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We study a Wiener disorder problem of detecting the minimum
of N change-points in N observation channels coupled by correlated
noises. It is assumed that the observations in each dimension can have
different strengths and that the change-points may differ from chan-
nel to channel. The objective is the quickest detection of the minimum
of the N change-points. We adopt a min-max approach and consider
an extended Lorden’s criterion, which is minimized subject to a con-
straint on the mean time to the first false alarm. It is seen that, under
partial information of the post-change drifts and a general nonsingu-
lar stochastic correlation structure in the noises, the minimum of N
cumulative sums (CUSUM) stopping rules is asymptotically optimal
as the mean time to the first false alarm increases without bound. We
further discuss applications of this result with emphasis on its impli-
cations to the efficiency of the decentralized versus the centralized
systems of observations which arise in engineering.

1. Introduction. The problem of quickest detection has been known in the engineering liter-
ature since the 1930s. Since then there have been various analytical considerations of the quickest
detection problem in a variety of models and setups (see [30] for an overview). The quickest detec-
tion problem, also known as the disorder problem, concerns the detection of a change point in the
statistical behavior of a stream of sequential observations. The objective is to blanace the trade off
between a small detection delay and small frequency of false alarms. Of this problem there are two
main formulations, the Bayesian and the min-max. In the former the change point or disorder time
is assumed to have an a priori distribution usually independent of the observation process while
in the latter it is assumed to be an unknown constant. An interesting variation of the Bayesian
problem in which the change point is assumed to depend on the observations is discussed in [26]
and treated under Poisson dynamics in [32].

Yet in all formulations considered thus far, it is assumed that there is either one stream of
observations in which there is one [7, 14, 20, 23, 24, 33] or multiple alternatives regarding the
law of the post change distribution of the observations [5, 8, 9], or alternatively, multiple streams
of observations of various models all undergoing a disorder at the same time [11, 25, 35, 36, 37].
In our work we assume that there are N sources of observations coupled by correlated noise.
The observations are assumed to be continuous and thus a Wiener model is used. The problem
considered in this work is that in which the N different streams of observations coupled by correlated
noise may undergo a change at N distinct change points. The objective is then to detect the
minimum of the change points or disorder times. Of this type of problem there has thus far been a
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2 H. ZHANG ET AL.

Bayesian formulation in independent streams of Poisson observations [6]. Recently the case was also
considered of change points that propagate in a sensor array [31]. However, in this configuration
the propagation of the change points depends on the unknown identity of the first sensor affected
and considers a restricted Markovian mechanism of propagation of the change.

In this paper we consider the case in which the change points can be different and do not
propagate in any specific configuration. In fact in our formulation the change points or disorder
times are assumed to be unknown constants and a min-max approach to their estimation is taken.
In particular we consider an extended Lorden criterion to measure the worst detection delay over all
observation paths and change points. The objective is then to find a stopping rule that minimizes
the detection delay subject to a lower bound constraint on the mean time to the first false alarm.
The N streams of observations are coupled through correlated noise. In particular, correlations are
modeled through a stochastic correlation matrix that is assumed to be non-singular and predictable.
This work is a continuation of the problem considered in [18] in which the case is considered of
independent observations received at each sensor. In that work, it is seen that the decentralized
system of sensors in which each sensor employs its own cumulative sum (CUSUM) [30] strategy
and communicates its detection through a binary asynchronous message to a central fusion center,
which in turn decides at the first onset of a signal based on the first communication performs
asymptotically just as well as the centralized system. In other words, the minimum of N CUSUMs
is asymptotically optimal in detecting the minimum of N distinct change points in the case of
independent observations as the mean time to the first false alarm increases without bound. The
mean time to the first false alarm can be used as a benchmark in actual applications in which
the engineer or scientist may make several runs of the system while it is in control in order to
uniquely identify, the appropriate parameter that would lead to a tolerable rate of false detection.
The problem of optimal detection then boils down to minimizing the detection delay subject to
a tolerable rate of false alarms. Asymptotic optimality is then proven by comparing the rate of
increase in detection delay to the rate of false alarms as the threshold parameter varies. A series
of more recent related work includes the case in which the system of sensors is coupled through
the drift parameter as opposed to the noise [17, 39]. In that work it is once again seen that the
minimum of N CUSUMs is also asymptotically optimal in detecting the minimum of N distinct
change points with respect to a generalized Kullback-Leibler distance criterion inspired by [24].

Yet, in none of the above cases is the case of correlated noise considered even though it is
very important in practical applications. In fact there are multiple applications of this problem
especially in the area of communications where sensor networks are widely used and multiple
correlated streams of observations are present. The change points, usually representing the onset
of a signal in a specific sensor, may well be distinct. The minimum of the change points then
represents the onset of a signal in the system. The presence of correlations is due to the fact that,
although sensors are placed typically at different locations, they are subject to the same physical
environment. For example, in the case of sensors monitoring traffic in opposite (same) directions
may have negative (positive) correlations due to environmental factors such as the direction of the
wind [10]. Moreover, the appearance of a signal at one location may or may not cause interference
of the signal at another location, thus causing correlations whose structure may even be time or
observations dependent. This happens when the sensors are closely spaced relative to the curvature
of the field being sensed. For example, temperature sensors or humidity sensors that are in a similar
geographic region will produce readings that are correlated. A stochastic correlation matrix would
best describe such a situation. Some of the relevant literature that includes such examples can be
found in [1, 2, 3, 12, 19, 21, 28].

