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Abstract. This work compares the performance of all existing 2-CUSUM stopping
rules used in the problem of sequential detection of a change in the drift of a
Brownian motion in the case of two-sided alternatives. As a performance measure an
extended Lorden criterion is used. According to this criterion the optimal stopping
rule is an equalizer rule. This paper compares the performance of the modified drift
harmonic mean 2-CUSUM equalizer rules to the performance of the best classical 2-
CUSUM equalizer rule whose threshold parameters are chosen so that equalization
is achieved. This comparison is made possible through the derivation of a closed-
form formula for the expected value of a general classical 2-CUSUM stopping rule.
Keywords. Quickest Detection, 2-CUSUM.

1 Introduction and Mathematical formulation

In this work we are concerned with the problem of quickest detection of a
two-sided change in the drift of a Brownian motion model. To mathematically
set up this problem, we sequentially observe a process {ξt} with the following
dynamics:

dξt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dwt t ≤ θ

μ1dt + dwt

or

−μ2dt + dwt

t ≥ θ

where θ, the time of change, is assumed to be deterministic but unknown; wt

is a standard Brownian motion process; μi (i = 1, 2), the possible drifts to
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which the process can change, are assumed to be known, but the specific drift
to which the process is changing is unknown. Both μ1 and μ2 are assumed to
be positive. The probability triplet consists of (C[0,∞],∪t>0Ft), where Ft =
σ{ξs, 0 < s ≤ t}, and the families of probability measures {P i

θ}, θ ∈ [0,∞)
corresponding to each change μi (i = 1, 2), with P∞ the Wiener measure.

Our goal is to detect a change by means of a stopping rule τ adapted to
the filtration Ft. As a performance measure for this stopping rule we propose
an extended Lorden criterion (see Hadjiliadis & Moustakides(2006))

JL(τ) = max{J1(τ), J2(τ)} (1)

where Ji(τ) = supθ essup Ei
θ

[
(τ − θ)+|Fθ

]
, i = 1, 2. This gives rise to the

following min-max constrained optimization problem:

inf
τ

JL(τ) subject to E∞ [τ ] ≥ γ, (2)

where the constraint specifies the minimum allowable mean time between
false alarms. As discussed in Moustakides (1986), in seeking solutions to the
above problem, we can restrict our attention to stopping times that achieve
the false alarm constraint with equality, i.e. τ for which

E∞ [τ ] = γ. (3)

This paper is a continuation of the work started in Hadjiliadis & Mous-
takides (2006), Hadjiliadis (2005) and Hadjiliadis & Poor (2007). In Hadjil-
iadis & Moustakides (2006) it is conjectured, but not proven, that within the
class of harmonic mean rules drift equalizer rules are best. Also, two strong
asymptotic optimality results as the mean time between false alarms tends
to ∞ are presented both in the symmetric case, where a classical 2-CUSUM
harmonic mean rule is proposed, and in the non-symmetric case, where a
modified drift 2-CUSUM harmonic mean equalizer rule is proposed. These
asymptotic results enhance the 2-CUSUM asymptotic optimality results of
Tartakovsky (1994). As seen in Hadjiliadis (2005), within the class of modi-
fied drift 2-CUSUM harmonic mean rules the best rules are those for which
the drift parameters of the modified drift 2-CUSUM harmonic mean stopping
rules λ1 and λ2 are chosen so that λ2 − λ1 = 2(μ2 − μ1), for any value of the
mean time between false alarms. In Hadjiliadis & Poor (2007) it is proven
that the optimal solution to problem (2) has to satisfy

J1(τ) = J2(τ). (4)

In the same paper explicit upper and lower bounds for the first moment and
the rate of change of the first moment of a general 2-CUSUM stopping rule
are derived. By means of these bounds, it is seen that the best amongst the
classical 2-CUSUM stopping rules is unique. It is a harmonic mean rule in
the case of a symmetric change in the drift. In the non-symmetric case, it is a
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non-harmonic mean rule with threshold parameters ν1 > ν2 (ν1 < ν2) when
μ1 > μ2 (μ1 < μ2) for any value of the mean time between false alarms.

We now proceed to define the modified drift 2-CUSUM stopping rules, a
special case of which are the classical 2-CUSUM stoping rules.
Definition 1. Let ν1 > 0 and ν2 > 0. Define

1. u+
t (λ1) = ξt− 1

2λ1t; m+
t (λ1) = infs≤t u+

s (λ1); y+
t (λ1) = u+

t (λ1)−m+
t (λ1);

τ1(λ1, ν1) = inf{t > 0; y+
t (λ1) ≥ ν1},

2. u−
t (λ2) = −ξt − 1

2λ2t; m−
t (λ2) = infs≤t u−

s (λ2); y−
t (λ2) = u−

t (λ2) −
m−

t (λ2); τ2(λ2, ν2) = inf{t > 0; y−
t (λ2) ≥ ν2}.

