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OPTIMALITY OF THE 2-CUSUM DRIFT
EQUALIZER RULES FOR DETECTING
TWO-SIDED ALTERNATIVES IN THE
BROWNIAN MOTION MODEL

OLYMPIA HADJILIADIS,∗ Columbia University

Abstract

This work employs the Brownian motion model in which observations are taken
sequentially. The objective is to detect a two-sided change in the constant drift by means
of a stopping rule. As a performance measure, an extended Lorden criterion is used. The
goal is to minimize the worst-case detection delay subject to a constraint in the frequency
of false alarms. In a companion paper, attention is drawn to a first category of 2-CUSUM
rules for which the harmonic mean rule holds. It is further seen that a special class of 2-
CUSUM stopping rules within this category, called drift equalizer rules, perform strictly
better than non-equalizer rules, according to this specific performance measure.
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1. Introduction

The need for statistical surveillance, the problem of detecting abrupt changes in a stochastic
process through sequential observations, has been noted in many different areas. Applications
include quality control, onset detection in seismic signal processing [3], target detection in
multiple-resolution radar [1], [11], [5], statistical pattern recognition [9], fault detection in
navigational systems, centralized detection, epidemiology [24], medicine [8], [18], etc.

We seek a stopping rule T that detects the change point τ while simultaneously controlling
the frequency of false alarms. In other words, at each decision time t we want to discriminate
between the two states of the process: the state {t < τ } and the state {t ≥ τ }. More specifically,
the stopping rule T balances the trade-off between controlling the mean time between false
alarms and minimizing the detection delay of the change.

In the case of one-sided alternatives where the change is a known constant, the traditional
Page cumulative sum (CUSUM) [15] was proven to be optimal for any fixed value of the
frequency of false alarms [22], [4]. In fact, for the extended Lorden criterion, proposed in
[10], it turns out that the one-sided CUSUM rule maintains its optimal character for one-sided
alternatives even when the change is known only to be in a given interval of all positive or
negative values. It is also worth mentioning that the CUSUM stopping rule has been proven
to be optimal for an alternative to Lorden’s criterion that uses the Kullback–Leibler divergence
whenever the change is a function of time [27] or a measurable function of the observations [14].

The problem of two-sided alternatives is considerably more difficult than that of one-
sided alternatives. The first author to suggest the use of cumulative sum charts for two-sided

Received 22 September 2004; revision received 4 May 2005.
∗ Current address: Department of Electrical Engineering, Princeton University, Olden Street, Princeton, NJ 08544,
USA. Email address: ohadjili@princeton.edu

1183



1184 O. HADJILIADIS

alternatives was Barnard [2]. Later, the problem of multiple alternatives in the discrete-time
exponential family model was examined by Lorden [12]. He proposed the generalized CUSUM
rule and proved that it is first-order asymptotically optimal as the frequency of false alarms
tends to infinity. Dragalin [6] improved on this result and was able to prove that the generalized
CUSUM stopping rule is second-order asymptotically optimal for a specific choice of threshold
as the frequency of false alarms tends to infinity. The problem of multiple alternatives was
subsequently addressed by Tartakovsky in [26]. His objective was to find a rule that would not
only detect the change, but also infer what change it was. For all i = 1, . . . , N , indexing the N

possible changes, he considered supτ Ei
τ [T − τ | T > τ ] as a performance measure, and found

that the N -CUSUM stopping rule is asymptotically optimal as the frequency of false alarms
tends to infinity. The 2-CUSUM stopping rule was proposed as an alternative to the generalized
CUSUM rule in [7]. Although the author there only considered one-sided alternatives in the
discrete-time exponential family model, he used a min–max-type criterion for the performance
measure subject to the usual false alarm constraint. In [10], it was shown that specific 2-CUSUM
rules chosen from within the class of equalizer rules have asymptotically the best performance
for two-sided alternatives in the specific extended min–max Lorden performance setting that
considers the worst detection delay regardless of the change.

