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Abstract— We consider the problem of detection of abrupt
changes when there is uncertainty about the post-change
distribution. In particular we examine this problem in the
prototypical model of continuous time in which the drift of
a Wiener process changes at an unknown time from zero to
a random value. It is assumed that the change time is an
unknown constant while the drift assumed after the change
has a Bernoulli distribution with all values of the same sign
independent of the process observed. We set up the problem as
a stochastic optimization in which the objective is to minimize a
measure of detection delay subject to a frequency of false alarm
constraint. As a measure of detection delay we consider that
of a worst detection delay weighed by the probabilities of the
different possible drift values assumed after the change point
to which we are able to compute a lower bound amongst the
class of all stopping times. Our objective is to then construct
low complexity, easy to implement decision rules, that achieve
this lower bound exactly, while maintaining the same frequency
of false alarms as the family of stopping times. In this effort,
we consider a special class of decision rules that are delayed
versions of CUSUM algorithm. In this enlarged collection, we
are able to construct a family of computationally efficient
decision rules that achieve the lower bound with equality, and
then choose a best one whose performance is as close to the
performance of a stopping time as possible.

Keywords: change point, random drift, optimality, disor-
der problem, decision rule, min-max problem

I. INTRODUCTION

The disorder problem is concerned with detecting a change
in the statistical behavior of sequential observations by
balancing the trade-off between a small detection delay and
a frequency of false alarms.

In this work we consider the problem of detecting a change
in Wiener observations when there is uncertainty about the
value of the post-change drift. In particular, we consider the
case in which we only have noise before a signal arrives,
which we represent by a zero drift Wiener model. The signal
then arrives at an unknown constant in time otherwise known
as the change point. We model the uncertainty about the
post change drift by a Bernoulli distribution. In other words,
we consider the case in which the signal can be a weak
one represented by a small drift m1 with a probability p,
or a stronger signal represented by a larger drift m2 with
probability 1−p. We assume that the uncertainty in the drift
is independent of the observations.
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Earlier studies have treated the case in which the post-
change drift is a known constant after the unknown change
time. In discrete time, Moustakides [11] has given the
optimality of the cumulative sum (CUSUM) rule in Lorden’s
sense. And the optimality of the CUSUM also holds in
continuous time Wiener processes as seen in Shiryaev [16],
Beibel [2] and Moustakides [12]. As a result, if after the
change time, the signal received has a signal strength equal to
the linear combination of the weak and strong drifts, namely
the drift pm1 + (1 − p)m2, instead of a random assuming
either the weak or the strong drift, then the optimal CUSUM
stopping time is known, since the post-change drift is fixed.

In the Bayesian framework the change point is considered
to be a random variable independent of the observations.
In this framework, Beibel [3] and Beibel and Lerche [4]
considered the case of uncertainty in the post-change drift in
Wiener observations. More recently, Sezer [15] considered
the case in which the post-change drift in a Wiener process is
a known constant but the change time has a prior distribution
which depends on the observations. The case of uncertainty
in post change parameters has also been studied in Poisson
observations within the Bayesian framework in Bayraktar,
Dayanik and Karatzas [1].

In all of the above works the objective is to find op-
timal stopping times that balance a trade-off between an
appropriately chosen measure of detection delay and a small
probability of false alarms or a small frequency of false
alarms. In other words the rules according the change point
is decided are online rules in that the point in time at which
they declare an alarm is also the point in time at which
they estimate the location of the change point. This is in
contract to many statistical works which provide frameworks
for estimation techniques of one or multiple change points in
an off-line fashion, that is by taking into consideration all of
the observed data. In fact all such studies assume knowledge
of the totality of the observation path on any time interval
to provide an estimate of the change point. For a sample of
such works please refer to [5], [9], [8] and [14].