The modified drift 2-CUSUM rules are then of the form τ(λ1, λ2, ν1, ν2) =
τ1(λ1, ν1) ∧ τ2(λ2, ν2). In this paper, we concentrate on modified drift 2-
CUSUM harmonic mean rules for which ν1 = ν2.

The classical 2-CUSUM stopping rules are special cases of the modified
drift rules for λi = μi i = 1, 2 and are denoted by τ(ν1, ν2) = τ1(ν1)∧ τ2(ν2).
Remark 1 It is useful at this stage to contrast the stopping time τ(ν1, ν2)
to the one considered in Khan (2007). The latter, using the notation in this
paper, is defined as T = T1(h1)∧T2(h2), where T1(h1) is the first passage time
of the process ξt − infs≤t ξs reaches h1, and T2(h2) is the first passage time
of the process sups≤t ξs − ξt reaches h2. Thus T is different from τ(ν1, ν2).
In the sequel we will repeatedly use the indices i, j ∈ {1, 2} with i �= j, and
the function

fν(y) = 2
eyν − yν − 1

y2
. (5)

The exact first moments of τ(λi, νi) and τ(νi) are given in terms of the above
function as seen in Hadjiliadis (2005). In particular, we have

E∞(τ(λi, ν)) = 2fν(λi), (6)
Ei

0(τ(λi, ν)) = 2fν(λi − 2μi), Ei
0(τ(λj , ν)) = 2fν(λj + 2μi). (7)

Moreover, the expected values of τ(ν) under each of the above measures are
given by the above formulas evaluated at λi = μi and λj = μj (see Hadjiliadis
& Moustakides (2006)).

2 The first moment of a general 2-CUSUM rule
We begin with our main expression for the first moment of a general classical
2-CUSUM stopping rule τ(ν1, ν2). To simplify the expressions that follow we
introduce

βj(r, ξ) = exp {−(r − 1)νj (r(μ1 + μ2) + μj − ξ)} (8)

Aj(ξ) =
∞∑

r=1

[(
r [r(μ1 + μ2) + μj − ξ]

)(
βj(r, ξ) − βj(r + 1, ξ)

)]
(9)

Bi(ξ) =
∞∑

r=1

[(
r(μ1 + μ2) +

1
2
(μi − ξ)

)
exp {−2(νi − νj)}

]
(10)
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Theorem 1. Let τ(ν1, ν2) = τ1(ν1) ∧ τ2(ν2) be any 2-CUSUM stopping rule
and denote τ(ν1, ν2) by τ . Moreover, let f be as in (5). Then, for νi ≥ νj,
i �= j, with Δ = νi − νj, we have

Ei
0 [τ ] = 2fνj (μj + 2μi)

[
1 − fνj (μj + 2μi)

fνj (−μi) + fνj (μj + 2μi)
e−2Δ·Bi(0)

]
, (11)

E∞ [τ ] = 2fνj (μj)
[
1 − fνj (μj)

fνj (μj) + fνj (μi)
e−2Δ·Bi(2μi)

]
, for i = 2, (12)

Ej
0 [τ ] = 2fνj (−μj)

[
1 − fνj (−μj)

fνj (−μj) + fνj (μi + 2μj)
e−Δ·Aj(0)

]
, (13)

E∞ [τ ] = 2fνj (μj)
[
1 − fνj (μj)

fνj (μj) + fνj (μi)
e−Δ·Aj(2μj)

]
, for j = 2. (14)

We notice that for any τ with ν1 = ν2, all of the above expressions reduce
to the well-known harmonic mean rule (see Siegmund(1985)). That is, for
ν1 = ν2, under any measure, we obtain

E [τ ] =
E [τ1] E [τ2]

E [τ1] + E [τ2]
. (15)

Moreover, it can easily be seen from the expressions of Theorem 1 that the
harmonic mean rule holds as a lower bound to the first moment of a general
classical 2-CUSUM stopping rule (see for example Dragalin (1997)).

