yr,p €dr) = 3 [Ee(l/b)'}dr, r>0. (47)

Proof: The above corollary is a consequence of
Proposition 2.2 by letting y/o°> — 0. O

A graph of the distribution of each of the random
variables y}’l(a) and y7, is shown in figure 2.

Example 2.7 (Stock market crashes and
rallies): Suppose that we have a stock S, whose
dynamics follow a geometric Brownian motion:

ds, = uSdt+oS,dW,. (48)
What is the probability that this stock would drop by
(100 - )% before it incurs a rally of (100 - 8)%? We can

solve this problem by using Theorem 2.1. First observe
that

1
AVE\) ew((u - zaz)z + on) = Spexp(oX;), (49)

where

_ m_<
Xe=W,+ (o Z)I'
Let U;(x) be the first time the stock drops by (100 - «)%
from its running maximum and U,(B) be the first time the
stock rallies by (100 - )% from its running minimum. Let

M, = sup S,
0<s<t
and
N, = inf S,.
0<s<t

Notice that
Ui(e) =inf{t > 0: S, < (1 —a)M,}

1
= inf{t >0 sup X; — X, > ——log(l —oe)}

0<s<t o

=T (—llog(l — a)), (50)
o
and
Uy(B) = inf{t > 0: S, > (1 + B)N,}
= inf{t >0 X, — inf X, > llog(l + /3)}
0<s<t o
=1, Cflog(l +ﬁ)). (51)
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(a)

v

a>bh

0 a-b

Figure 2. (a) Distribution of the random variable yJ{l(a) for
y =0, and the gray area marks P(7(a,b) = T)(a)), in the case
where b > a. (b) Distribution of the random variable y7z, @ for
y =0, and the gray area marks P(7(a, b) = T5(b)), in the case
where a > b.

Thus
1
P(Uj(a) < Uy(B)) = P<T1 <—;10g(1 - 01))

<1 (élog(l + ,3))), (52)

and we can apply Theorem 2.1 with the following param-
eters: a=—(1/0)log(l —a), b= (1/o)log(l +pB) and
y = (/o) — (6/2). The resulting probability is given by
P(Uy() < Us(B))
_ 1+ P 4 (/o) — 1) log(1 + B — |
- 1+ ’3)—[2(M/U2)—1] +(+ ’3)[2(M/02)—1] )
X [(1 = a)(1 4 R/,

(53)
when « > B/(1 + B), and

P(Uy(@) < Up(P)
(1 — ) PO L 2(u/o?) — 1] - log(l — &) — 1

=1- (1 — o) 2o (] Z )P/ 5

x [(1 —a)(1 + ﬁ)][Z(M/UZ)*l]/[l*(1*01)][2(”/”&)7”) (54)

O. Hadjiliadis and J. Vecer

when o < B/(1 + B). In the case when u = (1/2)02, the
above formulae simplify to

P(UI(@) < Ux(B) = 51— )1 + B4, (59)
when « > /(1 + B), and

P(U(e) < Up(B) =1 = %[(1 —a)(1 + B,
(56)
when a < /(1 + B).

3. Concluding remarks

In this paper, we are able to compute the probability that
a drawdown of size a occurs before an upward rally of
size b in the drifted Brownian motion model and use this
result to compute the probability that a drop of a given
percentage « from the running maximum of a stock
occurs before a rise of a given percentage S from the
running minimum of a stock.

In the case of a more general model, such as, for exam-
ple, a general Markovian or non-Markovian model, there
are some useful formulae that do result from renewal
considerations, but we might not be able to obtain closed
form expressions as they appear in Theorem 2.1. To be
more specific, let us assume that we are in the case that
b > a. Then the following equation holds regardless of
the underlying model dynamics:

P(T5(b) < Ti(@)) = P(Tx(a) < T\(a)) - P(T5(D)

< Ty(a)l Tx(a) < T(a)), (57)
where P(T»(a) < Ti(a)) can be readily computed using
equation (37). This equation, in turn, is computed using
equations (35) and (36), both of which follow by a
renewal type of argument and hold regardless of the
underlying model. However, the term P(7,(b) <
Ty(a)| Tr(a) < T (a)) will very clearly depend on the
underlying model. This represents the probability that
the rally process y;” will reach level 5 before the draw-
down process y; reaches level a, given that y reached
level a before y, did. That is the same as the probability
that the underlying process travels an extra upward
distance of b —a before it drops below its running
maximum by « units. We can hope for a closed-form
formula of this probability only in the case that the
underlying process has independent increments. Notice
that, in the case of independent increments, both the
drawdown process and the rally process are Markovian.
However, if the assumption of independent increments
does not hold, the above conditional probability will be
path dependent in even in a Markovian model, resulting
in potentially complicated computations.

Similarly, it is important to notice that (27) is true
regardless of the underlying model (the proof of this
result is also based on renewal type of arguments and
appears in the long equation before (29)). However,



Drawdowns preceding rallies in the Brownian motion model

the exact distribution of Xr ) +a=sup,.z, X, will
depend heavily on the assumption of the underlying
model. Our results can be applied in a straightforward
way for diffusion models for which the distribution of
SUp,<7,(q) X; 18 explicitly known, which is a fairly large
class of diffusions (see, for instance, Lehoczky (1977)).

As a consequence of the fact that our results address
diffusion models that satisfy the conditions that appear
in Lehoczky (1977), important financial models of a
mean-reverting character or drift-varying character with
a constant adjustment coefficient are included. For
instance, the Cox—Ingersoll-Ross model for interest
rates falls into this setting. From that perspective our
results might be used quite universally. Moreover, even
in more general types of jump models that result in fat-
tailed distributions, equations (57) and (37), as well as
(27), all hold true, and could be used as starting points
in the estimation of the probabilities of the events in
Theorem 2.1.

Finally, it is worth pointing out that, using these
results, one can compute the expected time of the
minimum of the stopping times 7(a) and T5(b). This is
of great interest for detecting a regime change in the case
of two-sided alternatives. Stopping times such as the
minimum of Tj(a) and T,(b) resemble the 2-CUSUM
stopping rule that has traditionally been used in the
detection of regime changes in the presence of two-sided
alternatives (see, for example, Tartakovsky (1994) and
Hadjiliadis and Moustakides (2005)).
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