For other performance measures, see [21] or [17]. To broaden the scope of stopping
rules considered for the traditional change point detection problem, it is worth mentioning
the Shiryaev–Roberts rule [21], [20] and the exponentially weighted moving average rule [19].
For a comparison of their performances in the detection of constant drift in the Brownian motion
model, we refer the reader to [16] and [25].

2. Problem formulation

We sequentially observe a process {ξt } with the following dynamics:

dξt =
{

dwt, t ≤ τ,

µ1dt + dwt or − µ2dt + dwt, t ≥ τ.

Here τ , the time of change, is assumed to be deterministic but unknown, and µi , i = 1, 2, the
possible drifts the process can change to, are assumed to be known, while the specific drift the
process is changing to is assumed to be unknown. Both µ1 and µ2 are assumed to be positive.
Without loss of generality, we can assume that µ2 ≥ µ1. Our goal is to detect the change and
not to infer which of the two changes occurred.

The probabilistic setting of the problem can be summarized as follows. We consider

• the space of continuous functions � = C[0, ∞];
• the filtration {F t }, with Ft = σ {ξs, 0 < s ≤ t} and F∞ = ⋃

t>0 Ft ;

• the following families of probability measures:

(i) {P i
τ }, τ ∈ [0, ∞), whenever the change is to µi, i = 1, 2, and

(ii) P∞, the Wiener measure.

In order to incorporate the different possibilities for the µi , Hadjiliadis and Moustakides [10]
extended Lorden’s performance measure by including an extra maximization of the measure
over the different detection delays for each of the probability measures generated after the
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change. This extension was inspired by consideration of the worst detection delay regardless
of the change, and is

JL(T ) = max
i

sup
τ

ess sup Ei
τ [(T − τ)+ | Fτ ].

This gives rise to the following min–max constraint optimization problem:

inf
T

JL(T ), E∞[T ] ≥ γ. (1)

Notice that P∞ is the Wiener measure that corresponds to there being no change (τ = ∞).
Therefore, E∞[T ] is the mean time to the first false alarm.

As discussed first in [13] and later in [17], in seeking solutions to the above problem we
can restrict our attention to stopping times that satisfy the false alarm constraint with equality.
This follows since, if E∞[T ] > γ , we can produce a stopping time that achieves the constraint
with equality, without increasing the detection delay, simply by randomizing between T and
the stopping time that is identically 0. In order to find a solution to (1), we therefore look
for stopping rules that are Ft -adapted for all t and that satisfy the false alarm constraint with
equality.

In the next section, we turn our attention to the 2-CUSUM stopping rules, since they display
asymptotically optimal performance as the frequency of false alarms tends to infinity [10], [26].
From among them we select a special class of 2-CUSUM rules that obey a particular rule, called
the harmonic mean rule. We then further restrict ourselves to those harmonic 2-CUSUM rules
that are equalizer rules, that is, rules that have the same performance under either the positive or
the negative change. In the penultimate section, we prove that (harmonic) 2-CUSUM equalizer
rules perform strictly better than all other (harmonic) 2-CUSUM rules. We thus conclude, in
the last section, that (harmonic) 2-CUSUM equalizer rules are preferred, and we mention their
strong asymptotic properties.

3. The 2-CUSUM rules and the harmonic mean rule

We begin by defining the CUSUM statistics.

Definition 1. The normalized CUSUM statistics with drift parameters λ1 > 0 and λ2 > 0,
tuned to detect the positive and negative changes in the drift of the Brownian motion, are defined
as follows:

(i) y+
t (λ1)/λ1 = ξt − 1

2λ1t − infs≤t (ξs − 1
2λ1s),

(ii) y−
t (λ2)/λ2 = −ξt − 1

2λ2t − infs≤t (−ξs − 1
2λ2s).

We now proceed to define the 2-CUSUM stopping rules.