3 Classical vs Modified 2-CUSUM stopping rules

In this section we compare the classical 2-CUSUM rules to the modified
drift 2-CUSUM harmonic mean rules, all of which satisfy (4), both in the
symmetric and the non-symmetric case. We point out that the modified drift
2-CUSUM harmonic mean rules have to satisfy

λ2 − λ1 = 2(μ2 − μ1). (16)

3.1 Symmetric case µ1 = µ2

In this case, the unique classical 2-CUSUM stopping time that satisfies (4)
is the one with ν1 = ν2 (see Hadjiliadis & Poor (2007)). For the selection
of the modified drift 2-CUSUM harmonic mean rule, notice that, since μ1 =
μ2 = μ, (16) implies λ1 = λ2 = λ, where λ is a free parameter. In order to
compare the performance of the classical 2-CUSUM to its modified drift 2-
CUSUM counterpart, we constrain them to both satisfy (3). For the classical
2-CUSUM this constraint is sufficient to give us a specific value for ν which in
turn implies a specific value of J(·) through the functions for the first moment
equations that appear at the end of Section 1 and the harmonic mean rule
(15). However, for the modified drift parameter 2-CUSUM, the constraint
(3) allows for a free choice of parameter for λ, which can then be used to
minimize J(·). Thus the modified drift 2-CUSUM stopping time will have a
lesser detection delay J(·) than its classical counterpart. The optimal choice of
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parameter λ however, converges to μ as γ → ∞. This is easily seen by noticing
that for the modified-drift 2-CUSUM, we have J(·) = 2 log γ

λ(2μ−λ) (1+o(1)), which
is minimized for the choice λ = μ as γ → ∞. The convergence of the optimal
choice of λ to μ is faster for higher values of μ as seen in Figure 1. This
asserts the asymptotic optimality of the classical 2-CUSUM (see Hadjiliadis
& Moustakides (2006)).
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Fig. 1. (Left) Convergence of λ as a function of log(γ). The blue curve corresponds to μ = 0.5, the magenta

curve to μ = 1, and the green curve to μ = 2.5. (Right) Difference between detection delays of the classical

and modified drift 2-CUSUM as a function of log(γ). Blue, magenta, and green curves same as in (Left).

3.2 Non-symmetric case µ1 > µ2

In this subsection we consider the case of a non-symmetric change. Without
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Fig. 2. (Left) Case of μ2 = 1: The difference in detection delay of the modified 2-CUSUM minus the

classical 2-CUSUM equalizer rules is displayed as a function of log(γ). The blue curve corresponds to
μ1
μ2

= 1.5,

the magenta curve to μ1
μ2

= 2, and the green curve to μ1
μ2

= 5. (Middle) Case of μ2 = 1 and μ1
μ2

= 1.5:

Upper (green and magenta curves correspond to the detection delay of the modified and the classical 2-CUSUM

equalizer rules respectively, whereas orange curve is the detection delay of modified when λ2 = μ2) and lower

(blue line) bounds to the detection delay of the unknown optimal stopping rule as a function of log(γ). (Right)

Case of μ2 = 1 and
μ1
μ2

= 2: Same type of graph as the middle.

loss of generality we assume that μ1 > μ2. In Hadjiliadis & Poor (2007) it
is seen that the best classical 2-CUSUM stopping rule is unique and satisfies
ν1 > ν2. We thus compare the detection delay J(·) of the unique classical
2-CUSUM stopping rule τ(ν1, ν2) with ν1 > ν2 that satisfies (4) with the
modified drift 2-CUSUM harmonic mean rule with λ2 a free parameter, over
which the detection delay J(·) is minimized. For the modified drift 2-CUSUM
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harmonic mean rule (16) implies that λ1 = 2(μ1 − μ2) + λ2. Both rules
are chosen so as to satisfy the false alarm constraint (3). The best choice
of parameter for λ2 converges to μ2 as γ → ∞ as seen in Hadjiliadis &
Moustakides (2006). The detection delay of the unknown optimal stopping
rule T ∗ is bounded above by the detection delay of the modified drift 2-
CUSUM equalizer rule and the detection delay of the classical 2-CUSUM
equalizer rule. It is also bounded below by the detection delay of T2(ν2) under
P 2

0 with ν2 chosen so that (3) is satisfied. It is seen that both detection delays
displayed by the upper bound 2-CUSUM rules converge asymptotically (as
γ → ∞) to 2 log(γ)

μ2
2

(1 + o(1)) and thus that both approach the lower bound
uniformly as γ → ∞. However, for small values of γ the difference in detection
delay of the modified drift 2-CUSUM harmonic mean equalizer rule minus
the detection delay of the classical 2-CUSUM equalizer rule is positive for
all values of μ1 and μ2 with μ1 > μ2. For example, in the left graph of
Figure 2, this difference reaches the level 0.15 for μ1

μ2
= 1.5, μ2 = 1 and

log γ ≈ 1.5. (For more examples refer to Hadjiliadis et. al.(2008)). Of course,
this difference decreases as γ → ∞ since both detection delays approach the
lower bound (middle and right graphs of Figure 2). This suggests that it is
better to equalize 2-CUSUM rules by an appropriate selection of thresholds
as opposed to modifying its drift parameters for small values of γ in the case
of a non-symmetric change.
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