In our work we initially consider the problem of online
detection of the unknown change point in the presence of
uncertainty in the drift and adopt a min-max approach of
estimation of the change point. In this effect we consider
a weighted average of a Lorden type measure of detection
delay [10] with weights given by the probabilities of the
Bernoulli distribution that captures the post-change drift
uncertainty. The objective is to minimize this measure of
detection delay subject to a constraint on the mean time
to the first false alarm. We first compute a lower bound
on the detection delay of all stopping times according to
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this measure, then enlarge the family of rules considered
by allowing all decision rules which are a delayed version
of stopping times multiplied by a positive constant which
can take values less than unity. The idea is that following
these decision rules the alarm is drawn according to a given
stopping time but the estimation of the location of the change
point is then given as the product of the constant and the time
at which the stopping time alarm goes off. Clearly the closer
the constant is to unity the more ”online” is the estimation
of the change point. Enlarging the class of rules considered
beyond stopping times allows us to build low-complexity,
computationally efficient schemes of estimation that, for
the same frequency of false alarms as their stopping time
counterparts, achieve exactly the lower bound of detection
delay and are easy to implement. In this effort we find that
a family of decision rules that use a λ parameter CUSUM
statistic [6] [7] do achieve the lower bound with equality.
It is then possible to select amongst them the decision rule
with a constant factor as close to unity as possible that in
fact often results in a very slight deviation from unity for a
large number of parameter values.

In section II, we set up the problem mathematically by
defining appropriate measures and filtrations and propose a
new criterion to measure detection delay. We also derive a
lower bound for the detection delay criterion for the family
of all stopping times that satisfy the false alarm constraint.
In section III, we consider an enlarged collection of decision
rules, which contains not only the stopping times but also
the delayed version of stopping times multiplied by positive
constants less than unity. We show that there is a family of
the decision rules in this class that achieve the lower bound of
detection delay with equality and we choose the best decision
rule in this family, namely the one whose performance is
as close to the performance of a stopping time as possible.
In section IV, we provide the examples and discuss the
performance of the optimal rule we found. In section V, we
give all the proofs of the theorems and lemmas.

II. THE OBSERVATIONS AND THE DELAY

Let (Ω,F) be a sample space. We observe the process
{Zt}t≥0 on this space with initial value Z0 = 0. Assume that
there may be a change in the distribution of the observations
process at the fixed but unknown time τ . When there is
no change, we use P∞ to denote the measure generated by
{Zt}t≥0. It is the standard Wiener measure. When there is
a change, assume the observation process changes from a
standard Brownian motion to a Brownian motion with drift
m; that is

dZt :=

{
dWt t < τ

mdt+ dWt t ≥ τ.
(1)

We suppose that the post-change drift m can take the value
m1 with probability p and the value m2 with probability
1 − p respectively, for a parameter p ∈ (0, 1), that means
m is a random variable with a Bernoulli distribution. And
we suppose m is independent of the pre-change Brownian
motion process {Wt}t<τ . Let Pm correspond to the measure

generated by {m}. In our analysis, we assume that m1 and
m2 are both positive. The case of negative drifts can be
addressed by similar arguments.

To facilitate our analysis, let Gt correspond to the
σ−algebra generated by the observation {Zs}s≤t. Denote
G∞ =

⋃
t≥0 Gt, and so we have a filtration {Gt}t>0. We

introduce the family of measures Pmiτ defined on this
filtration, where τ ∈ [0,∞) and i = 1, 2. Pmiτ is defined to
be the measure generated by {Zt}t≥0, when dZt = dWt

for t < τ , and dZt = midt + dWt for t ≥ τ . Thus under
Pmi0 , the observation process is a Brownian motion with
drift: dZt = midt+ dWt for any t ≥ 0.

Our objective is to find a G-stopping rule that balances the
trade off between the small detection delay and the lower
bound of the time interval between two false alarms.

In this problem, we need to construct a new measure of
detection delay that takes into account the distribution of
both the random drift m and the observation path. For any
G-stopping time R, we define its detection delay given the
post-change drift m = mi for i = 1, 2 as

Ji(R) := sup
τ≥0

esssupEmiτ [(R− τ)+|Gτ ]. (2)

The detection delay of the G-stopping time R is defined as

J(R) := pJ1(R) + (1− p)J2(R). (3)

Here, we take the essential supremum over all path up to time
τ and take supremum over all possible change time. Then,
we take the average worst delay over all possible values of
m which has a Bernoulli distribution.

We require a constraint on the mean time of the first false
alarm, namely E∞[R] ≥ γ. In fact, by using an argument
similar to [11], we just need to consider the stopping times
with E∞[R] = γ.

Let S be the collection of all G-stopping times for which
E∞[R] = γ. By the above setup, our objective becomes to
minimize the detection delay J(R) in (3) over all G-stopping
times in S. For this purpose, we first find a lower bound of
the detection delay for any R ∈ S in the following result:

Lemma 1: For any stopping time R ∈ S, we have a lower
bound of the delay as

J(R) ≥ 2p

m2
1

g

(
h−1(

m2
1γ

2
)

)
+

2(1− p)
m2

2

g

(
h−1(

m2
2γ

2
)

)
,

(4)

where h(x) := ex−x−1 and g(x) := e−x+x−1 (5)

are increasing function as x ≥ 0.