Definition 2. The 2-CUSUM stopping rule with drift parameters λ1 > 0 and λ2 > 0 and
threshold parameters ν1 > 0 and ν2 > 0 is defined as

T (λ1, λ2, ν1, ν2) = T 1 ∧ T 2,

where

(i) T 1 = inf{t > 0 : y+
t (λ1)/λ1 > ν1},

(ii) T 2 = inf{t > 0 : y−
t (λ2)/λ2 > ν2}.
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We now consider a smaller, very interesting class of 2-CUSUM rule: those that obey the
harmonic mean rule. In particular, we will consider all 2-CUSUM rules whose two CUSUM
stopping time branches, T 1 and T 2, have the same threshold. The harmonic mean rule enables us
to explicitly compute the expected value of the 2-CUSUM stopping rule in terms of the expected
values of its corresponding one-sided CUSUM stopping times. To this end, we introduce the
following class of stopping rule.

Definition 3. Define G = {T (λ1, λ2, ν1, ν2) : ν1 = ν2}.
Henceforth, we only consider 2-CUSUM rules in G, and denote them by T (λ1, λ2, ν). Using

the proof in [10] or [23, p. 28] it is possible to show that, under any of the measures P 1
0 , P 2

0 , or
P∞, we have

1

E[T (λ1, λ2, ν)] = 1

E[T 1] + 1

E[T 2] . (2)

At this point, it is worth noting that, for any CUSUM stopping rule T , the worst detection delay
occurs when y+

τ = 0 and y−
τ = 0. This is a simple consequence of the nonnegativity of the

CUSUM statistic processes. Hence,

JL(T ) = max
i

sup
τ

ess sup Ei
τ [(T − τ)+ | Fτ ]

= max{E1
0[T ], E2

0[T ]}.
As shown in [10], by applying Itô’s rule and using existing results in stochastic analysis we

obtain

1

2
E∞[T 1] = h(λ1ν)

λ2
1

, (3)

1

2
E∞[T 2] = h(λ2ν)

λ2
2

, (4)

1

2
E1

0[T 1] = h((λ1 − 2µ1)ν)

(λ1 − 2µ1)2 , (5)

1

2
E1

0[T 2] = h((λ2 + 2µ1)ν)

(λ2 + 2µ1)2 , (6)

1

2
E2

0[T 1] = h((λ1 + 2µ2)ν)

(λ1 + 2µ2)2 , (7)

1

2
E2

0[T 2] = h((λ2 − 2µ2)ν)

(λ2 − 2µ2)2 , (8)

where h(x) = ex − x − 1.

4. Equalizer rules are best

We now proceed to inspect the dynamics of the CUSUM statistic processes when the change
is respectively µ1 and −µ2. See Tables 1 and 2.

We notice that if
λ2 − λ1 = 2µ2 − 2µ1 (9)

holds, then y+
t /λ1, when the change is µ1, has the same law as y−

t /λ2, when the change is
−µ2, and that y+

t /λ1, when the change is −µ2, has the same law as y−
t /λ2, when the change is
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Table 1: The dynamics of the two CUSUM statistics when the change is µ1.

Statistic Dynamics

y+
t /λ1 wt + (µ1 − 1

2 λ1)t − infs≤t (ws + (µ1 − 1
2 λ1)s)

y−
t /λ2 −wt − (µ1 + 1

2 λ2)t − infs≤t (−ws − (µ1 + 1
2 λ2)s)

Table 2: The dynamics of the two CUSUM statistics when the change is −µ2.

Statistic Dynamics

y+
t /λ1 wt − (µ2 + 1

2 λ1)t − infs≤t (ws − (µ2 + 1
2 λ1)s)

y−
t /λ2 −wt + (µ2 − 1

2 λ2)t − infs≤t (−ws + (µ2 − 1
2 λ2)s)

µ1. In particular, this means that T (λ1, λ2, ν) = T 1 ∧ T 2 has the same distribution under the
measures P 1

0 and P 2
0 . Therefore, when (9) holds, E1

0[T (λ1, λ2, ν)] = E2
0[T (λ1, λ2, ν)]. This

allows us to distinguish from among all (harmonic) 2-CUSUM rules the equalizer rules whose
performances are the same under the measures P 1

0 and P 2
0 .

Definition 4. We define the class of all equalizer rules as follows:

E = {T (λ1, λ2, ν) : λ2 − λ1 = 2(µ2 − µ1), ν > 0}.
In the sequel, we will use S to denote any stopping rule that belongs to the class E and T

to denote any stopping rule that does not. Notice that if µ2 = µ1 (the symmetric case), any
choice of λ ∈ R+ will result in an equalizer rule for λ2 = λ1 = λ.

