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Abstract— This work considers the problem of quickest
detection of signals in a system of 2 sensors coupled by a
negatively correlated noise, which receive continuous sequential
observations from the environment. It is assumed that the
signals are time invariant and with equal strength, but that their
onset times may differ from sensor to sensor. The objective is
the optimal detection of the first time at which any sensor
in the system receives a signal. The problem is formulated
as a stochastic optimization problem in which an extended
Lorden’s criterion is used as a measure of detection delay, with a
constraint on the mean time to the first false alarm. The case in
which the sensors employ their own cumulative sum (CUSUM)
strategies is considered, and it is proved that the minimum
of 2 CUSUMs is asymptotically optimal as the mean time
to the first false alarm increases without bound. Implications
of this asymptotic optimality result to the efficiency of the
decentralized versus the centralized system of observations are
further discussed.

Keywords: CUSUM, correlated sensors, quickest detec-
tion

I. INTRODUCTION

We are interested in the problem of quickest detection of
the first onset of a signal in a system of 2 sensors with
negatively correlated noise. We consider the situation in
which, the noise in one sensor is correlated with the noise
in the other, and the onset of a signal (i.e., change points)
can occur at different times in each of the 2 sensors; that is,
the change points differ from sensor to sensor. The presence
of correlations is due to the fact that, although sensors are
placed typically at different locations, they are subject to
the same physical environment. For example, in the case of
sensors monitoring traffic in opposite directions may have
negative correlations due to environmental factors such as
the direction of the wind [1]. in general, negative correlations
in particular can arise in the case in which sensors are hit
by the signal on opposite sides. Moreover, the appearance of
a signal at one location may or may not cause interference
of the signal at another location, thus causing correlations.
This happens when the sensors are closely spaced relative
to the curvature of the field being sensed. For example,
temperature sensors or humidity sensors that are in a similar
geographic region will produce readings that are correlated.
A constant correlation across sensors would best describe
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such a situation. Some of the relevant literature that includes
such examples can be found in [2]–[8].

This work is a continuation of the problem considered
in [9] in which the case is considered of independent
observations received at each sensor. In that work, it is seen
that the decentralized system of sensors in which each sensor
employs its own cumulative sum (CUSUM) [10] strategy and
communicates its detection through a binary asynchronous
message to the Fusion center, which in turn decides at the
first onset of a signal based on the first communication per-
forms asymptotically just as well as the centralized system.
In other words, the minimum of N CUSUMs is asymptoti-
cally optimal in detecting the minimum of N distinct change
points in the case of independent observations as the mean
time to the first false alarm increases without bound. The
mean time to the first false alarm can be used as a benchmark
in actual applications in which the engineer or scientist may
make several runs of the system while it is in control in
order to uniquely identify, the appropriate parameter that
would lead to a tolerable rate of false detection. The problem
of optimal detection then boils down to minimizing the
detection delay subject to a tolerable rate of false alarms.
Asymptotic optimality is then proven by comparing the rate
of increase in detection delay to the rate of false alarms as the
threshold parameter varies. In our case the detection delay
is measured with respect to a generalized linear Lorden-type
detection delay criterion subject to a bound on the mean
time to the first false alarm. A more recent related work
includes the case in which the system of sensors is coupled
through the drift parameter as opposed to the noise [11],
[12]. In that work it is once again seen that the minimum
of N CUSUMs is also asymptotically optimal in detecting
the minimum of N distinct change points with respect to
a generalized Kullback-Leibler distance criterion inspired by
[13]. Yet, in none of the above cases is the case of correlated
noise considered even though it is very important in practical
applications.

In this work we consider the special case of a system
of two sensors coupled through the presence of correlated
Brownian noise and in which the onset of signal can occur at
distinct times, which are assumed to be unknown constants.
Thus a min-max approach is taken. The problem of detecting
the minimum of two change points in a Bayesian setup and
a Poisson model of observations was considered in [14]. The
minimum of the two distinct points signifies the first onset
of a signal in such a system. So far in the literature of this
type of problem (see [15]–[19]) it has been assumed that
the change points are the same across sensors. Recently the
case was also considered of change points that propagate
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in a sensor array [20]. However, in this configuration the
propagation of the change points depends on the unknown
identity of the first sensor affected and considers a restricted
Markovian mechanism of propagation of the change. In this
paper we consider the case in which the change points can be
different and do not propagate in any specific configuration.
The objective is to detect the minimum (i.e., the first) of the
change points.