We denote the right hand side of (4) as LB, which is
a constant depending on γ,m1,m2 and p. Unfortunately,
we can not find a G-stopping time that achieves LB with
equality. So we enlarge the collection S of the G-stopping
times, by considering the delayed version of stopping times
in the following section.
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III. THE ENLARGED DETECTION PROBLEM
AND THE OPTIMAL DECISION RULE

A. The Enlarged Detection Problem

Let R be the family of all rules of the form R = CR̂,
where R̂ is a G-stopping time, and 0 < C ≤ 1 is a constant
positive coefficient, satisfying the false alarm E∞[R] = γ
and the delay J(R) ≥ LB, which is the lower bound of the
detection delay in Lemma 1. That is

R :=

{
CR̂ : 0 < C ≤ 1; R̂ is a G-stopping time

E∞[R] = γ; J(R) ≥ LB

}
. (6)

It is easy to see that S ⊂ R. The enlarged collection R
contains not only the G-stopping times in S but also some
products of a G-stopping time and a constant. A rule of the
form R = CR̂ is G-measurable, so we can still use the
detection delay in (3) to measure its performance.

Our enlarged problem is the minimization problem

inf
R∈R

J(R). (P)

By the definition of the enlarged class R, the lower bound
of the detection delay of any rule in R will be the same as
that of the rule in S in (4), which is LB. In the following,
we would like to find a family of rules in R to achieve LB,
so that such rule has the least delay in R.

As a remark, we call the rule in R to be a decision rule,
since when the coefficient is smaller than 1, the weighted
rule R = CR̂ is no longer a G-stopping time. In fact, if an
alarm is drawn at time R̂, the decision rule R claims the
change position at R = CR̂. If the coefficient is close to
1, the time at which we stop is not far from the position
at which we claim the location of the change point. For
example, when we use rule 0.98R̂ and the stopping time R̂
draws an alarm at time 100, this decision rule declares the
change at time t = 98.

B. The Decision Rule Tλ,C
We want to build the decision rules in R, whose delays

are equal to the lower bound LB in Lemma 1.

When the post-change drift is a known constant λ, which
means p = 1 and m1 = λ in our setup, the optimal stopping
rule is the CUSUM stopping time Sλ as in [6], that is

Sλ := inf{t > 0, Vt − inf
s≤t

Vs ≥ ν},

where Vt := λZt −
1

2
λ2t and ν > 0.

(7)

Inspired by the optimality of the CUSUM stopping time
when the post-change drift is known, we define a delayed
version of CUSUM stopping time with tuning parameter λ

Tλ,C := CSλ, (8)

where 0 < C ≤ 1 is a constant parameter and Sλ
is a CUSUM G-stopping time with λ > 0 and ν > 0 in
(7). We can get its detection delay from the following lemma.

Lemma 2: For the decision rule Tλ,C defined in (8), which
satisfies E∞[Tλ,C ] = γ, we have its detection delay

J(Tλ,C) =
2pCg(θ1ν)

λ2θ21
+

2(1− p)Cg(θ2ν)

λ2θ22
, (9)

and ν can be represent as a function of C and λ in

ν = h−1(
1

2C
λ2γ), (10)

where
θi :=

2mi − λ
λ

(11)

is decreasing and θi > −1 for i = 1, 2.

Our purpose is to find the parameters of the rule Tλ,C ∈ R
to make the detection delay be equal to the lower bound in
(4), which is given the following result.

Theorem 1: In the collection R, there exists a family
of the decision rules that solve the problem (P). More
precisely, concerning the decision rule Tλ,C = CSλ in (8),
for any parameter λ > 0, there exists a unique value C,
namely Cλ, such that J(Tλ,Cλ) = LB, where LB is the
lower bound of detection delay in (4).

We denote
Tλ := Tλ,Cλ . (12)

Theorem 1 provides a family of rules {Tλ}λ>0, whose delays
reach the lower bound (4). We want a method to choose a
best rule from this family.