In an earlier work the authors in [38] treat the problem of quickest detection of the minimum of
two change points in the special case of two streams of sequential observations when the correlation
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 3

in the noise of the observations is constant and negative and the same drifts are assumed after each
of the disorder times. This work treats the general case of N correlated streams of observations in
the presence of partial information regarding the post-change drifts which can as such be different.
Moreover, we consider a general stochastic correlation matrix allowing for both positive and negative
time and state dependent correlations in the system. The results found in this work are in fact rather
surprising. It is seen that the minimum of N CUSUM stopping rules maintains its asymptotically
optimal character as the mean time to the first false alarm increases without bound even in the
case of partially known drifts and a stochastic correlation matrix coupling the noise of N streams
of observations. In particular, it is proved that the N -CUSUM stopping rule (defined in Algorithm
2.1) is second order asymptotically optimal1 in the case the post-disorder drift parameters assumed
across the N streams of observations are the same, and is third order asymptotically optimal
when the post-disorder drift parameters are different for an appropriately chosen set of threshold
parameters whose form is explicitly given.

The method used to prove the asymptotic optimality of the N -CUSUM stopping rule is to bound
the optimal detection delay from above and from below. Then we examine the rate at which the
difference between the upper and the lower bounds approach each other as the mean time to the
first false alarm increases without bound. This method is similar to [13, 16, 17, 18, 24, 29, 38, 39].
However, the methodology developed in this work for establishing the upper and lower bounds is
more efficient and robust in that it is based on probabilistic arguments. In contrast the existing
work in continuous-time, which is either relied on brute computation of the asymptotic behaviors of
maximum drawdown densities [18] or on the derivation of sharp solutions to Dirichlet problems with
Neumann conditions [17, 24, 38, 39], is very difficult in high-dimension and highly sensitive to the
model parameters. The methodology developed in this paper is universal and can thus handle a non-
Markovian, predictable correlation matrix process for the noises, which is very useful in practical
applications. Finally, our methodology can be applied to other detection problems not covered in
this paper, for example quickest detection with multiple alternatives [15, 16]. In establishing the
lower bound, we give a non-trivial generalization of a measure change technique developed in [24]
to N -dimensions. Although we don’t get the exact optimality as in one dimension [24], we do prove
that the optimal detection delay in N -dimensions is bounded from below by that obtained in one
dimension, under any predictable, nonsingular correlation matrix.

In the next section we formulate the problem mathematically, review the existing results in
one dimension, and introduce the N -CUSUM stopping rule. In Section 3, we establish a robust
upper bound and a robust lower bound for both the optimal detection delay and the detection
delay of the N -CUSUM stopping rule. These bounds are then used in Section 4 to show the main
result of the paper - the asymptotic optimality of the N -CUSUM stopping rule under complete or
partial information of the drifts and a stochastic cross-correlated noise structure in the observations.
Applications of these results are discussed in Section 5. We conclude with some closing remarks in
Section 6. The proof of the lemma that is omitted can be found in the Appendix.

Throughout the paper, we denote by s ∧ t = min{s, t}, R = (−∞,∞), R+ = [0,∞) and R̄+ =
[0,∞].

2. Formulation of the problem. Consider a filtered probability space (Ω,F ,F, P ) with fil-

tration F = (F t)t≥0, and the processes ξ(i) := {ξ(i)
t }t≥0, i = 1, . . . , N , are assumed to satisfy the

following stochastic differential equations:

dξ
(i)
t = µi1{t≥τi}dt+ dw

(i)
t .(2.1)

1See Definition 2.1 below.
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Here {τi}1≤i≤N are deterministic but unknown positive constants or ∞, {µi}1≤i≤N are positive
constants2 that are either completely known or partially known. In the latter case, we assume that
µ1 > 0 is a known constant, and for i = 2, . . . , N , there are known positive constants µ1 ≤ µi ≤ µi
such that µi ∈ [µ

i
, µi] holds.3 The processes {w(i)}1≤i≤N for w(i) := {w(i)

t }t≥0 are N correlated
standard Brownian motions with a predictable, non-singular, stochastic instantaneous correlation
matrix Σt = (ρi,jt ). That is, ρi,jt is the instantaneous correlation between Brownian motions w(i)

and w(j) (see also [34, page 227]).
An example covered by the above assumptions is one in which ρi,jt = ρe−t for i 6= j and some

ρ ∈ (0, 1). In other words, there is a deterministic exponential decay in the instantaneous correlation
of the two sensors i and j. Such a situation may arise by the sudden arrival of a passing rainstorm
at sensors i and j, which are customarily placed in the same geographical region and are therefore
also subject to the same climet conditions. Yet our formulation is even more general in that it is
also able to capture state dependent correlations which is a very realistic scenario since observations
of higher intensity are typically more likely to cause higher correlations in the noise, for instance

N = 2 and ρi,jt =
ξ
(i)
t ξ

(j)
t

1+|ξ(i)t ξ
(j)
t |
e−t for i 6= j. Another example of a correlated non-stationary white

noise structure arises in the problem of monitoring the vibration of a mechanical system and is
discussed in full detail in subsection 11.1.4.1 of [4].