In the next section we formulate the problem, and prove
asymptotic optimality of the minimum of 2 CUSUMs as the
mean time between false alarms tends to ∞, in the extended
Lorden sense of [9]. We finally discuss extensions of these
results to the N -sensor case and to the case of positive
correlation.

II. FORMULATIONS & RESULTS

We sequentially observe the processes {ξ(i)t }t≥0 for i =
1, 2. In order to formalize this problem we consider the
measurable space (Ω,F ,F), where Ω = C[0,∞]2 and F =

{Ft}t≥0 with Ft = σ{(ξ(1)s , ξ
(2)
s ); s ≤ t}.

The processes {ξ(i)t }t≥0 for i = 1, 2 are assumed to have
the following dynamics:

dξ
(i)
t =

{
dw

(i)
t t ≤ τi

µdt+ dw
(i)
t t > τi,

(1)

where µ > 0 is known and {w(i)
t }t≥0 are two correlated

standard Brownian motion with negative correlation −1 <
ρ < 0. In other words, we assume that, under any measure,
E{w(1)

t w
(2)
s } = ρ(s∧t). We also assume that τi, for i = 1, 2,

are both unknown constants in the interval [0,∞].
On the space Ω, we have the following family of proba-

bility measures {Pτ1,τ2}, where Pτ1,τ2 corresponds to the
measure generated on Ω by the process {(ξ(1)t , ξ

(2)
t )}t≥0

when the change in the 2-tuple process occurs at time point τi
for each i = 1, 2. Notice that the measure P∞,∞ corresponds
to the measure generated on Ω by 2 correlated standard
Brownian motions.

Although the filtration F summarizes the totality of in-
formation available in this system, each sensor Si i = 1, 2

has access to the one-dimensional process {ξ(i)t }t≥0, each
of which generates the filtration G(i) = {G(i)t }t≥0 with
G(i)t = σ{(ξ(i)s ); s ≤ t} for i = 1, 2. On this filtration
we can introduce the measures {Pτi} with P∞ being one-
dimensional standard Wiener measure.

Our objective is to find a stopping rule T that balances
the trade-off between a small detection delay subject to a
lower bound on the mean-time between false alarms and will
ultimately detect τ1 ∧ τ2. In what follows we will use τ̃ to
denote min{τ1, τ2}.

As a performance measure we consider

(2) J (2)(T ) = sup
τ1,τ2
τ̃<∞

essup Eτ1,τ2
{

(T − τ̃)+ | Fτ̃
}
,

where the supremum over τ1, τ2 is taken over the set in which
τ̃ <∞. That is, we consider the worst detection delay over

all possible realizations of paths of the 2-tuple of stochastic
process {(ξ(1)t , ξ

(2)
t )}t≥0 up to τ̃ and then consider the worst

detection delay over all possible 2-tuples {τ1, τ2} over a set
in which at least one of them is forced to take a finite value.
This is because T is a stopping rule meant to detect the
minimum of the 2 change points and therefore if one of the
2 processes undergoes a regime change, any unit of time by
which T delays in reacting, should be counted towards the
detection delay. This gives rise to the following stochastic
optimization problem:

(3)
inf
T∈Fγ

J (2)(T ),

with Fγ = {F-stopping rule T : E∞,∞{T} ≥ γ}.

E∞,∞{T} captures the mean time to the first false alarm
and as such the above constraint describes the tolerance on
the mean time to the first false alarm.

In the case of the presence of only one stochastic process
(say, {ξ(1)t }t≥0), the problem becomes one of detecting a
one-sided change in a sequence of Brownian motion obser-
vations, whose optimality was found in [21] and [22]. The
optimal solution under Lorden’s criterion is the continuous
time version of Page’s CUSUM stopping rule, namely the
first passage time of the process

y
(1)
t = sup

0≤τ1≤t

dPτ1
dP∞

(G(1)t )(4)

= µξ
(1)
t −

1

2
µ2t− inf

s≤t

(
µξ(1)s −

1

2
µ2s

)
.(5)

The CUSUM stopping rule is thus

Tν? = inf{t ≥ 0 : y
(1)
t ≥ ν?},(6)

where ν? is chosen so that E∞{Tν?}=: 2
µ2 f(ν?) = γ, with

f(ν) = eν − ν − 1 and the corresponding optimal detection
delay is given by

J (1)(Tν?) = E0{Tν?} =
2

µ2
f(−ν?).(7)

The fact that the worst detection delay is the same as that
incurred in the case that the change point is exactly at 0 is a
consequence of non-negativity and strong Markov property
of the CUSUM process, from which it follows that the worst
detection delay occurs when the CUSUM process is at 0 at
the time of the change [23].