Our original objective was to find a stopping time. So we
want to choose one rule from the family {Tλ}λ>0, whose
behavior is as close to the behavior of a stopping time as
possible. By running rule Tλ, we stop at Sλ and declare the
estimatation of the change point to be CλSλ. This suggests
that the ideal choice of λ is the one to maximize Cλ.

Theorem 2: In the family of decision rules of the form
{Tλ}λ>0 in Theorem 1, there exists a rule Tλ∗ := Cλ∗Sλ∗

whose behavior is closest to the behavior of a stopping
time, for a λ∗ ∈ (m1,m2). More precisely, there exists a
λ∗ in (m1,m2) to maximize the coefficient Cλ.

Since the maximum of Cλ is located in (m1,m2),
the number of values of λ to reach the maximum is
finite. In case that there are more than one values of λ
which give the maximum of Cλ in Theorem 2, we can
choose any one of them, such as the smallest one, namely λ∗.

IV. EXAMPLES AND DISCUSSION

Given the values of m1, m2, p and γ, we would like
to describe the method of choosing the parameters λ∗ and
Cλ∗ used in the construction of the optimal rule Tλ∗ . First,
the equation (10) represents the threshold ν as a function
of λ and Cλ. Then by equalizing expression (9) to the
lower bound in (4), we obtain an equation involving two
unknowns Cλ and λ. Now the objective becomes to identify
the maximum Cλ by appropriately choosing λ, which can be
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achieved numerically always. Since λ∗ ∈ (m1,m2), in the
iteration algorithm to find the maximum, we can always set
the initial value of λ to be m1. This produces the value of
optimal choice λ∗, and thus leads to the rule Tλ∗ .

Since Tλ∗ is not always a stopping time, we are interested
in the difference between the time that the alarm is drawn
and the estimation of change time.

γ = 50 γ = 100 γ = 500
p = alarm change alarm change alarm change
0 2.79 2.79 3.36 3.36 4.75 4.75
0.1 3.01 2.99 3.66 3.63 5.26 5.19
0.2 3.23 3.19 3.95 3.9 5.74 5.62
0.3 3.44 3.4 4.24 4.17 6.19 6.06
0.4 3.65 3.6 4.51 4.44 6.63 6.49
0.5 3.85 3.81 4.78 4.71 7.06 6.93
0.6 4.05 4.01 5.04 4.98 7.48 7.36
0.7 4.25 4.22 5.3 5.24 7.89 7.8
0.8 4.45 4.42 5.55 5.51 8.3 8.23
0.9 4.64 4.62 5.8 5.78 8.7 8.67
1 4.83 4.83 6.05 6.05 9.1 9.1

TABLE I
THE CASE m1 = 1, m2 = 1.5

In Table I, given m1 = 1, m2 = 1.5 and γ = 50, 100, 500,
we list the average time we stop under column “alarm”, and
the estimations of the change time under column “change”,
for different values of p from 0 to 1. We can see that when
p is close to 0 or 1, the difference between the estimation
of the change time and the time we stop is small. When p
is far from 0 and 1, the difference is larger, since in such
case it is harder to figure out the post-change drift value. In
particular, the case p = 0 gives the CUSUM stopping time
with tuning parameter m2, and p = 1 gives the CUSUM
stopping time with tuning parameter m1. On the other hand,
when γ increases, the threshold ν in the CUSUM stopping
time increases. Then more time is necessary to declare the
alarm, and thus the difference between the estimation of the
change time and the time we stop gets larger.

0.0 0.2 0.4 0.6 0.8 1.0

1.02

1.04

1.06

1.08

1.10

p

time when alarm is drawn
estimation of change time

Fig. 1. The case m1 = 2, m2 = 3, γ = 50

In Figure 1, we consider the case m1 = 2,m2 = 3, γ =
50. The graph shows the ratio of the time at which the alarm
is drawn and the estimation of the change time. We can see
that the ratio is small when the post-change drift is more
likely to be one specific value, and is large when it is hard
to figure out the value of the post-change drift.

As a discussion, the idea of decision rule Tλ∗ is to
improve the performance of CUSUM stopping times. The

CUSUM stopping times that satisfy the constraint on false
alarms are in the collection R. But their detection delays
are always larger than the lower bound LB. Our strategy in
Tλ∗ is to modify the CUSUM stopping time to make the
delay equal to the lower bound by weighting the stopping
time, and then find a particular delayed CUSUM rule whose
weight is closest to 1. Thus we can have an improved
decision rule with a smaller delay and the same false alarm
constraint as CUSUM stopping times.

V. PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma 1:

The detection delay given the post-change drift m = mi

in (2) is that of Lorden’s criterion [10]. Since R is a G-
stopping time with E∞[R] = γ, from the optimality of the
Cumulative Sum G-stopping time in the case that the post
change drift is known to be m = mi (see [16]), we know
that

Ji(R) ≥ Emi0 [Smi ] =
2

m2
i

g

(
h−1(

m2
i

2
γ)

)
, (13)

where Smi is the CUSUM stopping time defined in (7). So
we have the inequality (4). �

Proof of Lemma 2:

By simple computation (see [6] and [13]), for i = 1, 2,
we have

E∞[Sλ] =
2

λ2
h(ν) and Emi0 [Sλ] =

2g( 2mi−λ
λ ν)

(2mi − λ)2
. (14)

To compute the detection delay of decision rule Tλ,C =
CSλ, we use the fact that the worst detction delay over
all possible paths will occur when the process Yt = Vt −
infs≤t Vs is equal to 0 at time τ . That is, the worst detection
delay takes place on those paths for which {Yτ = 0}, which
is the same loaction for the Yt process as the one that it takes
at time 0 since Y0 = 0. By Markov property, we have

esssupEmiτ [(Tλ,C − τ)+|Gτ ] = Emiτ [(CSλ − τ)+|Yτ = 0]

= Emi0 [CSλ]. (15)

From (2), (14) and (15), for i = 1, 2 we obtain

Ji(Tλ,C) =
2Cg(θiν)

λ2θ2i
. (16)

From equations (3) and (16), we obtain (9).
Also, from E∞[Tλ,C ] = γ and (14), it follows that

2C

λ2
h(ν) = γ. (17)

Since h(x) is increasing on [0,∞), we obtain (10). �

Result 1: The function

r(x) := x
ex − 1

ex − x− 1
(18)

is positive and strictly increasing on x ∈ (−∞,∞), with
r(0) = 2, r′(0) = 1/3, lim

x→−∞
r(x) = 1 and lim

x→∞
r(x) =∞.
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Proof: The derivative of r(x) is

r′(x) =
(ex − 1)2 − x2ex

(ex − x− 1)2
. (19)

Denote r1(x) = (ex − 1)2 − x2ex. We have r1(0) = 0 and
r′1(x) = 2ex(ex−1−x− 1

2x
2). It is easy to see that r′1(x) > 0

when x > 0 by Taylor expansion, and r′1(x) < 0 when x < 0
by taking derivative of the term ex−1−x− 1

2x
2 twice. Then

r1(x) > 0 when x 6= 0, and so r′(x) > 0 when x 6= 0.
It is also easy to get r(0) = 2, r′(0) = 1/3, r(−∞) = 1

and r(∞) = ∞. Since r′(0) = 1/3, the function r(x) is
strictly increasing on x ∈ (−∞,∞), and thus r(x) is positive
on x ∈ (−∞,∞). �

Result 2: The function

K(x) :=
ex − x− 1

x(ex − 1)
(20)

is positive and strictly decreasing on x ∈ (−∞,∞), with the
values K(0) = 1/2, K ′(0) = −1/12, lim

x→−∞
K(x) = 1 and

lim
x→∞

K(x) = 0. Moreover, K(x) is concave on (−∞, 0)

and convex on (0,∞). And the graph of K(x) is symmetric
with respect to the point (0,K(0)).

Proof: We know K(x) is strictly decreasing on x ∈
(−∞,∞) with K(0) = 1/2 and K ′(0) = −1/12 from
Result 1. By computing

K(x) +K(−x) =
−(ex − 1)− (e−x − 1)

(ex − 1)(e−x − 1)
= 1, (21)

we can get 1/2 − K(x) = K(−x) − 1/2 for any x. Since
K(0) = 1/2, the graph of K(x) is symmetric with respect
to the point (0,K(0)).