Our focus is thus on the case µ2 > µ1. The objective is, for any arbitrary rule T , to find an
equalizer rule S that achieves the same frequency of false alarms while lowering the detection
delay. In other words, for any arbitrary rule T we want always to be able to find a rule S ∈ E
that has better performance.

To this end, let us define two classes of non-equalizer rule.

Definition 5. We define the following two classes of non-equalizer rule:

(i) Dg = {T (λ1, λ2, ν) : λ2 − λ1 > 2µ2 − 2µ1},
(ii) Ds = {T (λ1, λ2, ν) : λ2 − λ1 < 2µ2 − 2µ1}.
Note that E c = Dg ∪ Ds .

Theorem 1. For all 2-CUSUM rules T ∈ Dg ∪ Ds , there exists an S ∈ E such that

E∞[T ] = E∞[S] (10)

and
max{E1

0[T ], E2
0[T ]} > E1

0[S] = E2
0[S].

Proof. We can distinguish the following three cases.

(i) T (λ′
1, λ

′
2, ν) ∈ Dg . There exist λ2, λ1 > 0, such that λ2 < λ′

2, λ1 > λ′
1, and λ2 − λ1 =

2µ2 − 2µ1, for which (10) holds.
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(ii) T (λ′
1, λ

′
2, ν) ∈ Ds and λ′

2 > λ′
1. (The justification for the additional assumption,

λ′
2 > λ′

1, is given in Appendix C and should be read after the sequel). There exist
λ2, λ1 > 0, such that λ2 > λ′

2, λ′
1 > λ1, and λ2 − λ1 = 2µ2 − 2µ1, for which the same

frequency of false alarms can be achieved by an equalizer rule for the same threshold ν.
More specifically, there exists an S(λ1, λ2, ν) for which (10) holds.

(iii) There exists no λ1 > 0 such that, with λ2 > λ′
2 and λ2 − λ1 = 2µ2 − 2µ1, the same

frequency of false alarms can be achieved by an equalizer rule with the same threshold.

To prove the result in the first case, it suffices to prove the following two inequalities:

1

E2
0[S1] − 1

E2
0[T 1] >

1

E∞[S1] − 1

E∞[T 1] , (11)

1

E∞[T 2] − 1

E∞[S2] >
1

E2
0[T 2] − 1

E2
0[S2] . (12)

This is because the right-hand side of (11) is equal to the left-hand side of (12), as can be seen
by using (2) and (10). It then follows that the left-hand side of (11) is greater than the right-hand
side of (12), and from (2) we obtain E2

0[T ] > E2
0[S]. By using (7), (8), (3), and (4,) we can

rewrite (11) in the following way:

[
h((λ1 + 2µ2)ν)

(λ1 + 2µ2)2

]−1

−
[
h((λ′

1 + 2µ2)ν)

(λ′
1 + 2µ2)2

]−1

>

[
h(λ1ν)

λ2
1

]−1

−
[
h(λ1ν)

λ′2
1

]−1

.

The result follows by multiplying both sides of the equation by ν2 and using the convexity of
the function g(x) = x2/h(x) (see Appendix A). We can prove (12) similarly.

In cases (ii) and (iii) the result follows from the inequalities

1

E1
0[S2] − 1

E1
0[T 2] >

1

E∞[S2] − 1

E∞[T 2] , (13)

1

E∞[T 1] − 1

E∞[S1] >
1

E1
0[T 1] − 1

E1
0[S1] . (14)

Notice that in cases (ii) and (iii) we have E1
0[T ] > E1

0[S]. In case (ii), after using (5), (6), (3),
and (4), the two inequalities are a direct consequence of the convexity of the function g(x) =
x2/h(x). In case (iii) the situation is slightly more involved, since, in order to achieve the same
frequency of false alarms for an equalizer rule, we need to lower the threshold to ν′ < ν. In
other words, we can still find an S(λ1, λ2, ν