Returning to problem (3), it is easily seen that in seeking
solutions to this problem, we can restrict our attention to
stopping rules that achieve the false alarm constraint with
equality [23]. Moreover, as discussed in [9] the optimal
solution to (3) is achieved by equalizer rules. This means that
the optimal stopping rule will be indifferent in its detection
delay with respect to which of the two sensors changes
dynamics. More specifically, let

J
(2)
Si

(T ) = sup
τi≤τj ,j 6=i

essupEτ1,τ2{(T − τi)
+|Fτi}.

Then the optimal stopping rule should satisfy

J
(2)
S1

= J
(2)
S2
.(8)
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The optimality of the CUSUM stopping rule in the
presence of only one observation process suggests that a
CUSUM type of stopping rule might display similar optimal-
ity properties in the case of multiple observation processes.
In particular, an intuitively appealing rule, when the detection
of τ̃ is of interest, is Th = T 1

h∧T 2
h , where T ih is the CUSUM

stopping rule for the process {ξ(i)t }t≥0 for i = 1, 2. That is,
we use what is known as a multi-chart CUSUM stopping
rule [24], which can be written as

Th = inf
{
t ≥ 0 : max{y(1)t , y

(2)
t } ≥ h

}
= T 1

h ∧ T 2
h .(9)

where

y
(i)
t = µξ

(i)
t −

1

2
µ2t− inf

s≤t

(
µξ(i)s −

1

2
µ2s

)
.

We notice that each of the T ih for i = 1, 2 are stopping
times not only with respect to the large filtration F but also
with respect to each of the smaller filtrations G(i) and thus
they can be employed by each one of the sensors Si sep-
arately. Each of the sensors can subsequently communicate
an alarm to a central fusion center once the threshold h is
reached by its own cusum statistic process y(i)t for i = 1, 2.
The resulting rule, namely (9), can then be devised by the
central fusion center in that it will declare a detection at the
first instance either one of the two sensors communicates.

It can be shown that

J (2)(Th) = E0,∞ {Th} = E∞,0 {Th} .

In particular, we have

Lemma 1: For any τ1 <∞ and τ2 ≥ τ1,

sup
τ1,τ2

essupEτ1,τ2{(Th − τ1)+|Fτ1} = E0,∞{Th}.(10)

Proof: Please refer to the Appendix.
What Lemma 1 states is that the worst detection delay
occurs when only one of the 2 processes changes regime.
An intuitive reason for this lies in the fact that the CUSUM
process is a monotone function of µ, resulting in a longer on
average passage time if µ = 0 [25]. Thus, the worst detection
delay will occur when none of the other processes changes
regime, and due to the non-negativity of the CUSUM process
the worst detection delay will occur when the CUSUM
process of the remaining one process is at 0.

Notice that the threshold h is used for the multi-chart
CUSUM stopping rule (9) in order to distinguish it from
ν?, the threshold used for the one sided CUSUM stopping
rule (6).

In what follows we will demonstrate the asymptotic op-
timality of (9) as γ → ∞. In view of the discussion in
the previous paragraph, in order to assess the optimality
properties of the multi-chart CUSUM rule (9) we will thus
need to begin by evaluating E0,∞ {Th} and E∞,∞ {Th} for
general negative correlation ρ ∈ (−1, 0].