To facilitate our analysis, we introduce a family of probability measures on the canonical space
(C(RN+ ),F): {Ps1,...,sN }(s1,...,sN )∈(R̄+)N . Here Ps1,...,sN corresponds to the measure generated on C(RN+ )

by the processes (ξ(1), . . . , ξ(N)) when the change in the N -tuple process occurs at the time points
τi = si, 1 ≤ i ≤ N , respectively. In particular, the measure P∞,...,∞ characterizes the law of N
correlated standard Brownian motions {w(i)}1≤i≤N . For other si’s, the measure Ps1,...,sN can be

defined through the Radon-Nikodym derivative process
dPs1,...,sN
dP∞,...,∞

∣∣
Ft . To this end, we assume that

the correlation matrix Σt fulfills the Novikov condition:

(2.2) E∞,...,∞
{

exp

(
1

2
〈log(

dPs1,...,sN
dP∞,...,∞

∣∣
Ft)〉

)}
<∞, ∀t ≥ 0, ∀(s1, . . . , sN ) ∈ (R+)N .

We comment that the “reality” measure Pτ1,...,τN is one unknown element in {Ps1,...,sN }(s1,...,sN )∈(R̄+)N .

To describe the “marginal” law of the i-th component of the N -tuple process (ξ(1), . . . , ξ(N)), we
also introduce the measure {Pisi}, which is the probability measure generated by the process ξ(i)

on the space (C(R),G(i)), where G(i) = {G(i)
t }t≥0 for G(i)

t = σ{(ξ(i)
s ); s ≤ t}, is the natural filtration

of ξ(i), and τi = si is the value of the change-point for process ξ(i).
Our objective is to find a stopping rule T , which is adapted to the natural filtration F = (Ft)t≥0:

Ft = σ(ξ
(1)
s , . . . , ξ

(N)
s ; s ≤ t),4 to balance the trade-off between a small detection delay subject to a

lower bound on the mean-time to the first false alarm and will ultimately detect τ1 ∧ τ2 ∧ . . . ∧ τN ,
which will be denoted by τ̃ in what follows. As a performance measure we consider

(2.3) J (N)(T ) = sup
(s1,...,sN )∈R̄N+

s̃<∞

essup Es1,...,sN
{

(T − s̃)+ | Fs̃
}

2The condition can be relaxed. For example, if we know a priori that µi < 0 (but not necessarily the value of it),
then we can take −ξ(i) as the i-th observation process so that the post-change drift is −µi > 0. We do not treat in
this paper, however, the case in which we don’t know the sign of the post-change drift.

3If µi is known, we can conveniently take µ
i

= µi = µi.
4Note that Σ needs not to be adapted to F. For example, Σ can be driven by a N -dimensional Brownian motion

which is independent of w(i)’s.
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 5

where s̃ = s1 ∧ s2 ∧ . . . ∧ sN , Es1,...,sN denotes the expectation under the probability measure
Ps1,...,sN , and the supremum over s1, . . . , sN is taken over the set in which s̃ <∞. In other words,
we consider the worst detection delay over all possible realizations of paths of the N -tuple of the

stochastic process {(ξ(1)
t , . . . , ξ

(N)
t )}t≥0 up to time s̃, and then consider the worst detection delay

over all possible N -tuples (s1, . . . , sN ) over a set in which at least one of the components takes a
finite value. This is because T is a stopping rule meant to detect the minimum of the N change
points and therefore if one of the N processes undergoes a regime change, any unit of time by which
T delays in reacting, should be counted towards the detection delay. Although it seems to be a
quite pessimistic measure for detection delay, this framework has the merit that one do not need
to impose any prior knowledge of the distribution of the change-points τi’s, as is discussed in [26].
In all, this gives rise to the following stochastic optimization problem:

(2.4)
inf
T∈Tγ

J (N)(T )

with Tγ = {F-stopping rule T : E∞,...,∞{T} ≥ γ}

where E∞,...,∞{T} captures the mean time to the first false alarm and as such the above constraint
describes the tolerance on the false alarms. In particular, the constant γ > 0 is the lowest acceptable
value of the mean time to the first false alarm. In other words, the reciprocal of γ, namely 1

γ , captures
the highest tolerance to the frequency of false alarms of the family of stopping times considered in
this problem.

