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Abstract— In this work, we consider the problem of sequen-
tial decision making on the state of a two-sensor system with
correlated noise. Each of the sensors is either receiving or not
receiving a signal obstructed by noise, which gives rise to four
possibilities: (noise, noise), (signal, noise), (noise, signal), (signal,
signal). We set up the problem as a min-max optimization in
which we devise a decision rule that minimizes the length of
continuous observation time required to make a decision about
the state of the system subject to error probabilities.

We first assume that the noise in the two sources of ob-
servations is uncorrelated, and propose running in parallel two
sequential probability ratio tests, each involving two thresholds.
We compute these thresholds in terms of the error probabilities
of the system. We demonstrate asymptotic optimality of the
proposed rule as the error probabilities decrease without bound.
We then analyze the performance of the proposed rule in the
presence of correlation and discuss the degenerate cases of
perfect positive or negative correlation. Finally, we purport the
benefits of our proposed rule in a decentralized sensor system
versus one in constant communication with a fusion center.

I. INTRODUCTION

Sequential hypothesis testing is one of the most classical
problems arising in statistical sequential analysis and dating
as far back as the work of Wald [19]. In the classical
setup the problem is that of receiving a stream of sequential
observations whose law follows one of two hypotheses, the
null H0 or the alternative H1. The objective is then to
minimize the number of observations required to make a
decision subject to a pre-set error tolerance described as Type
I and Type II errors (see, for instance, [17]). There are two
main approaches to this problem: the Bayesian, in which
each hypothesis is assigned an a priori probability of being
true, and the min-max, in which no such assumption is made.
The optimal solution to this problem is known to be given by
the sequential probability ratio test (see, for instance, Chow,
Robbins, and Siegmund [3]; Shiryaev [18]).

In the later years, the optimality of the sequential probabil-
ity ratio test was examined and extended to various models
(see, for instance, Liptser and Shiryaev [14], Irle [12]).
Moreover, much work was done along the lines of extending
two hypotheses regarding a stream of observations to the
problem of distinguishing between many hypotheses both in
the Bayesian (Baum and Veeravalli [1] , Dayanik, Poor, and
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Sezer [4], Dayanik and Goulding [5], Dragalin, Tartakovsky,
and Veeravalli [6], Golubev and Khasminski [8]) and the
min-max set up (Brodsky and Darkhovsky [2]). However,
none of the above works consider the case of making an
inference along multiple streams of observations.

In this paper, we examine the problem of testing four
hypotheses on two streams of observations. Each of the
hypotheses represents a physical state of the presence versus
the absence of a signal obstructed by noise. In particular,
we capture data and attempt to distinguish the presence of
a signal, represented by a drift, in each of the two sensors,
from Brownian noise (see, for example, [16], [18]). In other
words, our problem is that of sequentially distinguishing a
standard vs a drifted two-dimensional Brownian motion, and
the objective is to minimize sampling time subject to error
probabilities.

To address this problem we devise a sequential decision
rule consisting of a stopping rule that declares the optimal
time to stop sampling and a decision variable that declares a
decision of the state of our system. Our proposed rule is the
maximum of two sequential probability ratio tests, each with
distinct thresholds, and our decision variable is determined
from the exit location of the two sequential probability ratio
statistics. Our first contribution is the explicit computation of
the thresholds of the proposed rule in terms of the error prob-
abilities. The novelty of our approach is in the construction
of a test using a purely two-dimensional structure, allowing
detection of a signal in each coordinate rather than merely the
detection of a signal somewhere in the system (i.e. we are
able to distinguish in which coordinate(s) a signal exists),
subject to error probabilities for every possible case. We
then proceed to show asymptotic optimality of the proposed
rule in the absence of across-sensor correlation (i.e. the
independent case) as the error probabilities decrease without
bound (see [7]). We then proceed to examine the relationship
of the error probabilities and sampling times in the presence
of correlation to the error probabilities and sampling times
of the proposed rule in the independent case.

A very important property of our proposed rule is that it
can be implemented in a decentralized setup and still enjoy
the same asymptotic optimality properties. In other words,
each of the individual sequential probability ratio tests can
be devised by each of the sensors separately, which can then
communicate a binary bit of information to a central fusion
center consisting of the alarm by the sequential probability
ratio test and its exit side. The central fusion center can then
make a decision once it receives a communication from both
sensors and is thus not required to have access to the two-
dimensional stream of sequential observations. This property
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makes the system very powerful because an optimal outcome
can be achieved with a rather limited level of communication.

In Section II we set up the problem mathematically and
present our proposed rule. In Section III, we investigate the
properties of the rule in the absence of correlation (i.e. the
independent case). In the first part of the section we show
the relationship between the threshold selection and the error
probabilities, while in the second part of the section we
demonstrate asymptotic optimality of the proposed rule. In
the third part of this section, we conduct a performance
analysis of the expected sampling time in terms of the
signal-to-noise ratio. In Section IV, we consider the case of
non-zero correlation, establish inequalities relating the error
probabilities and expected sampling times to those of the
independent case, and discuss the perfect-correlation cases.
In Section V we discuss the ability of our proposed rule to be
implemented in a decentralized sensor system. We conclude
with a discussion on future work.