In the special case that the correlation ρ = 0, the authors
in [9] derived the asymptotic expansion of E0,∞{Th} and

E∞,∞{Th}. In particular, they showed that, as h→∞,

E0,∞{Th} =
2

µ2
(h− 1 + o(1)),(11)

E∞,∞{Th} =
1

µ2
(eh − 4 + o(1)).(12)

In the special case that the correlation ρ = −1, the proposed
2-CUSUM stopping rule is identical to the 2-CUSUM used to
detect a two-sided change in the drift of a Brownian motion
[25], [26]. We now have that

E∞,∞{Th} =
1

2
E∞,∞{T 1

h} =
1

µ2
f(−h),(13)

where the first equality follows by the harmonic mean rule
[25] and the second equality by using Itô’s rule and Dynkin’s
formula [27] to the function f(−y(1)t ) much along the lines
of [13] or [25]. In both cases, the 2-CUSUM stopping
rule are proven to exhibit asymptotic optimality under the
criterion [25] as the mean time to the first false alarm γ
increases without bound. In what follows we will show that
the quantities in (11), (12) and (13) can be used to prove the
asymptotic optimality of the 2-CUSUM stopping rule in the
general case that ρ ∈ (−1, 0). This is due to the following
key result:

Proposition 1: For any ρ ∈ (−1, 0), we have

E0,∞{Th} ≤
2

µ2
(h− 1 + o(1)),(14)

1

µ2
f(h) ≤ E∞,∞{Th} ≤

1

µ2
(eh − 4 + o(1)),(15)

as h→∞.
Proof: In observing (11), (12) and (13), it suffices to

prove that the expectation of the 2-CUSUM stopping rule
Th under any of the above probability measures is bounded
above by the expectation of the 2-CUSUM rule in the special
case ρ = 0, and bounded below by the special case ρ = −1.
Both of these claims are proved in Lemma 2 and Lemma 3
of the Appendix.

As a result of Proposition 1, we can select h that solves
equation 1

µ2 f(h) = γ, which guarantees that the 2-CUSUM
stopping rule Th ∈ Fγ since it satisfies E∞,∞{Th} > γ.

Corollary 1: By choosing h so that 1
µ2 f(h) = γ, we have

Th ∈ Fγ , and

E0,∞{Th} ≤
2

µ2
(log γ + 2 logµ− 1 + o(1)),(16)

as γ →∞.

In order to demonstrate asymptotic optimality of (9), we first
trivially have

E0,∞{Th} = J (2)(Th) ≥ inf
T∈Fγ

J (2)(T ),(17)

where h satisfies 1
µf(h) = γ. On the other hand, the optimal

detection delay in the 2 dimensional case is bounded below
by the optimal detection delay in the 1 dimensional case.
That is,

inf
T∈Fγ

J (2)(T ) ≥ 2

µ2
f(−ν?).(18)
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Although this is a counterintuitive result, a moment of
reflection will lead us to a better understanding of why such
a relationship holds in (18). We notice that in the left hand
side of (18) the infimum is taken over all F-stopping times
T that satisfy E∞,∞{T} = γ, while in the right hand side
of (18), which corresponds to the one dimensional case, the
infimum is take over the G(i)- stopping times T which satisfy
E∞{T} = γ. The latter is clearly a more restrictive set of
stopping rules.

More mathematically, for any stopping rule T ∈ Fγ , we
have

J (2)(T ) ≥ J (2)
1 (T ),(19)

where

J
(2)
1 (T ) = sup

τ1<∞
essupEτ1,∞{(T − τ1)+|Fτ1},(20)

which, although is a performance measure in 2 dimensions,
it is essentially a performance measure in 1. In particular,
it can be shown that the one-dimensional CUSUM stopping
rule T1 of (6) with threshold parameter ν∗ is the optimal
solution to the problem of
(21)

inf
T∈Fγ

J
(2)
1 (T ),

with Fγ = {F-stopping rule T : E∞,∞{T} ≥ γ}.

We notice that (21) is a two-dimensional problem whose
optimal solution coincides with the optimal solution to the
one-dimensional problem

(22)
inf
T∈Gγ

J (1)(T ),

with Gγ = {G-stopping rule T : E∞{T} ≥ γ},

whose optimal solution is known to be the one-dimensional
CUSUM stopping rule of (6).

The steps required to prove that the one-dimensional
CUSUM T1 of (6) with threshold parameter ν∗ (which we
denote by Tν∗ in the sequel) chosen so that 2

µ2 f(ν∗) = γ is
the optimal solution to (21) basically replicate the proof of
optimality of the CUSUM in [13] for the choice αt = µ and
can be summarized as follows:

1) Step 1: Every F stopping time S satisfies the lower
bound

J
(2)
1 (S) ≥

E∞,∞{ey
(1)
Sν f(−y(1)Sν )}

E∞,∞{ey
(1)
Sν }

,(23)

where Sν = S ∧ Tν for any ν > 0.
2) Step 2: The function ΨS(ν) :=E∞,∞{f(y

(1)
Sν

)} is con-
tinuous.