When detecting τi is our only concern, and that µi is a known constant, the problem reduces
to an one-dimensional problem of detecting a one-sided change in a sequence of Brownian motion
observations, whose optimality was found in [7] and [33]. It is shown that the optimal stopping rule
under Lorden’s criterion is the continuous time version of Page’s CUSUM stopping rule, namely
the first passage time of the process

(2.5)
ỹ

(i)
t := sup0≤s≤t

dPis
dPi∞

∣∣∣∣
G(i)t

= ũ
(i)
t − m̃

(i)
t ,

for ũ
(i)
t := µi ξ

(i)
t − 1

2 µ
2
i t and m̃

(i)
t := inf0≤s≤t ũ

(i)
s ,

and the CUSUM stopping rule with the threshold ν?i > 0 is given by

(2.6) T̃ iν?i = inf{t ≥ 0 : ỹ
(i)
t ≥ ν?i }.

The optimal threshold ν?i is chosen so that,

(2.7) Ei∞{T̃ iν?i }= (2/µ2
i ) g(ν?i ) = γ, where g(ν) := eν − ν − 1, ∀ ν > 0.

The corresponding optimal detection delay achieved by the CUSUM stopping rule T̃ iν?i
is then given

by

J (1)(T̃ iν?i ) = Ei0{T̃ iν?i } =
2

µ2
i

g(−ν?i ).(2.8)

The fact that the worst detection delay in the one-dimensional problem is the same as that incurred
in the case that the change point is exactly at 0 is a consequence of the non-negativity and strong
Markov property of the CUSUM process, from which it follows that the worst detection delay occurs
when the CUSUM process is at 0 at the time of the change (see also [23]).

The optimality of the CUSUM stopping rule in the presence of only one observation process
with a known drift suggests that a CUSUM type of stopping rule might display similar optimality
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6 H. ZHANG ET AL.

properties in the case of multiple observation processes for the problem (2.4). In particular, an
intuitively appealing rule, when the detection of τ̃ is of interest, is to take the minimum of N
CUSUM-like stopping rules (see, e.g. [15]), which we formalize in the following algorithm.

Algorithm 2.1. The N -CUSUM stopping rule with a threshold vector ~ = (h1, . . . , hN ) ∈
(R+)N is given by T~ = T 1

h1
∧ T 2

h2
∧ . . . ∧ TNhN , where for each i = 1, . . . , N ,

T ihi = inf{t ≥ 0 : y
(i)
t ≥ hi},with y

(i)
t = u

(i)
t −m

(i)
t ,

for u
(i)
t := µ

i
ξ

(i)
t − 1

2µ
2
i
t and m

(i)
t := inf0≤s≤t u

(i)
t .

(2.9)

That is, we use what is known as a multi-chart CUSUM stopping rule [25], which can be written
as

T~ = inf

{
t ≥ 0 : max

{
y

(1)
t

h1
, . . . ,

y
(N)
t

hN

}
≥ 1

}
,

where {y(i)
t }t≥0 is the semi-martingale defined in (2.9), for i = 1, . . . , N . We notice that each of the

T ihi , for i = 1, . . . , N , are stopping rules also with respect to each of the smaller filtrations G(i),
and thus they can be employed by each one of the sensors Si, for each i independently. Each of the
sensors can then subsequently communicate an alarm to a central fusion center once its threshold,
say hi, is reached by its own CUSUM statistic process y(i). The resulting rule, namely Algorithm
2.1, can then be devised by the central fusion center in that it will declare a detection at the first
instance one of the N sensors communicates.

Remark 2.1. From (2.5) and (2.9), it is easily seen that y(i) ≡ ỹ(i) and T ihi = T̃ ihi, a.s., provided

that µi = µ
i

is known. In particular, we always have y(1) ≡ ỹ(1) and T 1
h1

= T̃ 1
h1

.

While it seems prohibitively difficult to devise a stopping rule that achieves the optimal detection
delay infT∈Tγ J

(N)(T ) under a general nonsingular correlation matrix (Σt)t≥0, the above N -CUSUM
stopping rule T~ provides a low-complexity candidate detection rule for detecting τ̃ .

In particular, we will show that the N -CUSUM stopping rule is asymptotically optimal. To this
effect we give the following definitions of asymptotic optimality as in [13].

Definition 2.1. Given γ > 0 and a stopping time T ′ ∈ Tγ, we say that,

1. T ′ has the first order asymptotic optimality for problem (2.4) if and only if

lim
γ→∞

J (N)(T ′)

infT∈Tγ J
(N)(T )

= 1 and lim
γ→∞

inf
T∈Tγ

J (N)(T ) =∞.

2. T ′ has the second order asymptotic optimality for problem (2.4) if and only if

lim
γ→∞

[J (N)(T ′)− inf
T∈Tγ

J (N)(T )] <∞ and lim
γ→∞

inf
T∈Tγ

J (N)(T ) =∞.

3. T ′ has the third order asymptotic optimality for problem (2.4) if and only if

lim
γ→∞

[J (N)(T ′)− inf
T∈Tγ

J (N)(T )] = 0 and lim
γ→∞

inf
T∈Tγ

J (N)(T ) =∞.

Below we will investigate the performance of T~ by contrasting it with the optimal detection
delay.
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 7

3. Robust bounds for the optimal detection delay. In this section, we examine the
performance of the N -CUSUM stopping rule by presenting an upper bound and a lower bound
for both the detection delay of the N -CUSUM stopping rule and the optimal detection delay
defined in (2.4). To this end, we derive a robust upper bound for the detection delay of a particular
N -CUSUM stopping rule T~ in Tγ . Because T~ cannot beat the unknown optimal stopping rule (if
it ever exists), this upper bound will also bound the optimal detection delay from above. We then
demonstrate that the optimal detection delay in the N -dimensional system is bounded from below
by the optimal delay in 1-dimensional systems.