II. MATHEMATICAL SETUP

Consider a two-dimensional stochastic process,

dZ
(k)
t = σkdW

(k)
t + µkdt, k = 1, 2

where W
(k)
t are correlated Brownian motions with corre-

lation −1 < ρ < 1, i.e., dW (1)
t dW

(2)
t = ρ dt. (We will

also consider the limiting cases ρ = ±1 in Section IV.) We
sequentially observe the 2-dimensional process (Z

(1)
t , Z

(2)
t ),

t ≥ 0, and wish to test the following hypotheses:

H00 : µ1 = 0, µ2 = 0 H10 : µ1 = m1, µ2 = 0

H01 : µ1 = 0, µ2 = m2 H11 : µ1 = m1, µ2 = m2 (1)

where m1,m2 6= 0 and are not necessarily equal.
The filtration generated by the vector (Z

(1)
t , Z

(2)
t ) is

denoted Ft = σ((Z
(1)
s , Z

(2)
s ) : 0 ≤ s ≤ t). We distinguish

this filtration from the marginal filtrations F (k)
t = σ(Z

(k)
s :

0 ≤ s ≤ t), k ∈ {1, 2}. The hypotheses Hij and the
correlation ρ induce the joint normal probability measures
Pij,ρ. We distinguish Pij,ρ from their marginal probability
measures P

(k)
i , which are the measures generated by the

one-dimensional processes Z(k)
t on coordinate k ∈ {1, 2};

Pij,ρ has as its marginal measures P (1)
i and P (2)

j , under the
associated one-dimensional hypotheses

H
(k)
0 : µk = 0 H

(k)
1 : µk = mk (2)

for k ∈ {1, 2}. We are interested in developing a decision
rule (τ, δτ ) for this problem, where τ is a stopping rule with
respect to Ft, and δτ is an Fτ -measurable decision variable
taking values in the index set {00, 01, 10, 11}. Optimality
of our rule will be assessed in terms of minimizing the
expected sampling time under each measure Pij,ρ subject
to probabilities of error

αij,ρ := Pij,ρ(δτ 6= ij) (3)

where αij,ρ < 0.5. (The reason for these upper bounds will
be given in Section III-A.) We will test the hypotheses (1)

by tracking the two-dimensional process (u
(1)
t , u

(2)
t ), where

u
(k)
t is the log-likelihood ratio of the marginal density in

coordinate k = 1, 2. That is,

u
(k)
t = xk + log

dP
(k)
1

dP
(k)
0

=
mk

σ2
k

(
Z

(k)
t − 1

2
mkt

)
= xk +

mk

σ2
k

[
σkW

(k)
t +

(
µk −

mk

2

)
t
]

(4)

where u(k)0 = xk, µk = 0 on P (k)
0 , and µk = mk on P (k)

1 .
Finally, as a notational convenience, we define P (x,y)

ij,ρ and
E

(x,y)
ij,ρ as the probability and associated expectation given

the starting point (u
(1)
0 , u

(2)
0 ) = (x1, x2) = (x, y), and

P
(xk)(k)
i and E(xk)(k)

i as the one-dimensional probability and
expectation for measure P (k)

i given the starting point xk in
coordinate k. Wherever this notation is omitted, it is assumed
that (x1, x2) = (x, y) = (0, 0).

We wish to find an optimal decision rule of the threshold
type

τ = inf{t ≥ 0 : (u
(1)
t , u

(2)
t ) 6∈ A} (5)

where A is an appropriate set. The optimal decision rule
(τ̃ , δτ̃ ) has the property

Eij,ρ(τ̃) ≤ Eij,ρ(τ), i, j ∈ {0, 1}. (6)

As in the one-dimensional case, we begin at

(u
(1)
0 , u

(2)
0 ) = (0, 0) ∈ [a1, b1]× [a2, b2] = A (7)

and determine the values of a1 < 0 < b1, a2 < 0 < b2 based
on the error probabilities αij,ρ defined in (3).

Our decision rule (τ, δτ ) in one dimension (see, for exam-
ple, [18]) is based on the first escape time of the interval [a, b]
where a and b are determined by the error probabilities under
question. For the two-dimensional case, we are escaping a
rectangle. When the noises are uncorrelated, our proposed
rule runs two independent one-dimensional decision rule
(τk, δ

(k)
τk ), where δ(k)τk ∈ {0, 1}, and

τk = inf{t ≥ 0 : u
(k)
t 6∈ [ak, bk]}

δ(k)τk
= 0 if u(k)τk

= ak, δ
(k)
τk

= 1 if u(k)τk
= bk. (8)

We thus devise the two-dimensional decision rule (τ, δτ ),
where

τ = τ1 ∨ τ2, δτ = δ(1)τ1 δ
(2)
τ2 . (9)

Next, we calculate the generator Lij,ρ of the two-
dimensional process (u

(1)
t , u

(2)
t ) on the measure Pij,ρ:

Lij,ρ := S1

(
∂xx + (−1)i+1∂x

)
+ S2

(
∂yy + (−1)j+1∂y

)
+ 2ρ

√
S1S2∂xy (10)

where Sk :=
m2

k

2σ2
k
, k ∈ {1, 2}. Note that, for correlations

ρ, ρ′,

Lij,ρ = Lij,ρ′ + 2(ρ− ρ′)
√
S1S2∂xy. (11)
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III. INDEPENDENCE: ρ = 0

In this section, we consider the case ρ = 0. We relate the
thresholds of our proposed rule (9) to the error probabilities
αij,0 and prove asymptotic optimality of (9) as αij,0 decrease
without bound.