3) Step 3: Any F-stopping time S that satisfies the false
alarm constraint of (21) with equality satisfies

J
(2)
1 (S) ≥ 2

µ2
f(−ν∗).(24)

Thus the optimal detection delay infT∈Fγ J
(2)(T ) is

bounded below by the optimal detection delay 2
µ2 f(ν?). By

combining (17) and (18) we have

E0,∞{Th} ≥ inf
T∈Fγ

J (2)(Th) ≥ 2

µ2
f(−ν?).(25)

We will demonstrate that the difference between the upper
and the lower bounds is bounded by a constant as γ →∞,
with thresholds h and ν? chosen so that

1

µ2
f(h) = γ,(26)

2

µ2
f(ν?) = γ.(27)

In view of Corollary 1, we have

Theorem 1: For any ρ ∈ (−1, 0), the difference between
the detection delay of Th, J (2)(Th), and the optimal detection
delay infT∈Fγ J

(2)(T ), is bounded above by 2
µ2 log 2, as γ →

∞.
Proof: It is easily seen from (27) that

ν? = log γ + 2 logµ− log 2.

Thus the lower bound of (25) is
2

µ2
f(−ν?) =

2

µ2
(log γ + 2 logµ− log 2− 1 + o(1)).

Using (16) and (25) we have

0 ≤J (2)(Th)− inf
T∈Fγ

J (2)(T )

≤E0,∞{Th} −
2

µ2
f(−ν?)

≤ 2

µ2
log 2.

This completes the proof.

The consequence of Theorem 1 is the asymptotic optimal-
ity of (9). We notice that this asymptotic optimality holds for
any negative correlation between the observation at different
sensors.

III. CONCLUSIONS AND FUTURE WORKS

In this paper we have demonstrated the asymptotic op-
timality of the minimum of 2 CUSUMs for detecting the
minimum of 2 different change points in a system of 2 sen-
sors, coupled by correlated noise, which receive sequential
observations from the environment.

In order to generalize the argument to N sensors, one may
consider a covariance matrix with non-positive off-diagonal
entries. Then it is appealing to use the minimum of N
CUSUM stopping rules, the so called N -CUSUM stopping
rule to detect the first instance of a signal. In this case, we
will still be able to bound the expected delay of this stopping
rule by the expected delay of the N -CUSUM stopping rule if
the sensors are independent. However, we do not necessarily
have a realistic lower bound for the mean time to the first
false alarm. This is because, the simple N dimensional
analogue of the covariance structure in the 2 dimensional
case, Γ :=(γi,j)

N
i,j=1 with γi,j = 1{i=j} − 1{i 6=j} is in fact

not non-negative definite, and thus cannot be a covariance
matrix.
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The case 0 < ρ < 1 presents difficulties in that we will
need to investigate the expectation of the 2-CUSUM stopping
rule under P0,∞ in the case ρ = 1. And the analysis becomes
more complicated due to the asymmetry of the drifts of the
CUSUM processes {y(i)t }t≥0, i = 1, 2 under P0,∞. However,
we believe it may be tractable and is open for future work.

The special cases ρ = −1 and ρ = 1 are degenerate
and reduce the problem to the one-dimensional change point
problem with two-sided and one-sided alternatives respec-
tively. Notice that, in our setting, the change-points τ1 and
τ2 can be distinct, which will make Pτ1,τ2 not absolutely
continuous with respect to the nominal measure P∞,∞. As
a result, the CUSUM stopping rule considered in this paper
cannot be used to treat these two special cases.
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IV. APPENDIX

In the Appendix we give proofs of the lemmas used in the
main text.