We have K ′′(x) = 2(ex−2+e−x)2−x3(ex−e−x)
x3(ex−2+e−x)2 . On (0,∞),

the denominator is always positive. Denote the numerator
as K1(x) = 2(ex − 2 + e−x)2 − x3(ex − e−x). Wh have
K1(0) = 0 and K ′1(x) = 4(e2x − e−2x) − 8(ex − e−x) −
3x2(ex − e−x) − x3(ex + e−x). To show K ′1(x) > 0 on
x > 0, we use the Taylor expansion in each term to get

K ′1(x) =

∞∑
n=1

8(22n+1 − 2− n− 3n2 − 2n3)

(2n+ 1)!
x2n+1. (22)

Denote s(n) = 22n+1− 2−n− 3n2− 2n3. It is easy to see
that s(0) = s(1) = s(2) = 0, s(3) = 42 and s(n) > 0 when
n ≥ 3. Then when x > 0, we have K ′1(x) > 0 and thus
K1(x) > K1(0) = 0. And then K ′′(x) > 0 when x > 0,
which leads to the result that K(x) is convex when x > 0.
By symmetry, K(x) is concave when x < 0. �

Result 3: The function

L(x) =
1− e−x

x
(23)

is positive, strictly decreasing and convex on (−∞,∞).
Proof: It is easy to see that L(x) is positive and its

derivative is L′(x) = − e
x−x−1
x2ex < 0 with L′(0) = −1/2.

And we have L′′(x) = 2
x3ex (ex − 1 − x − 1

2x
2), with

L′′(0) = 1/3. When x > 0, L′′(x) > 0 is given by Taylor

expansion. When x < 0, we can see ex − 1− x− 1
2x

2 < 0
by taking derivative twice, and thus L′′(x) > 0.

�

Proof of Theorem 1:

1) For any fixed λ > 0, to show that there exists a C to
satisfy the equality J(Tλ,C) = LB, we first notice that the
delay J(Tλ,C) in (9) is a continuous function of C ∈ (0, 1].

At C = 1, we have Tλ,1 = Sλ, which is a CUSUM G-
stopping time in S, and so J(Tλ,1) = J(Sλ) ≥ LB.

As C → 0+, from eν − ν − 1 = λ2γ
2C , we have

lim
C→0+

ν

lnC−1
= 1. (24)

When λ < 2mi, we have θi > 0 for i = 1, 2, and then

lim
C→0+

Cg (θiν) = lim
C→0+

Cθiν = lim
C→0+

θiC lnC−1 = 0.

(25)
When λ > 2mi, we have −1 < θi < 0 for i = 1, 2, and then

lim
C→0+

Cg (θiν) = lim
C→0+

Ce−θiν = lim
C→0+

C1+θi = 0. (26)

When λ = 2mi, we have g (θiν) /θ2i = ν2/2, and then

lim
C→0+

C

θ2i λ
2
g (θiν) = 0. (27)

Thus from (24), (25), (26) and (27), we get J(Tλ,0+) = 0.
Since J(Tλ,1) ≥ LB and J(Tλ,0+) = 0, by continuity of

the delay function J(Tλ,C) in (9), there exists a value of
Cλ ∈ (0, 1] such that J(Tλ,Cλ) = LB, for any λ > 0.

2) For uniqueness of Cλ, we take the derivative of the
delay J(Tλ,C) with respect to C in (9).

From (16), for i = 1, 2, we can get

d

dC
Ji(Tλ,C) =

2ν2

λ2
L(θiν) (K(−θiν)−K(ν)) . (28)

where K(x) is defined in (20) and L(x) is defined in (23).
Since θi > −1, we have −θiν < ν. Thus by Result 2 and
Result 3, we have d

dC Ji(Tλ) > 0, for i = 1, 2. Then from
(3), J(Tλ,C) is increasing in C.

From existence and uniqueness, there exists a unique
Cλ ∈ (0, 1] to satisfy J(Tλ,Cλ) = LB, for any λ > 0. Thus
Tλ,Cλ ∈ R and it solves the problem (P).

�

Proof of Theorem 2:

1) From Theorem 1, Cλ is a function of λ. By equations
(9) and (10), the delay J(Tλ) with parameters (λ,Cλ) is also
a function of λ. Thus we can compute the derivatives of Cλ
and J(Tλ) with respect to λ.

By computation and equation (16), for i = 1, 2, we have

d

dλ
Ji(Tλ) =

2ν2

λ2
L(θiν)

(
A(ν, θi)

dCλ
dλ
−B(ν, θi)

2Cλ
λ

)
,

(29)

where A(ν, x) := K(−xν)−K(ν), (30)

and B(ν, x) :=
1

x

(
K(xν)− 1

2
− x

(
K(ν)− 1

2

))
. (31)
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From the constraint J(Tλ) = LB in Theorem 1, we have
d
dλJ(Tλ) = 0. Combining with equations (3) and (29), we
can get the derivative of Cλ with respect to λ as

dCλ
dλ

=
2Cλ
λ

pL(θ1ν)B(ν, θ1) + (1− p)L(θ2ν)B(ν, θ2)

pL(θ1ν)A(ν, θ1) + (1− p)L(θ2ν)A(ν, θ2)
.