A. Error Probabilities and Thresholds

In this subsection we calculate the error probabilities
and relate them to the thresholds of our two-dimensional
proposed decision rule (9). Define

γij,ρ(x, y) := P
(x,y)
ij,ρ (δτ = ij) (12)

as the probability of correct decision in world ij. Then

γij,ρ(0, 0) = Pij,ρ(δτ = ij) = 1− αij,ρ. (13)

Moreover, γij,ρ(x, y) satisfies

Lij,ργij,ρ(x, y) = 0 (14)

subject to 0 ≤ γij,ρ(x, y) ≤ 1 for all (x, y) ∈ A, and the
boundary conditions

γ00,ρ(a1, a2) = 1 γ01,ρ(a1, b2) = 1 (15)
γ00,ρ(b1, y) = 0 ∀y ∈ [a2, b2] γ01,ρ(b1, y) = 0 ∀y ∈ [a2, b2]

γ00,ρ(x, b2) = 0 ∀x ∈ [a1, b1] γ01,ρ(x, a2) = 0 ∀x ∈ [a1, b1]

γ10,ρ(b1, a2) = 1 γ11,ρ(b1, b2) = 1

γ10,ρ(a1, y) = 0 ∀y ∈ [a2, b2] γ11,ρ(a1, y) = 0 ∀y ∈ [a2, b2]

γ10,ρ(x, b2) = 0 ∀x ∈ [a1, b1] γ11,ρ(x, a2) = 0 ∀x ∈ [a1, b1].

For ρ = 0, (14) reduces by separation of variables to

(γij,0)xx(x, y) + (−1)i+1(γij,0)x(x, y) =
λ

S1
(16)

(γij,0)yy(x, y) + (−1)j+1(γij,0)y(x, y) = − λ

S2
(17)

with λ a constant. Solving the differential equations (16) and
(17), we obtain λ = 0, and have the solutions

γij,0(x, y) = fi(x)gj(y), (x, y) ∈ [a1, b1]× [a2, b2] (18)

where fi(x) and gj(y) are

f0(x) =
eb1 − ex

eb1 − ea1
(19)

f1(x) =
e−a1 − e−x

e−a1 − e−b1
=
eb1 − ea1+b1−x

eb1 − ea1
= f0(a1 + b1 − x)

g0(y) =
eb2 − ey

eb2 − ea2

g1(y) =
e−a2 − e−y

e−a2 − e−b2
=
eb2 − ea2+b2−y

eb2 − ea2
= g0(a2 + b2 − y).

The fact that the differential equations above result in λ = 0
means that the choices of mk and σk (and hence Sk) do
not affect these probabilities in the independent case. The
only parameters determining these thresholds are the error
probabilities αij,0 in (3).

We next give the αij,0 in terms of the four thresholds
a1, a2, b1, b2. Set X = ex, Y = ey , and Ak = eak , Bk = ebk

for k = 1, 2. Then

γ00,0(x, y) = f0(x)g0(y) =
X −B1

A1 −B1
· Y −B2

A2 −B2
(20)

γ01,0(x, y) = f0(x)g1(y) =
X −B1

A1 −B1
· B2(A2 − Y )

Y (A2 −B2)

γ10,0(x, y) = f1(x)g0(y) =
B1(A1 −X)

X(A1 −B1)
· Y −B2

A2 −B2

γ11,0(x, y) = f1(x)g1(y) =
B1(A1 −X)

X(A1 −B1)
· B2(A2 − Y )

Y (A2 −B2)
.

Setting (x, y) = (0, 0) and applying (13) yields

α00,0 =
(A1 −B1)(A2 −B2)− (1−B1)(1−B2)

(A1 −B1)(A2 −B2)
(21)

α01,0 =
(A1 −B1)(A2 −B2)− (1−B1)B2(A2 − 1)

(A1 −B1)(A2 −B2)

α10,0 =
(A1 −B1)(A2 −B2)−B1(A1 − 1)(1−B2)

(A1 −B1)(A2 −B2)

α11,0 =
(A1 −B1)(A2 −B2)−B1(A1 − 1)B2(A2 − 1)

(A1 −B1)(A2 −B2)
.

We can relate all four αij,0. From the equalities

C1 :=
γ10,0(0, 0)

γ00,0(0, 0)
=

1− α10,0

1− α00,0
=
f1(0)

f0(0)

=
γ11,0(0, 0)

γ01,0(0, 0)
=

1− α11,0

1− α01,0
(22)

C2 :=
γ01,0(0, 0)

γ00,0(0, 0)
=

1− α01,0

1− α00,0
=
g1(0)

g0(0)

=
γ11,0(0, 0)

γ10,0(0, 0)
=

1− α11,0

1− α10,0
(23)

we obtain

(1− α00,0)(1− α11,0) = (1− α01,0)(1− α10,0) (24)

which restricts the choice of error probabilities. In fact, we
can use (21), (22), and (23) to relate Ak to Bk, k = 1, 2:

Bk =
Ck

Ck +Ak − 1
, Ak = 1 +

Ck(1−Bk)

Bk
. (25)

Therefore,

bk = − ln

(
1− 1− eak

Ck

)
, ak = ln

(
1 + Ck(e−bk − 1)

)
.