Proof of Lemma 1:
Proof: It suffices to show that for any τ1 ≤ τ2 such

that τ1 <∞,

Eτ1,τ2{(Th − τ1)+|Fτ1} ≤ E0,∞{Th}, P0,∞-a.s.(28)

To show this, we apply Itô’s lemma to processes
{g−(y

(1)
t∧τ2 , y

(2)
t∧τ2)}t≥τ1 and {g+(y

(1)
t , y

(2)
t )}t≥τ2 to obtain

Eτ1,τ2{(Th − τ1)+|Fτ1} ×
µ2

2
=Eτ1,∞{1{Th≥τ2}[g

−(y(1)τ1 , y
(2)
τ1 )− g−(y(1)τ2 , y

(2)
τ2 )]|Fτ1}

× 1{Th≥τ1} + Eτ1,∞{1{T~≥τ2}g
+(y(1)τ2 , y

(2)
τ2 )|Fτ1}1{Th≥τ1}

+ Eτ1,∞{1{Th<τ2}g
−(y(1)τ1 , y

(2)
τ1 )|Fτ1}1{Th≥τ1},

where g± are solutions to the following partial differential
equations on [0, h]2:

∂2g

∂x2
+ 2ρ

∂2g

∂x∂y
+
∂2g

∂y2
+
∂g

∂x
± ∂g

∂y
= −1,

with boundary condition

g|x=h = g|y=h =
∂g

∂x

∣∣∣
x=0

=
∂g

∂y

∣∣∣
y=0

= 0.(29)

Using Lemma 4 we have that g−(x, y) ≤ g−(0, 0), and

∂g−

∂y
≤ 0.
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Now notice that for ∆ := g− − g+ satisfies the boundary
condition (29) and

∂2∆

∂x2
+ 2ρ

∂2∆

∂x∂y
+
∂2∆

∂y2
+
∂∆

∂x
+
∂∆

∂y
= 2

∂g−

∂y
≤ 0,

which implies that {∆(y
(1)
t , y

(2)
t )} is a super-martingale

under P0,0. Hence,

g−(x, y)− g+(x, y) = h(x, y) ≥ E0,0{∆(y
(1)
Th
, y

(2)
Th

)} = 0.

As a result, we obtain

µ2

2
Eτ1,τ2{(Th− τ1)+|Fτ1} ≤ g−(0, 0)1{Th≥τ2}, Pτ1,∞-a.s.

On the other hand, a similar argument using Itô’s lemma’s
lemma yields

µ2

2
E0,∞{Th} = g−(0, 0).

Therefore, (28) holds and this completes the proof.

We now proceed to prove the results used in the proof of
Proposition 1.

Lemma 2: For any constant correlation ρ ∈ (−1, 0],
consider two correlated reflected Brownian motion on the
probability space (Ω,F ,F, P ):

dXt = µXdt+ dw
(1)
t + dLXt ,(30)

dYt = µY dt+ dw
(2)
t + dLYt ,(31)

where µX , µY are constants, dw(1)
t ∧ dw

(2)
t = ρdt, and

LXt = −min{0, inf
s≤t

(X0 + µXt+ w
(1)
t )},

LYt = −min{0, inf
s≤t

(Y0 + µY t+ w
(1)
t )}.

Let us define for a h > 0 that

T ρh := inf{t ≥ 0 ; max(Xt, Yt) ≥ h}.(32)

Then we have

E{T ρh} ≤ E{T
0
h}.(33)

Proof: We begin with the generator of the 2-
dimensional process {(Xt, Yt)}t≥0:

Lρ :=
1

2

∂2

∂x2
+ ρ

∂2

∂x∂y
+

1

2

∂2

∂y2
+ µX

∂

∂x
+ µY

∂

∂y
,

where the domain of Lρ is

{C2 function g(x, y) :
∂g

∂x
|x=0 =

∂g

∂y
|y=0 = 0}.

It is easily seen using Itô’s lemma that for the solution to
the partial differential equation

(Lρgρ)(x, y) = −1, ∀(x, y) ∈ [0, h]2 =:D,

with boundary condition (29), we have a martingale.

Mt := gρ(Xt, Yt)− gρ(x, y) + t.

And thus, optional sampling theorem implies that

E{T ρh |X0 = x, Y0 = y} = gρ(x, y).

To finish the proof, we will show that

g0(x, y) ≥ gρ(x, y), ∀(x, y) ∈ D.

But then it suffices to prove that {∆0(Xt, Yt)}t≥0 with
∆0 := gρ − g0 is a sub-martingale since that will imply

gρ(x, y)− g0(x, y) = ∆0(x, y) ≤ E{∆0(XTρh
, YTρh )} = 0.