3.1. The upper bound. In this subsection, we derive a robust upper bound for the detection
delay of a N -CUSUM stopping rule T~, whose thresholds set ~ is chosen so that T~ ∈ Tγ for any
γ > 0. The upper bound, that we obtain, also dominates the optimal detection delay, due to the
fact that J (N)(T~) ≥ infT∈Tγ J

(N)(T ) holds.
Now let us introduce

J
(N)
j (T ) = sup

(s1,...,sN )∈R̄N+
sj= s̃ <∞

essupEs1,...,sN
{

(T − sj)+
∣∣Fsj},(3.1)

for j = 1, . . . , N , where J
(N)
j (T ) is the detection delay of the stopping rule T when sj ≤ mini 6=j{si},

implying that the performance measure defined in (2.3) is given by J (N)(T ) = max1≤j≤N J
(N)
j (T ).

We now consider the case when all drifts µi’s are known constants. In this case, we select ~ such
that,

(3.2) E1
0{T 1

h1} = E2
0{T 2

h2} = . . . = EN0 {TNhN },

or equivalently (by (2.8)),

1

µ2
1

g(−h1) =
1

µ2
2

g(−h2) = . . . =
1

µ2
N

g(−hN ).

Due to the monotonicity of function g, hi’s are uniquely determined once h1 > 0 is given. In general,
if we only have partial information about µi’s for i = 2, . . . , N , we instead consider

(3.3)
1

µ2
1

g(−h1) =
1

µ2
2

g(−h2) = . . . =
1

µ2
N

g(−hN ).

By choosing the N -CUSUM stopping rule T~ in this way, we are able to get an easily computable
upper bound for the worst detection delay J (N)(T~). The assertion is proved in the following propo-
sition.

Proposition 3.1. Suppose that ~ ∈ RN+ satisfies the equations in (3.2) or (3.3), then we have
for the N -CUSUM stopping rule T~, that

(3.4) J (N)(T~) ≤ E1
0{T 1

h1} =
2

µ2
1

g(−h1),

where the function g is defined in (2.7).
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Proof. For any (s1, . . . , sN ) ∈ R̄N+ such that sj ≤ mini 6=j{si} and sj <∞, we have

(3.5) Es1,...,sN
{

(T~ − sj)+
∣∣Fsj} = Es1,...,sN

{
(T 1
h1 ∧ . . . ∧ T

N
hN
− sj)+

∣∣Fsj}
≤ Es1,...,sN

{
(T jhj − sj)

+
∣∣Fsj} = Ejsj

{
(T jhj − sj)

+
∣∣Gjsj}

where the last equality follows from the fact that the CUSUM stopping rule T jhj is G(j)-measurable

and we can thus use the “marginal” law of the j-th component of theN -tuple process (ξ(1), . . . , ξ(N)),
given in this case by the measure Pjsj . By taking the essential supremum and then the supremum
over s1, . . . , sN such that sj ≤ mini 6=j{si} on both sides of (3.5), and using the definitions in (2.3)
and (3.1) for N = 1, we get that

(3.6) J
(N)
j (T~) ≤ J (1)(T jhj ) = sup

sj<∞
essupEjsj{(T

j
hj
− sj)+|Gjsj}.

To get the conditional expectation in the above expression, we use the strong Markov property of

the processes y
(j)
t (see, e.g. [27, Theorem 7.2.4]) and apply Itô’s formula to {g(−y(j)

t )}
sj ≤ t<T jhj

(see,

e.g. [27, Theorem 4.1.2]) for the function g given in (2.7) (see also Shiryaev [33] and Moustakides
[24]), we obtain that (by the monotonicity of g)

(3.7) g(−hj) ≥ 1{T jhj>sj}
[g(−y(j)

T jhj

)− g(−y(j)
sj )]

= 1{T jhj>sj}

[ ∫ T jhj

sj

µ
j

(
µj −

1

2
µ
j

)
ds−

∫ T jhj

sj

g′(−y(j)
s )dm(j)

s +M
T jhj
−Msj

]
,

where the process m(j) is given by (2.9) and the continuous square integrable martingale M =
{Mt}t≥0 is given by

Mt =

∫ t∧T jhj

0
µ
j
g′(−y(j)

s )dw(j)
s .

Taking into account that the process m(j) decreases only on the random set {t ≥ 0 : y
(j)
t = 0}

and the measure dm
(j)
t = 0 off this set, together with the fact that g′(0) = 0, we conclude that the

integral in (3.7) can be set equal to zero. We then take the conditional expectations with respect
to the probability measure Pjsj given Gjsj in (3.7) and by means of the Doob’s optional sampling
theorem (see, e.g. [22, Chapter 1, Theorem 3.22]), we have

(3.8) g(−hj) ≥ 1{T jhj>sj}
Ejsj

{∫ T jhj

sj

µ
j

(
µj −

1

2
µ
j

)
ds
∣∣∣Gjsj} ≥ µ2

j

2
Ejsj{(T

j
hj
− sj)+|Gjsj}.