(26)

We can relate our thresholds further if we have more infor-
mation about the system:

Proposition 3.1: If ρ = 0, then any two of the following
equalities imply the third: a1 = a2, b1 = b2, α01,0 = α10,0.
Proof These follow directly from (26). �

Furthermore, under ρ = 0, we can relate B1 to B2. From
(25),

Ak −Bk =
(Ck +Bk)(1−Bk)

Bk
. (27)

6510



From (21), we obtain

(A1 −B1)(A2 −B2)(1− α00,0) = (1−B1)(1−B2).
(28)

Combining (27) and (28) yields

B1 =
C1

B2

(1−α00,0)(C2+B2)
− 1

(29)

which after taking logarithms results in

b1 = ln

 C1

eb2
(1−α00,0)(C2+eb2 )

− 1

 . (30)

Switching coordinates 1 and 2 in (29) and (30) holds by the
symmetry of (28). We can now determine a lower bound for
bk: since bk > 0, then using (29) and (30), we have

b1 > ln

(
1− α10,0

α00,0

)
, b2 > ln

(
1− α01,0

α00,0

)
(31)

which gives the reasoning for the error probability bounds
given in Section II.

Applying (31) to (26) yields upper bounds for ak. The
fact that Bk > 1 implies that the denominator in the left
equation of (25) is positive. This yields lower bounds for
the ak. Combined, these are, if 0 < Ck < 1,

ln(1− Ck) < ak < ln

(
1− Ck +

α00,0

1− α00,0

)
(32)

which can be written as

ln

(
α10,0 − α00,0

1− α00,0

)
< a1 < ln

(
α10,0

1− α00,0

)
(33)

ln

(
α01,0 − α00,0

1− α00,0

)
< a2 < ln

(
α01,0

1− α00,0

)
In the case that Ck ≥ 1, the lower bound on ak does not
apply. In fact, the case Ck > 1 induces upper bounds on
the bk: by applying the fact that 0 < Ak < 1 to the right
equation of (25), we have

bk < ln

(
Ck

Ck − 1

)
. (34)

Equations (31) and (34) can be combined, if Ck > 1, as

ln

(
1− α10,0

α00,0

)
< b1 < ln

(
1− α10,0

α00,0 − α10,0

)
(35)

ln

(
1− α01,0

α00,0

)
< b2 < ln

(
1− α01,0

α00,0 − α01,0

)
A user setting three of the four error probabilities αij,0 will

automatically determine the fourth by (24). Then, setting a1
(subject to (33)) will determine b1 by (26), b2 by switching
coordinates in (30), and finally a2 by (26) again.

B. Asymptotic Optimality

In this subsection we demonstrate asymptotic optimality
of τ = τ1 ∨ τ2 of order-3, as per Fellouris and Moustakides
[7]. That is, we prove, using the stopping times (8) with the
error probabilities (21),

Eij,0(τ1 ∨ τ2)− Eij,0(τ1) = o(1) (36)

as the error probabilities αij,0 ↓ 0. In establishing our result,
we use the exponential killing trick: for any nonnegative
random variable Y with no point mass at zero, its Laplace
transform E(e−λY ) is its cumulative distribution function
(CDF) FY (t) killed at an exponential random variable with
parameter λ. For Xλ ∼ exp(λ) independent of Y , we have

E(e−λY ) =

∫ ∞
0

e−λtdFY (t)

= [e−λtFY (t)]∞0 +

∫ ∞
0

λe−λtFY (t)dt

= E(FY (Xλ)). (37)

We use this approach on τ1 and τ1 ∨ τ2, noting that, in
the case that ρ = 0, τ1 and τ2 are independent. Hence,
implicitly under measure Pij,0 for our CDFs, Fτ1∨τ2(t) =
Fτ1(t)Fτ2(t), yielding

Eij,0(e−λτ1) = Eij,0(Fτ1(Xλ)) (38)

Eij,0(e−λ(τ1∨τ2)) = Eij,0(Fτ1(Xλ)Fτ2(Xλ)). (39)

Since the stopping time τ1 is an escape time, the tail
probability Pij,0(τ1 > t) = 1−Fτ1(t) is the probability that
our process u(1)t has not yet escaped the interval [a1, b1].
Using Laplace transforms, we rewrite (36) as

Eij,0(τ1 ∨ τ2)− Eij,0(τ1)

= lim
λ→0

[
1− Eij,0(e−λ(τ1∨τ2))

λ
− 1− Eij,0(e−λτ1)

λ

]
= lim
λ→0

Eij,0(e−λτ1)− Eij,0(e−λ(τ1∨τ2))

λ
. (40)

Our numerator is, using exponential killing,

Eij,0(e−λτ1)− Eij,0(e−λ(τ1∨τ2))

= Eij,0[Fτ1(Xλ)(1− Fτ2(Xλ))] (41)

turning (40) into

Eij,0(τ1 ∨ τ2)− Eij,0(τ1)