To this end, we notice that

(Lρ∆0)(x, y) = −ρ ∂
2g0

∂x∂y
.

Using Lemma 4 we have that ∂2g0
∂x∂y ≥ 0. Therefor,e

(Lρ∆0) ≥ 0 and {∆0(Xt, Yt)}t≥0 is a sub-martingale. This
completes the proof.

Lemma 3: Under the assumption of Lemma 2 and
µX , µY < 0, we have

E{T ρh} ≥ E{T
−1
h }.(34)

Proof: To simplify notations, let us begin by defining
P x,y(·) :=P (·|X0 = x, Y0 = y). Then we define

g−1(x, y) = Ex,y{T−1h }, ∀(x, y) ∈ D.(35)

We will bound gρ by g−1 from below. To this end, let us
define

∆−(x, y) := gρ(x, y)− g−1(x, y).

We will show that the process {∆−(Xt, Yt)}t≥0 is a super-
martingale, so that

∆−(x, y) ≥ Ex,y{∆−(XT−1
h
, YT−1

h
)} = 0, ∀(x, y) ∈ D.

The formula for g−1 can be derived. Let us denote by

D− :={(x, y) ∈ D : x+ y ≤ k}, D+ :=D −D−.

Using Lemma 3.1 of Hadjiliadis et. al. [26], we have that
for (x, y) ∈ D−,

Ex,y{θ1} = Ex,y{T−1h }+ E0,h{θ1}P x,y(θ1 > θ2),

Ex,y{θ2} = Ex,y{T−1h }+ Eh,0{θ2}P x,y(θ1 < θ2),

where

θ1 = inf{t ≥ 0 : Xt ≥ h},
θ2 = inf{t ≥ 0 : Yt ≥ h}.

It is easily seen using Itô’s lemma that

Ex,y{θ1} =
f(−2µXh)− f(−2µXx)

2µ2
X

=:U(x),

Ex,y{θ2} =
f(−2µY h)− f(−2µY y)

2µ2
X

=:V (y),

where f(ν) = eν − ν − 1. As a result, we have

g−1(x, y) =
V (0)U(x) + U(0)V (y)− U(0)V (0)

U(0) + V (0)
,

for any (x, y) ∈ D−. For any (x, y) ∈ D+, let us define

% = inf{t ≥ 0 : Xt = k or Yt = k or Xt + Yt ≤ k}.
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By strong Markov property, we have that for x+ y > k,

Ex,y{T−1h } = Ex,y{%}+

+

∫ k

0

P x,y(X% ∈ du,X% + Y% = k)g−1(u, k − u).

The distribution of ρ and Xρ can be obtained from Anderson
[28]. In particular, by letting γ1 = k − y, γ2 = x − k,
δ1 = −µY and δ2 = −µX in Theorem 5.1 of [28], we have

Ex,y{%} =

∫ σx,y

0

t

(
dP1(t)

dt
+
dP2(t)

dt

)
dt+

+ σx,y[1− P1(σx,y)− P2(σx,y)],

where σx,y = x+y−k
−µX−µY . Similarly, using the same set of

parameters as the ones of Theorem 4.2 of [28], we have

P x,y(Xρ ∈ du,Xρ + Yρ = k)

= [1−P1(σx,y, u−x−µXσx,y)−P2(σx,y, u−x−µXσx,y)]

× 1√
2πσx,y

e−
(u−x−µXσx,y)2

2σx,y du.

The exact formulas for densities and probabilities P1, P2

used above are complicated, but it can be easily seen that
g−1|D+ is a smooth function.

Let us denote by F = g−1|D− and G = g−1|D+
. Then

(L−1F )|D− ≡ −1, (L−1G)|D+
≡ −1.

Moreover, we can trivially write,

g−1(x, y) = F (x, y) + [G(x, y)− F (x, y)]1{x+y>k}.

Due to exponential decaying of P1, P2 as x + y ↘ k and
σx,y ↘ 0, we have that

∂G

∂x

∣∣∣
x+y=k

=
µY

µX + µX

∂

∂x
g−1(x, k − x),

∂G

∂y

∣∣∣
x+y=k

=− µX
µX + µY

∂

∂x
g−1(x, k − x).