′) ∈ E for which (10) holds, by taking λ1 = λ′
1 and

λ2 > λ′
2 such that λ2 −λ1 = 2µ2 −2µ1; consequently, we can find a threshold ν′ < ν. We can

now rewrite (13) and (14), with the above choice of parameters, as follows, using (5), (6), (3),
and (4):

[
h((λ2 + 2µ1)ν

′)
(λ2 + 2µ1)2

]−1

−
[
h((λ′

2 + 2µ1)ν)

(λ′
2 + 2µ1)2

]−1

>

[
h(λ2ν

′)
λ2

2

]−1

−
[
h(λ′

2ν)

λ′2
2

]−1

, (15)

[
h(λ1ν)

λ2
1

]−1

−
[
h(λ1ν

′)
λ2

1

]−1

>

[
h((λ1 − 2µ1)ν)

(λ1 − 2µ1)2

]−1

−
[
h((λ1 − 2µ1)ν

′)
(λ1 − 2µ1)2

]−1

. (16)
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For a proof of (16), we refer the reader to Appendix D. Notice that the parameters are chosen in
such a way that (10) holds; therefore, the right-hand side of (15) is equal to the left-hand side
of (16) and they are both negative. Thus, we have

h(λ′
2ν)

λ′2
2

<
h(λ2ν

′)
λ2

2

.

If
h((λ′

2 + 2µ1)ν)

(λ′
2 + 2µ1)2 ≥ h((λ2 + 2µ1)ν

′)
(λ2 + 2µ1)2

then (15) holds trivially. We will now proceed to examine the opposite case. We make two
selections, λ′′

2 ∈ [λ′
2, λ2] and λx

2 ∈ [λ′
2, λ2], such that

h(λ2ν
′)

λ2
2

= h(λ′′
2ν)

λ′′2
2

, (17)

h((λ2 + 2µ1)ν
′)

(λ2 + 2µ1)2 = h((λx
2 + 2µ1)ν)

(λx
2 + 2µ1)2 . (18)

From Appendix B it follows that λx
2 < λ′′

2 and, since the function h(x)/x2 is strictly increasing
for all x ∈ R+, we have

[
h((λx

2 + 2µ1)ν)

(λx
2 + 2µ1)2

]−1

−
[
h((λ′

2 + 2µ1)ν)

(λ′
2 + 2µ1)2

]−1

>

[
h((λ′′

2 + 2µ1)ν)

(λ′′
2 + 2µ1)2

]−1

−
[
h((λ′

2 + 2µ1)ν)

(λ′
2 + 2µ1)2

]−1

.

(19)
Inequality (15) now readily follows from (19), (17), (18), the convexity of the function g(x) =
x2/h(x) (see Appendix A), and the fact that λ′′

2 > λ′
2. This completes the proof.

5. Conclusions

The result presented in this paper allows us to select the drifts λ1 and λ2 in such a way that
we can construct 2-CUSUM rules that perform strictly better for all frequencies of false alarm,
especially in the case that the absolute values of the possible two-sided drifts assumed after
the change are not equal. It is interesting to mention that, in this case, the equalizer rule with
the best asymptotic performance (as the frequency of false alarms tends to infinity) is the one
with the choice of parameters λ1 = µ1, implying that λ2 = 2µ2 − µ1 (see [10]). It is worth
mentioning that the difference between the detection delay of the optimal unknown scheme and
the 2-CUSUM stopping rule with this choice of parameters (ν selected so that the false alarm
constraint is satisfied with equality) in fact tends to 0, even though both of the detection delay
quantities are unbounded as the frequency of false alarms tends to infinity. This difference
tends to 0 faster as the difference between µ2 and µ1 increases. Moreover, in the symmetric
case, the choice of 2-CUSUM equalizer rule with drift parameter equal to the absolute value
of the change and threshold parameter chosen so as to satisfy the false alarm constraint with
equality also displays very good properties. In particular, the difference in the detection delay
of the optimum scheme and the specific 2-CUSUM rule tends to the constant 2 log 2/µ2 as
the frequency of false alarms tends to infinity. Here, µ is the absolute value of the two-sided
possible changes. Notice that, in this case also, both detection delays become unbounded as
the frequency of false alarms tends to infinity. For more details, we refer the reader to [10].
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Appendix A.