= lim
λ→0

Eij,0[Fτ1(Xλ)(1− Fτ2(Xλ))]

λ
. (42)

By the standard literature on Brownian motion with drift (for
example, [15]), the difference on the left hand side of (42) is
finite. Note that τk’s boundaries ak, bk are functions of the
αij,0 (once the initial a1 is selected within the bounds (33)).
Sending the αij,0 → 0 at the same rate, and noting

0 < Ak = eak < 1 < Bk = ebk <∞ (43)

then by (26) we see that we get

lim
αij,0→0

Ck = 1 =⇒ lim
αij,0→0

ak = −bk. (44)
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Rewriting (29) gives us

C1 +B1

B1
· C2 +B2

B2
=

1

1− α00,0

which, by sending αij,0 → 0 at the same rate on both sides,
yields via Ck → 1

lim
αij,0→0

C1 +B1

B1
· C2 +B2

B2
=

1 +B1

B1
· 1 +B2

B2
= 1. (45)

Since Bk > 1, (45) implies that B1 = B2 = ∞, and so
b1 = b2 =∞ in the limit. Thus, by (44), in the limit, ak →
−∞. Hence, as αij,0 → 0, τk →∞ a.s. and so Fτk(·)→ 0.
Since CDFs are bounded by 1, we can use the dominated
convergence theorem to obtain

lim
αij,0→0

Eij,0[Fτ1(Xλ)(1− Fτ2(Xλ))]

λ
= 0. (46)

By continuity of the thresholds in the αij,0, the finiteness
of the left-hand side of (42), and again by the dominated
convergence theorem (this time under λ),

lim
αij,0→0

lim
λ→0

Eij,0[Fτ1(Xλ)(1− Fτ2(Xλ))]

λ

= lim
λ→0

lim
αij,0→0

Eij,0[Fτ1(Xλ)(1− Fτ2(Xλ))]

λ
= 0 (47)

which yields the asymptotic optimality limit

lim
αij,0→0

Eij,0(τ1 ∨ τ2)− Eij,0(τ1) = 0. (48)

C. Performance Analysis

In this section we conduct a performance analysis of the
expected sampling time of the proposed rule in terms of the
signal-to-noise ratio of the first component, Sk =

m2
k

2σ2
k

, while
fixing all other parameters.

In conducting this performance analysis, we set the pa-
rameters of the system as follows: the error probabilities
αij,0 = 0.01 for i, j = 0, 1, and setting the free threshold
a1 = −5.29078 yields the remaining thresholds, by (26) and
(30), of a2 = −5.29078, b1 = b2 = 5.29078. This is a
symmetric system, in which our starting point (u

(1)
0 , u

(2)
0 ) =

(0, 0) is in the center of a square.
We use Monte Carlo simulation to approximate, with small

λ > 0, Eij,0(τ1 ∨ τ2), using exponential killing as seen in
(39) and (40); that is,

T (m1,m2) := Eij,0(τ1 ∨ τ2) ≈ 1− Eij,0(e−λ(τ1∨τ2))

λ

=
1− Eij,0[Fτ1(Xλ)Fτ2(Xλ)]

λ
. (49)

Figure 1 plots T (m1,m2) for (m1,m2) ∈ (0.1, 1.3)2 with
the above thresholds, and σ1 = σ2 = 1. Note that, with
symmetric signal strengths, error probabilities, and thresh-
olds, Figure 1 is symmetric on m1 = m2, and predictably
decreases as signal strength increases. Note that the symmet-
ric example used results in the same values for Eij,0(τ1∨τ2)
for any i, j ∈ {0, 1}.

Fig. 1. Expected sampling time, Monte Carlo

IV. CORRELATION: ρ 6= 0

In this section we generalize to the correlated case ρ 6= 0
by relating it to the independent case.

A. Error Probabilities and Expected Sampling Times

Recall that

γij,ρ(x, y) = P
(x,y)
ij,ρ (δτ = ij)

is the probability of making the correct decision under
measure Pij,ρ with the ρ-correlation regime. We now relate
these ρ-correlated probabilities to the independent case via
the generator Lij,ρ.

Define ∆γij,ρ(x, y) := γij,ρ(x, y)− γij,0(x, y). By (11),

Lij,ρ(∆γij,ρ(0, 0)) = −2ρ
√
S1S2∂xyγij,0(0, 0). (50)

The signs of ρ 6= 0 and ∂xyγij,0 determine
whether ∆γij,ρ(u

(1)
t∧τ1 , u

(2)
t∧τ2) is a supermartingale

(if Lij,ρ(∆γij,ρ(x, y)) ≤ 0) or a submartingale (if
Lij,ρ(∆γij,ρ(x, y)) ≥ 0) (see, for example, [15]). If
∆γij,ρ(u

(1)
t∧τ1 , u

(2)
t∧τ2) is a supermartingale, then by the

optional stopping theorem at the absorption time τ = τ1∨τ2,

∆γij,ρ(x, y) ≥ E(x,y)
ij,ρ (∆γij,ρ(u

(1)
τ∧τ1 , u

(2)
τ∧τ2)) = 0 (51)

which implies

γij,ρ(x, y) ≥ γij,0(x, y). (52)

The inequalities in (51) and (52) flip in the case that
∆γij,ρ(u

(1)
t∧τ1 , u

(2)
t∧τ2) is a submartingale.