Therefore, we have for (x, y) ∈ ∂D− ∩ ∂D+,

H(x, y) :=
1

2

∂2G

∂x2
− ∂2G

∂x∂y
+

1

2

∂2G

∂y2
− 1

2

∂2F

∂x2
− 1

2

∂2F

∂y2

= −1 +
V (0)e−2µXx + U(0)e−2µY y

U(0) + V (0)
≥ 0

Moreover, using exponential decay of P1, P2 we can show
that

∂2G

∂x∂y

∣∣∣
x+y=k

= − µXµY
(µX + µY )2

∂2

∂x2
g−1(x, k − x) ≥ 0.

Using the argument in Lemma 4, we obtain that

∂2G

∂x∂y

∣∣∣
x=h

,
∂2G

∂x∂y

∣∣∣
y=h

, ≥ 0.

Because ∂2G
∂x∂y solves parabolic equation

(L−1g)(x, y) = 0, ∀(x, y) ∈ D+,

and it has non-negative boundary values, we conclude that

∂2G

∂x∂y
≥ 0, ∀(x, y) ∈ D+,

by the maximum principle of parabolic equation. Thus, for
process {(Xt, Yt)}t≥0 with correlation function ρ > −1, we
have

dg−1(Xt, Yt)

=(LρF )(Xt, Yt)1{Xt+Yt<k}dt+ (LρG)(Xt, Yt)1{Xt+Yt>k}

+

(
1

2

∂2G

∂x2
+ ρ

∂2G

∂x∂y
+

1

2

∂2G

∂y2
− 1

2

∂2F

∂x2
− 1

2

∂2F

∂x2

)
dLX+Y−k

t

+
∂g−1
∂x−

(Xt, Yt)dw
(1)
t +

∂g−1
∂y−

(Xt, Yt)dw
(2)
t

=

(
− 1{Xt+Yt 6=k} + 1{Xt+Yt>k}[1 + ρ(Xt, Yt)]

∂2G

∂x∂y

)
dt

+

(
H(Xt, Yt) + [1 + ρ(Xt, Yt)]

∂2G

∂x∂y
(Xt, Yt)

)
dLX+Y−k

t

+
∂g−1
∂x−

(Xt, Yt)dw
(1)
t +

∂g−1
∂y−

(Xt, Yt)dw
(2)
t ,

where {LX+Y−k
t }t≥0 is the local time of {Xt +Yt− k}t≥0

at zero. It follows that the process {∆−1(Xt, Yt)}t≥0 is a
super-martingale. This completes the proof.

Lemma 4: For any constant ρ ∈ (−1, 1) and the solution
of the partial differential equation,

Lρg =− 1, ∀(x, y) ∈ D,

g|x=h = g|y=h =
∂g

∂x

∣∣∣
x=0

=
∂g

∂y

∣∣∣
y=0

= 0.

We have ∂g
∂x ,

∂g
∂y ≤ 0 and ∂2g

∂x∂y ≥ 0, for all (x, y) ∈ D.

Proof: By Feynmann-Kac theorem we can express g
as expectation

g(x, y) = E{T 1,x
ρ ∧ T 2,y

ρ }, where

T 1,x
ρ = inf{t ≥ 0 : Xx

t ≥ h}, dXx
t = dXt, X

x
0 = x,

T 2,y
ρ = inf{t ≥ 0 : Y yt ≥ h}, dY

y
t = dYt, Y

y
0 = y.

For x
′ ∈ (x, k), by strong Markov property we have

T 1,x
ρ > T 2,x

′

ρ , P -a.s.

Thus we have
g(x, y) = E{T 1,x

ρ ∧ T 2,y
ρ } ≥ E{T 1,x

′

ρ ∧ T 2,y
ρ } = g(x

′
, y).

This proves the monotonicity of g.
Moreover, it is easily seen that the solution g is a smooth

function on D. Thus its derivative u := ∂2g
∂x∂y satisfies partial

differential equation

(Lρu)(x, y) = 0, ∀(x, y) ∈ D.
However, regularity of u on D and monotonicity of g implies
that (u|x=k) ≥ 0 and (u|y=k) ≥ 0, and Neumann boundary
condition implies (u|x=0) = (u|y=0) = 0. By the maximum
principle of elliptic equations, we conclude that

∂2g

∂x∂y
= u(x, y) ≥ 0, ∀(x, y) ∈ D.

This completes the proof.
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