Therefore, by (3.6) and (3.8) we have J
(N)
j (T~) ≤ 2

µ2
j

g(−hj). By the arbitrariness of j, we have

J (N)(T~) = max
1≤j≤N

J
(N)
j (T~) ≤ max

{ 2

µ2
1

g(−h1), . . . ,
2

µ2
N

g(−hN )
}

=
2

µ2
1

g(−h1),(3.9)

where the last equality is a consequence of the equations in (3.3).

The condition (3.3) reduces the thresholds’ selection problem fromN dimension to one dimension.
In order to bound the optimal detection delay in (2.4) using the result in Proposition 3.1, we will
choose h1 so that the resulting N -CUSUM stopping rule T~ ∈ Tγ . That is,

(3.10) E∞,...,∞{T~} ≥ γ.
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 9

To this end, we derive a lower bound for the mean time to the first false alarm E∞,...,∞{T~}, which
is robust with respect to the covariance matrix (Σt)t≥0. In the sequel we first study the case of equal
drift size with complete information, where 0 < µ1 = µ2 = . . . = µN = µ are known constant, and
then treat the case of unequal drift size with complete information, such that µi’s are all known
and 0 < µ1 = µ2 = . . . = µk < mini>k µi holds for some k ∈ {1, . . . , N − 1}. Finally, we study the
general case with partial information, where we only know µ1 and the intervals [µ

i
, µi] 3 µi for all

i = 2, . . . , N .

3.1.1. Equal drift case - complete information about µi’s. In this case, it is assumed that all µi’
are known and µi = µ1 = µ > 0 for all i = 1, . . . , N . Then the monotonicity of function g and (3.2)
imply that h1 = h2 = . . . = hN = h for the N -CUSUM stopping rule. Hence, with a slight abuse of
notation, we denote by Th = T~. Below we derive a lower bound for the mean time of the first false
alarm of the latter.

Proposition 3.2. Suppose that all thresholds of the N -CUSUM stopping rule are chosen to be
equal to h > 0. Then the first false alarm for the N -CUSUM stopping rule Th satisfies

(3.11) E∞,...,∞{Th} ≥
1

N
E1
∞{T 1

h} =
2

Nµ2
g(h),

where the function g is defined in (2.7).

Proof. For any i = 1, . . . , N , we have

Ei∞{T ih} = E∞,...,∞{T ih} = E∞,...,∞{Th}+ E∞,...,∞
{

(T ih − Th)1{T ih 6=Th}
}

(3.12)

= E∞,...,∞{Th}+ E∞,...,∞
{
E∞,...,∞{T ih − Th | FTh}1{T ih 6=Th}

}
,

where the third equality follows from the tower property of the conditional expectation and the
finiteness of T~.

As in the proof of Proposition 3.1, we apply Itô’s formula to {g(y
(i)
t )}Th≤ t<T ih (see, e.g. [27,

Theorem 4.1.2]) to obtain that

(3.13) g
(
y

(i)

T ih

)
− g
(
y

(i)
Th

)
=
µ2

2
(Th − T ih)−

∫ T ih

Th

g′(y(i)
s )dm(i)

s +MT ih
−MTh

where the process m(i) is given by (2.5) and the continuous square integrable martingale M =
{Mt}t≥0 (with respect to P∞,...,∞) is given by

(3.14) Mt = µ

∫ t∧T ih

0
g′(y(i)

s )dw(i)
s

Taking into account that the process m(i) decreases only on the random set {t ≥ 0 : y
(i)
t = 0}

and the measure dm
(i)
t = 0 off this set, together with the fact that g′(0) = 0, we conclude that the

integral in (3.13) can be set equal to zero. We then take the conditional expectations with respect
to the probability measure P∞,...,∞ in (3.13) and by means of the Doob’s optional sampling theorem
(see, e.g. [22, Chapter 1, Theorem 3.22]), we have

(3.15) E∞,...,∞{g
(
y

(i)

T ih

)
− g
(
y

(i)
Th

)
| FTh} =

µ2

2
E∞,...,∞{T ih − Th | FTh}
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10 H. ZHANG ET AL.

Therefore, using equation (3.15) in the expression of (3.12) we have that

2

µ2
g(h) = Ei∞{T ih}(3.16)

= E∞,...,∞{Th}+ E∞,...,∞
{ 2

µ2

(
g(y

(i)

T ih
)− g(y

(i)
Th

))1{T ih 6=Th}

}
= E∞,...,∞{Th}+ E∞,...,∞

{ 2

µ2
(g(h)− g(y

(i)
Th

))1{T ih 6=Th}

}
≤ E∞,...,∞{Th}+

2

µ2
g(h) P∞,...,∞

(
T ih 6= Th

)
,

where the first equality and the function g are given by (2.7) and the third equality follows from
the definition of the one-dimensional CUSUM stopping rule in (2.9). It follows that,

µ2

2
E∞,...,∞{Th} ≥ g(h)P∞,...,∞(Th = T ih).

Hence by summing both sides over all i = 1, . . . , N , we get

Nµ2

2
E∞,...,∞{Th} ≥ g(h)

N∑
i=1

P∞,...,∞(Th = T ih)

≥ g(h)P∞,...,∞(Th = T ih for some i ∈ {1, . . . , N}) = g(h),

which completes the proof of (3.11).