By (18) and (19),

∂xyγij,0(x, y) = (∂xfi(x))(∂ygj(y))

{
≥ 0 ij ∈ {00, 11}
≤ 0 ij ∈ {01, 10}.

Hence, by (50), for the cases ρ > 0, ij ∈ {00, 11} and ρ <
0, ij ∈ {01, 10}, ∆γij,ρ(u

(1)
t∧τ1 , u

(2)
t∧τ2) is a supermartingale,

and for the cases ρ < 0, ij ∈ {00, 11} and ρ > 0, ij ∈

6512



{01, 10}, ∆γij,ρ(u
(1)
t∧τ1 , u

(2)
t∧τ2) is a submartingale. Therefore,

by (50), (51), and (52), for ρ < 0 < ρ′,

γij,ρ(0, 0) ≤ γij,0(0, 0) ≤ γij,ρ′(0, 0), ij ∈ {00, 11}
γij,ρ(0, 0) ≥ γij,0(0, 0) ≥ γij,ρ′(0, 0), ij ∈ {01, 10}. (53)

As we send |ρ|, |ρ′| → 1, we have upper bounds on these
probabilities. This will be explained in Section IV-B.

Next, we establish inequalities relating Eij,ρ(τ) to
Eij,0(τ) for ρ 6= 0. Set, on coordinate k = 1, 2,

G
(k)
i (x, t) := P

(x)(k)
i (τk > t)

Gij,ρ(x, y, t) := P
(x,y)
ij,ρ (τ > t) (54)

and define the functions gij,ρ by

gij,ρ(x, y) := E
(x,y)
ij,ρ (τ) =

∫ ∞
0

Gij,ρ(x, y, t) dt. (55)

The function gij,ρ(x, y) satisfies (see, for example, [15]),

Lij,ρgij,ρ(x, y) = −1. (56)

Our boundary conditions on [a1, a2] × [b1, b2] state that
starting at any corner of the rectangle means no motion, and
starting on a wall (where x = ak or y = bk) reduces to the
associated one-dimensional problem:

gij,ρ(a1, a2) = gij,ρ(a1, b2) (57)
= gij,ρ(b1, a2) = gij,ρ(b1, b2) = 0

gij,ρ(x, a2) = gij,ρ(x, b2) = E
(x)(1)
0 (τ1) ∀x ∈ [a1, b1]

gij,ρ(a1, y) = gij,ρ(b1, y) = E
(y)(2)
0 (τ2) ∀y ∈ [a2, b2].

From [18, (4.94)-(4.95)], the one-dimensional cases are, on
coordinate k = 1, 2,

E
(x)(k)
0 (τk) =

∫ ∞
0

P
(x)(k)
0 (τk > t) dt

=
2σ2

k

m2
k

(
ebk − ex

ebk − eak
(bk − ak)− (bk − x)

)
=

1

Sk
(f0(x)(bk − ak)− (bk − x)) (58)

E
(x)(k)
1 (τk) =

∫ ∞
0

P
(x)(k)
1 (τ1 > t) dt

=
2σ2

k

m2
k

(
ebk − eak+bk−x

ebk − eak
(bk − ak)− (x− ak)

)
=

1

Sk
(f1(x)(bk − ak)− (x− ak)) . (59)

Define ∆gij,ρ(x, y) := gij,ρ(x, y) − gij,0(x, y). Then, as in
(50),

Lij,ρ(∆gij,ρ(x, y)) = −2ρ
√
S1S2∂xygij,0(x, y). (60)

As in the argument in (50)-(52), we need the signs of ρ 6= 0
and ∂xygij,0(x, y) to determine inequalities about gij,ρ(x, y).
Note that, since

τ = τ1 ∨ τ2 = τ1 + τ2 − τ1 ∧ τ2 (61)

we can rewrite ∂xygij,0(x, y) in terms of τ1 ∧ τ2:

∂xygij,0(x, y) = ∂xyE
(x,y)
ij,0 (τ)

= ∂xyE
(x,y)
ij,0 (τ1) + ∂xyE

(x,y)
ij,0 (τ2)− ∂xyE(x,y)

ij,0 (τ1 ∧ τ2)

= ∂y∂xE
x
i (τ1) + ∂x∂yE

y
j (τ2)− ∂xyE(x,y)

ij,0 (τ1 ∧ τ2)

= −∂xyE(x,y)
ij,0 (τ1 ∧ τ2). (62)

We further decompose this into its integral form:

∂xyE
(x,y)
ij,0 (τ1 ∧ τ2) = ∂xy

∫ ∞
0

Pij,0(τ1 ∧ τ2 > t) dt

=

∫ ∞
0

∂xP
(x)(1)
i (τ1 > t) ∂yP

(y)(2)
j (τ2 > t) dt

=

∫ ∞
0

∂xG
(1)
i (x, t) ∂yG

(2)
j (y, t) dt. (63)

It is easily shown that the one-dimensional hitting times are
concave for x ∈ [ak, bk]; the maxima are achieved at

∂xE
(x)(k)
0 (τk) = 0 ⇐⇒ x = x

∗(k)
0 := ln

(
ebk − eak
bk − ak

)
∂xE

(x)(k)
1 (τk) = 0 ⇐⇒ x = x

∗(k)
1 := ak + bk − x∗(k)0 .