Lemma 1. The function g(x) = [h(x)/x2]−1, where h(x) = ex − x − 1, is strictly convex.

Proof. It suffices to show that

g′′(x) = [2(ex − x − 1) − x2ex](ex − x − 1) − 2(ex − 1)[2x(ex − x − 1)]
(ex − x − 1)3 > 0.

To do so, we will show that the function f (x) = (ex − x − 1)3g′′(x) is positive for all x 	= 0,
by showing that f ′(x) has the same sign as x (note that f (0) = 0). We have

f ′(x) = xex[2xex − 6ex + x2 + 4x + 6].
Let k(x) = 2xex − 6ex + x2 + 4x + 6 and note that k(0) = 0. Furthermore, k′(x) =
2xex − 4ex + 2x + 4 and k′(0) = 0. Hence, k′′(x) = 2ex[e−x + x − 1] > 0 for all x 	= 0,
with k′′(0) = 0. Therefore, k(x) > 0 for all x 	= 0, with k(0) = 0, and f ′(x) has the same
sign as x, with f (0) = 0. From this, it follows that f (x) ≥ 0 with equality only at x = 0. This
completes the proof.

Appendix B.

Lemma 2. Suppose that we choose x1, x2, ν′, and ν to all be positive, with ν > ν′, x1 < x2,
and

h(x1ν)

x2
1

= h(x2ν
′)

x2
2

. (20)

Then, for all a ∈ R+, we have

h((x1 + a)ν)

(x1 + a)2 >
h((x2 + a)ν′)

(x2 + a)2 ,

where h(x) = ex − x − 1.

Proof. Notice that, since x1 < x2, for (20) to hold we must have x1ν < x2ν
′, implying that

1

x1ν
+ 1

(x1ν)2 >
1

x2ν′ + 1

(x2ν′)2 .

Using this and the fact that ν > ν′, we find that[
x1ν + 1

(x1ν)2

]
ν2 −

[
x2ν

′ + 1

(x2ν′)2

]
ν′2 > 0. (21)

From (20) and (21), it follows that

ex1ν

x2
1

>
ex2ν

′

x2
2

⇔ x2
2

x2
1

>
ex2ν

′

ex1ν
. (22)

We now have

ex2ν
′

ex1ν
>

ex2ν
′ − x1νe−aν

ex1ν − x1νe−aν

>
ex2ν

′ − x2ν
′e−aν′

ex1ν − x1νe−aν

>
ex2ν

′ − x2ν
′e−aν′ − aν′e−aν′ − e−aν′

ex1ν − x1νe−aν − aνe−aν − e−aν
, (23)
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where the first inequality follows from the fact that x1νe−aν > 0, the second inequality from
the facts that x1ν < x2ν

′ and e−aν′
> e−aν , and the last inequality by noting that the function

(x + 1)e−x is decreasing for all x > 0. Using (22) and (23), and the facts that a > 0 and
eaν′

/eaν < 1, we find that

(x2 + a)2

(x1 + a)2 >
x2

2

x2
1

>
ex2ν

′ − (x2 + a)ν′e−aν′ − e−aν′

ex1ν − (x1 + a)νe−aν − e−aν

>
eaν′

eaν

ex2ν
′ − (x2 + a)ν′e−aν′ − e−aν′

ex1ν − (x1 + a)νe−aν − e−aν
. (24)

The result follows from the final inequality and a rearrangement of terms.

Appendix C.

To complete the proof of Theorem 1, it remains to justify the assertion that, whenever
E1

0[T ] > E1
0[S] (cases (ii) and (iii)), it is sufficient to consider 2-CUSUM rules T for which

the second drift parameter is greater than the first. To this end, let us define the following two
classes of stopping rule.