(32)
To check the sign of dCλ/dλ, we need to figure out the
behavior of A(ν, x) and B(ν, x).

2) It is easy to check the behavior of the denominator in
(32). Since θi > −1, we have −θiν < ν. By Result 2, K(x)
is decreasing on (−∞,∞), thus we have A(ν, θi) > 0 for
i = 1, 2 and λ > 0. From Result 3, L(θiν) > 0 for i = 1, 2
and thus the denominator in (32) is positive for λ > 0.

The behavior of B(ν, x) is related to the convexity of
K(x). By Result 2, K(x) − 1/2 is convex on x > 0 and
concave on x < 0, and K(x)−1/2 is symmetric with respect
to the point (0,K(0)− 1/2) = (0, 0).

When x > 1, we have xν > ν > 0, and by convexity,
|K(xν) − 1/2|/|K(ν) − 1/2| < x. Since K(xν) − 1/2 <
K(ν) − 1/2 < 0, we get K(xν) − 1/2 > x(K(ν) − 1/2),
which means B(ν, x) > 0.

When x = 1, it is easy to see that B(ν, 1) = 0.
When 0 < x < 1, we have ν > xν > 0, and by convexity,

|K(xν)−1/2|/|K(ν)−1/2| > x and K(ν)−1/2 < K(xν)−
1/2 < 0. So we can get B(ν, x) < 0.

When x = 0, we have B(ν, 0) = −ν/12− (K(ν)− 1/2).
We just need to take derivative with respect to ν to check
B(ν, 0) is decreasing in ν, and so B(ν, 0) < 0.

When −1 < x < 0, we have K(xν) − 1/2 > 0 >
K(ν)− 1/2. This gives B(ν, x) < 0.

So we have

B(ν, x)


> 0, when x > 1

= 0, when x = 1

< 0, when − 1 < x < 1.

(33)

3) Now we can see the existence of the local maximum
of Cλ as λ ∈ (m1,m2).

When 0 < λ < m1, we have θ1 > 1 and θ2 > 1. Then
from (33), we know B(ν, θ1) > 0 and B(ν, θ2) > 0. Thus
in (32), we can see that dCλ/dλ > 0.

When λ = m1, we have θ1 = 1 and θ2 > 1. Then from
(33), we know B(ν, θ1) = 0 and B(ν, θ2) > 0. Thus in (32),
we can see that dCλ/dλ > 0.

When λ = m2, we have −1 < θ1 < 1 and θ2 = 1. Then
from (33), we know B(ν, θ1) < 0 and B(ν, θ2) = 0. Thus
in (32), we can see that dCλ/dλ < 0.

When λ > m2, we have −1 < θ1 < 1 and −1 < θ2 < 1.
Then from (33), we know B(ν, θ1) < 0 and B(ν, θ2) < 0.
Thus in (32), we can see that dCλ/dλ < 0.

Since Cλ is increasing at λ ≤ m1 and is decreasing at
λ ≥ m2, there exists a maximum on (m1,m2). �

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, we consider the problem of detection when

the change time is an unknown constant. Our continuous

sequential observations change from the standard Wiener
process to Wiener process of drift m1 with probability p, or
to Wiener process of drift m2 with probability 1− p, where
m1 and m2 are known constants which are both positive.
Although we are unable to find stopping times to solve
this problem, we demonstrate that it is possible to construct
an easy to implement family of decision rules that achieve
the lower bound of detection delay while in fact achieve
a larger mean time to false alarm than their stopping time
counterparts. These decision rules are delayed version of
stopping times. Although, according to these decision rules,
the change point is not declared when the alarm is drawn, the
solution is still implementable online in that once the alarm
is drawn an estimate of the change point is readily available.
A problem of interest to consider in the future is that of
detection problem when a general distribution on the random
variable m is assumed. Another interesting problem is one
in which we are uncertain about the value of p which would
lead to the consideration of a family of different measures
within the Bernoulli framework for the random post-change
drift m.
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