As a result of Proposition 3.2, when µi = µ for all i = 1, . . . , N , for any γ > 0 and any
N -dimensional, predictable, non-singular, stochastic instantaneous correlation matrix Σt, we can
choose the threshold h using

(3.17) E1
∞{T 1

h} ≡
2

µ2
(eh − h− 1) = Nγ.

Then we will have T~ ∈ Tγ . Moreover, Proposition 3.1 implies that, both the optimal detection delay
infT∈Tγ J

(N)(T ) and the detection delay of this N -CUSUM stopping rule J (N)(Th), are bounded
above by 2

µ2
g(−h).

3.1.2. Unequal drift case - complete information about µi’s. In this case, it is assumed that
all µi’ are known and 0 < µ1 = µ2 = . . . = µk < mini>k µi holds for some k ∈ {1, . . . , N − 1}.
Then the monotonicity of function g and (3.2) imply that h1 = h2 = . . . = hk, for the N -CUSUM
stopping rule T~. When hi’s are all big, the condition (3.2) is approximately a linear constraint
on hi’s, and hence h1 < mini>k hi. Intuitively, with high chances, T ihi for 1 ≤ i ≤ k will proceed

T jhj for k + 1 ≤ j ≤ N due to their smaller thresholds. Hence, it is expected that E∞,...,∞{T~} ≈
E∞,...,∞{T 1

h1
∧ . . .∧ T khk} ≥

2
kµ21

g(h1), where the inequality follows from (3.11). Below we rigorously

show the validness of this heuristic argument.

Proposition 3.3. Suppose that the drifts µi of the observation processes ξ
(i)
t , i = 1, . . . , N are

such that 0 < µ1 = µ2 = . . . = µk < mini>k µi holds. Suppose also that the thresholds ~ satisfy
(3.2). Then the mean time to the first false alarm for the N -CUSUM stopping rule T~ satisfies

E∞,...,∞{T~} ≥
(

1−
N∑

j=k+1

E1
∞{T 1

h1
}

Ej∞{T jhj}

)
1

k
E1
∞{T 1

h1} =

(
1−

N∑
j=k+1

µ2
j

µ2
1

g(h1)

g(hj)

)
2

kµ2
1

g(h1),(3.18)

where the function g is defined in (2.7).
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 11

Proof. Let us denote by Rh1 := T 1
h1
∧ . . . ∧ T kh1 . For any k + 1 ≤ j ≤ N , following similar

arguments to the ones in (3.12) through (3.16), we have in this case that

2

µ2
j

g(hj) = E∞,...,∞{T jhj}(3.19)

= E∞,...,∞{T~}+ E∞,...,∞
{

(T jhj − T~)1{T~ 6=T jhj
}
}

= E∞,...,∞{T~}+ E∞,...,∞
{
E∞,...,∞{T jhj − T~ | FT~}1{T~ 6=T jhj

}
}

≤ E∞,...,∞{T 1
h1}+

2

µ2
j

E∞,...,∞
{(
g
(
y

(j)

T jhj

)
− g
(
y

(j)
T~

))
1{T~ 6=T jhj }

}
≤ 2

µ2
1

g(h1) +
2

µ2
j

g(hj)P∞,...,∞(T~ 6= T jhj ),

which implies that

(3.20) P∞,...,∞(T~ = T jhj ) ≤
µ2
j

µ2
1

g(h1)

g(hj)
.

On the other hand, for any 1 ≤ i ≤ k, we similarly have

2

µ2
1

g(h1) = E∞,...,∞{T 1
h1} ≤ E∞,...,∞{T~}+

2

µ2
1

g(h1)P∞,...,∞(T~ 6= T ih1) ,

which implies that

E∞,...,∞{T~} ≥
2

µ2
1

g(h1)P∞,...,∞(T~ = T ih1).

Summing up both sides of the above inequality for all 1 ≤ i ≤ k, we obtain that

(3.21) kE∞,...,∞{T~} ≥
2

µ2
1

g(h1)P∞,...,∞(T~ = Rh1) =
2

µ2
1

g(h1) [1− P∞,...,∞(T~ 6= Rh1)].

However, we also have

P∞,...,∞(T~ 6= Rh1) ≤
N∑

j=k+1

P∞,...,∞(T~ = T jhj ) ≤
N∑

j=k+1

µ2
j

µ2
1

g(h1)

g(hj)
,(3.22)

where we used (3.20) in the above inequality. It follows from (3.21) and (3.22) that,

E∞,...,∞{T~} ≥
(

1−
N∑

j=k+1

µ2
j

µ2
1

g(h1)

g(hj)

)
2

kµ2
1

g(h1).(3.23)

which completes the proof.