Definition 6. Define

(i) C1 = {T (λ1, λ2, ν) : λ2 > λ1 > 0, λ2 − λ1 < 2µ2 − 2µ1, ν > 0},
(ii) C2 = {T (λ1, λ2, ν) : 0 < λ2 < λ1, λ2 − λ1 < 2µ2 − 2µ1, ν > 0}.
Note that C1 ∪C2 = Ds . The following lemma is sufficient to justify our adherence to rules

that belong to the class C1 whenever E1
0[T ] > E1

0[S].
Lemma 3. For all Tc2 ∈ C2, there exists a Tc1 ∈ C1 such that E∞[Tc1 ] = E∞[Tc2 ] and
E1

0[Tc2 ] > E1
0[Tc1 ].

Proof. Let λ′
1 > λ′

2 > 0. Then T (λ′
1, λ

′
2, ν) ∈ C2. From (3), (4), and (2), we find that

1

E∞[T (λ′
1, λ

′
2, ν)] =

[
h((λ′

1)ν)

(λ′
1)

2

]−1

+
[
h((λ′

2)ν)

(λ′
2)

2

]−1

. (25)

Now let λ′′
1 = λ′

2 and λ′′
2 = λ′

1. Then T (λ′′
1, λ

′′
2, ν) ∈ C1 and

1

E∞[T (λ′′
1, λ

′′
2, ν)] =

[
h((λ′′

1)ν)

(λ′′
1)

2

]−1

+
[
h((λ′′

2)ν)

(λ′′
2)

2

]−1

=
[
h((λ′

1)ν)

(λ′
1)

2

]−1

+
[
h((λ′

2)ν)

(λ′
2)

2

]−1

. (26)

Therefore, the above rules have the same frequency of false alarms.
The desired result comes as a direct consequence of the following two inequalities:[
h((λ′

1 − 2µ1)ν)

(λ′
1 − 2µ1)2

]−1

−
[
h((λ′′

1 − 2µ1)ν)

(λ′′
1 − 2µ1)2

]−1

<

[
h((λ′

1)ν)

(λ′
1)

2

]−1

−
[
h((λ′′

1)ν)

(λ′′
1)

2

]−1

, (27)

[
h((λ′′

2)ν)

(λ′′
2)

2

]−1

−
[
h((λ′

2)ν)

(λ′
2)

2

]−1

<

[
h((λ′′

2 + 2µ1)ν)

(λ′′
2 + 2µ1)2

]−1

−
[
h((λ′

2 + 2µ1)ν)

(λ′
2 + 2µ1)2

]−1

. (28)
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Notice that, from (26) and (25), it follows that the right-hand side of (27) is equal to the left-hand
side of (28). Therefore, the left-hand side of (27) is greater than the right-hand side of (28).
From this result, a rearrangement of terms, and (6), (5), (3), (4), and (2), we obtain

1

E1
0[T (λ′′

1, λ
′′
2, ν)] >

1

E1
0[T (λ′

1, λ
′
2, ν)] ,

which is the desired inequality.
Inequalities (27) and (28) follow by multiplying both sides of each of them by ν2 and using

the convexity of the function x2/h(x) (see Appendix A) along with the facts that λ′
1 > λ′′

1 and
λ′′

2 > λ′
2, respectively. This completes the proof of the lemma.

Appendix D.

Definition 7. Let µ ∈ [0, ∞) and ν > ν′ > 0. Define the following functions, where h(x) =
ex − x − 1:

(i) Cν(µ) = h((λ1 − 2µ)ν)

(λ1 − 2µ)2 ,

(ii) Cν′(µ) = h((λ1 − 2µ)ν′)
(λ1 − 2µ)2 ,

(iii) f (µ) = 1

Cν(µ)
− 1

Cν′(µ)
.

After introducing the above definition we can rewrite (16) as f (0) > f (µ1). To prove this,
it suffices to show that f (µ) is strictly decreasing.

Lemma 4. The function f (µ) is strictly decreasing.

Proof. By differentiating f (µ) with respect to µ, we obtain

f ′(µ) = − C′
ν(µ)

[Cν(µ)]2 + C′
ν′(µ)

[Cν′(µ)]2 .

Hence, it suffices to show that

−C′
ν(µ)[Cν′(µ)]2 < −C′

ν′(µ)[Cν(µ)]2.

Using ν > ν′ and doing a term-by-term comparison gives the result.
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