(64)

G
(k)
i (x, t) is a strictly decreasing function in t. Since x∗(k)i

yields the maximum of

E
(x)(k)
i (τk) =

∫ ∞
0

G
(k)
i (x, t) dt, k = 1, 2; i = 0, 1 (65)

it therefore also yields the maximum of G(k)
i (x, t) in x for

every t. Hence, we have that ∂xG
(k)
i (x

∗(k)
i , t) = 0 for every

t.
This allows us to calculate the sign of

∂xG
(1)
i (x, t) ∂yG

(2)
i (y, t), and hence the sign of

∂xyE
(x,y)
ij,0 (τ1 ∧ τ2), at (x, y) = (0, 0). By the

above argument, the point (x
∗(1)
i , y

∗(2)
j ) yields the

maximum of G
(1)
i (x, t)G

(2)
j (y, t) in A, and so

∂xG
(1)
i (x, t) ∂yG

(2)
j (y, t) = 0 for the line segments

x = x
∗(1)
i and y = y

∗(2)
j . The position of (x

∗(1)
i , y

∗(2)
j )

relative to (0, 0) determines the sign of each first partial,
which determines the sign of the product, and therefore the
sign of the integral (63). For x′ < x

∗(1)
i < x′′,

∂xG
(1)
i (x′, t) ≥ ∂xG(1)

i (x
∗(k)
i , t) = 0

≥ ∂xG(1)
i (x′′, t) (66)

and likewise for y′ < y
∗(2)
j < y′′ and ∂yG

(2)
j (y, t). We have

x
∗(1)
1 < 0 < x

∗(1)
0 , y

∗(2)
1 < 0 < y

∗(2)
0 . (67)

Thus, by the same optional stopping theorem argument
as in (51)-(52) with starting point (x, y) = (0, 0), for
the cases ρ > 0, ij ∈ {00, 11} and ρ < 0, ij ∈
{01, 10}, ∆gij,ρ(u

(1)
t∧τ1 , u

(2)
t∧τ2) is a submartingale, and for

the cases ρ < 0, ij ∈ {00, 11} and ρ > 0, ij ∈ {01, 10},
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∆gij,ρ(u
(1)
t∧τ1 , u

(2)
t∧τ2) is a supermartingale. Therefore, by

(60), (51), and (52), for ρ < 0 < ρ′,

gij,ρ(0, 0) ≥ gij,0(0, 0) ≥ gij,ρ′(0, 0), ij ∈ {00, 11}
gij,ρ(0, 0) ≤ gij,0(0, 0) ≤ gij,ρ′(0, 0), ij ∈ {01, 10}. (68)

As we send |ρ|, |ρ′| → 1, we have bounds on these
sampling times. This will be explained in Section IV-B.

B. The Degenerate Case: ρ = ±1

In the extreme cases ρ = ±1, complete correlation
between the Brownian components degenerates the problem
into a one-dimensional test. However, the choice of hypothe-
ses “in play” depends on the sign of ρ, and the issue of
decentralization vs. centralization becomes a consideration.
This will be discussed in Section V.

We first examine ρ = 1: under perfect positive noise
correlation, i.e., W (1)

t = W
(2)
t , our one-dimensional case

exhibits an intriguing level of immediacy. If, in this case,
S1 = S2, then the hypotheses H00 and H11 effectively
run the one-dimensional test against each other, while the
hypotheses H01 and H10 are immediately decidable. This is
explained by examining u(2)t as a linear combination of u(1)t
and drift:

W
(1)
t = W

(2)
t =⇒ u

(2)
t = m∗u

(1)
t + y∗ijt, where

m∗ =
m2σ1
m1σ2

=

√
S2

S1
and

y∗ij =
m2

σ2

(
µ2 − m2

2

σ2
−
µ1 − m1

2

σ1

)
= 2
√
S2

[
(−1)i

√
S1 + (−1)j+1

√
S2

]
.

In the case S1 = S2, y∗00 = y∗11 = 0 and so these two
hypotheses are tested on the one-dimensional case for the
two-dimensional point (u

(1)
t ,m∗u

(1)
t ) moving along the line

segment y = m∗x between (a1,m
∗a1) and (b1,m

∗b1). If,
for any t > 0, it is found that m∗u(1)t > u

(2)
t , then it is clear

that (−1)i
√
S1 > (−1)j+1

√
S2, i.e., ij = 01; if m∗u(1)t <

u
(2)
t , then (−1)i

√
S1 < (−1)j+1

√
S2 implies ij = 10. For

S1 6= S2, all four hypotheses are immediately decidable, as
the four possible values for y∗ij are distinct and nonzero.

The case ρ = −1 operates similarly: if W (2)
t = −W (1)

t ,
then u(2)t is a linear combination of u(1)t and drift. That is,

W
(1)
t = −W (2)

t =⇒ u
(2)
t = −m∗u(1)t + y∗∗ij t, where

y∗∗ij =
m2

σ2

(
µ2 − m2

2

σ2
+
µ1 − m1

2

σ1

)
= 2
√
S2

[
(−1)i+1

√
S1 + (−1)j+1

√
S2

]
,

which results in y∗∗01 = y∗∗10 . Therefore, the hypotheses H01

and H10 play the one-dimensional test in the setting S1 = S2

along the line segment y = −m∗x between (a1,−m∗a1) and
(b1,−m∗b1). If, for any t > 0, it is found that −m∗u(1)t >

u
(2)
t , then ij = 00, and −m∗u(1)t < u

(2)
t implies ij = 11. In

the case S1 6= S2, again all four hypotheses are immediately
decidable at any time t > 0.

As our decisions on certain cases are perfect, we have the
following results on the correct-decision probabilities γij,ρ
for ρ = ±1: upper bounds on (53) are

γ00,1(0, 0) = γ11,1(0, 0) = γ01,−1(0, 0) = γ10,−1(0, 0) = 1.

It immediately follows that we cannot specify certain error
probabilities under ρ = ±1:

α00,1(0, 0) = α11,1(0, 0) = α01,−1(0, 0) = α10,−1(0, 0) = 0.

In addition, we have lower bounds on (68) (decisions are
instant):

g00,−1(0, 0) = g11,−1(0, 0) = g01,1(0, 0) = g10,1(0, 0) = 0.

Upper bounds under perfect correlation are one-dimensional
sampling times: by

g00,1(0, 0) = g01,−1(0, 0) = E
(x=0)(1)
0 (τ1),

g11,1(0, 0) = g10,−1(0, 0) = E
(x=0)(1)
1 (τ1).

There is a geometric intuition that goes nicely with this
problem: under perfect positive noise correlation, one expects
data to fall on a line with positive drift. In our hypothesis
test, the endpoints of this positive drift line are precisely the
decision boundaries for hypotheses H00 and H11. Likewise
for perfect negative correlation; the endpoints of the line with
negative slope are the decision boundaries for H01 and H10.
This hints that there may be a formulation for this problem
which deforms the shape of the boundary in exchange for
fixing the expected sampling time.

V. DECENTRALIZATION

Our proposed rule (9) is implementable in a decentralized
setup (see [7],[10]): τk, k = 1, 2, are stopping times of
the log-likelihood ratios u

(k)
t of the marginal probability

measures P (k)
i instead of the joint measures Pij,ρ. Thus, the

stopping time τk only requires access to the information from
the filtration F (k)

t = σ(Z
(k)
s : 0 ≤ s ≤ t) instead of the much

larger filtration of the joint process Ft = σ((Z
(1)
s , Z

(2)
s ) :

0 ≤ s ≤ t). We can thus build a system of sensors in
the following fashion: sensor k receives signal Z(k)

t and
makes a decision on (2) with rule (8). It then communicates
this decision to a fusion center with the single bit δ(k)τk . At
time τ = τ1 ∨ τ2, the fusion center makes the decision
δτ = δ

(1)
τ1 δ

(2)
τ2 .

The asymptotic optimality result (36) implies that there
is no loss in performance between the centralized case,
in which the fusion center receives the continuous raw
data {(Z(1)

t , Z
(2)
t )}t≥0, and the decentralized case described

above. This greatly increases the usefulness of this model in
sensor network analysis.

The results of Section IV-B imply that the level of corre-
lation gives a measure to how useful decentralization is for
such a sensor setup: the more closely correlated the noise,
the less useful decentralization is in reducing the sampling
time to decision. In fact, a single communication to the
fusion center can make a decision under perfect correlation
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(ρ = ±1) if the signal-to-noise ratios of the sensors do not
match (S1 6= S2), and even in certain cases where they do.

VI. CONCLUSIONS, FUTURE WORK

We have shown that, for −1 < ρ < 1, the threshold bound-
aries of this test are the corners of a rectangle whose one-
dimensional absorption sides reduce the two-dimensional
problem to the related one-dimensional problem. A related
question worthy of investigation is, given ρ 6= 0 and fixed
error probabilities αij,ρ, how would we change the shape of
the boundary of A (call it Aρ) and the rule (9) to achieve
asymptotic optimality of this test? In general, this boundary
need not be rectangular.

For example, in the range 0 < ρ < 1, should the
domain “squeeze shut” continuously from the rectangle to
the diagonal {(x, y) ∈ [a1, b1] × [m∗a1,m

∗b1]} at ρ = 1?
This would seem to imply that the time it takes to reach
the boundary would reduce, i.e., Eij,ρ(τ) ≤ Eij,0(τ) for
ρ > 0, ij ∈ {01, 10}. Likewise, should it “flip and squeeze
shut” for −1 < ρ < 0, ending in the diagonal {(x, y) ∈
[a1, b1]× [−m∗a1,−m∗b1]} at ρ = −1? Finally, the case of
nonconstant correlation, i.e. ρ = ρ(t), should be examined.

The analysis here is done under a continuous-monitoring
scenario. While this is a good approximation to random walk
/ discrete models of the same type, a more thorough analysis
can be undertaken to examine the issue of discretized data
collection, such as in batch or sliding-window processing.
Just as in the one-dimensional discrete time paradigm of
Shiryaev [18], we expect that the results are valid in dis-
cretized data collection.
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