As a result of Proposition 3.3, when µ1 = . . . = µk < mini>k µi, then for any γ > 0 and any
N -dimensional, predictable, non-singular, stochastic instantaneous correlation matrix Σt, we can
choose the set of thresholds ~ using (3.2) and the transcendental equation

(3.24)

(
1−

N∑
j=k+1

E1
∞{T 1

h1
}

Ej∞{T jhj}

)
1

k
E1
∞{T 1

h1} =

(
1−

N∑
j=k+1

µ2
j

µ2
1

eh1 − h1 − 1

ehj − hj − 1

)
2

kµ2
1

(eh1 − h1 − 1) = γ,

then the resulting N -CUSUM stopping rule T~ ∈ Tγ . Again, Proposition 3.1 then implies that, both
the optimal detection delay infT∈Tγ J

(N)(T ) and the detection delay of this N -CUSUM stopping

rule J (N)(T~), are bounded above by 2
µ21
g(−h1).
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12 H. ZHANG ET AL.

3.1.3. The general case - partial information about µi’s. In this case, it is assumed that only
µ1, µi, µi, i = 2, . . . , N , are known, and that 0 < µ1 ≤ µ

i
≤ µi ≤ µi. Without loss of generality, we

assume that 0 < µ1 = µ
2

= . . . = µ
k′
< mini>k′ µi holds for some k′ = {1, . . . , N − 1}.

Proposition 3.4. Suppose that the drifts µi of the observation processes ξ
(i)
t , i = 1, . . . , N

are such that 0 < µ1 = µ
2

= . . . = µ
k′
< mini>k′ µi holds and µi ∈ [µ

i
, µi] for all i = 2, . . . , N ,

Suppose also that the thresholds ~ satisfy (3.3). Then the mean time to the first false alarm for the
N -CUSUM stopping rule T~ satisfies

(3.25) E∞,...,∞{T~} ≥
2∑

1≤i≤k′ µ1(2µi − µ1)

(
1−

∑
k′+1≤j≤N

µ
j
(2µj − µj)
µ2

1

g(h1)

g(hj)

)
g(h1),

where the function g is defined in (2.7).

Proof. According to (3.3), we have h1 = h2 = . . . = hk′ . Let us denote by Rh1 := T 1
h1
∧ . . .∧T k′h1 .

Similar as (3.20) in the proof of Proposition 3.4, for any k′ + 1 ≤ j ≤ N , we have

g(hj) = E∞,...,∞
{∫ T jhj

0
µ
j

(
µj −

1

2
µ
j

)
ds

}
= E∞,...,∞

{∫ T~

0
µ
j

(
µj −

1

2
µ
j

)
ds

}
+ E∞,...,∞

{
E∞,...,∞

{∫ T jhj

T~

µ
j

(
µj −

1

2
µ
j

)
ds
∣∣∣FT~}1{T~ 6=T jhj }

}
≤ E∞,...,∞

{∫ T 1
h1

0
µ
j

(
µj −

1

2
µ
j

)
ds

}
+ E∞,...,∞

{(
g
(
y

(j)

T jhj

)
− g
(
y

(j)
T~

))
1{T~ 6=T jhj }

}
≤
µ
j
(2µj − µj)

2
E∞,...,∞{T 1

h1}+ g(hj)P∞,...,∞(T~ 6= T jhj )

=
µ
j
(2µj − µj)
µ2

1

g(h1) + g(hj)P∞,...,∞(T~ 6= T jhj ),

It follows that

P∞,...,∞(T~ = T jhj ) ≤
µ
j
(2µj − µj)
µ2

1

g(h1)

g(hj)
.

which implies that

P∞,...,∞(T~ 6= Rh1) = P∞,...,∞(T~ = T jhj , for some j ∈ {k′ + 1, . . . , N})

≤
∑

k′+1≤j≤N

µ
j
(2µj − µj)
µ2

1

g(h1)

g(hj)
.(3.26)
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 13

On the other hand, for any 1 ≤ i ≤ k′, by Itô’s formula (see, e.g. [27, Theorem 4.1.2]) we have

g(h1) = E∞,...,∞
{∫ T ih1

0
µ1

(
µi −

1

2
µ1

)
ds

}
= E∞,...,∞

{∫ T~

0
µ1

(
µi −

1

2
µ1

)
ds

}
+ E∞,...,∞

{
E∞,...,∞

{∫ T ih1

T~

µ1

(
µi −

1

2
µ1

)
ds
∣∣∣FT~}1{T~ 6=T ih1}

}
= E∞,...,∞

{∫ T~

0
µ1

(
µi −

1

2
µ1

)
ds

}
+ E∞,...,∞

{(
g
(
y

(i)

T ih1

)
− g
(
y

(i)
T~

))
1{T~ 6=T ih1}

}
≤ µ1(2µi − µ1)

2
E∞,...,∞{T~}+ g(h1)P∞,...,∞(T~ 6= T ih1),

which implies that

µ1(2µi − µ1)

2
E∞,...,∞{T~} ≥ g(h1)P∞,...,∞(T~ = T ih1).

Summing up both sides of the above inequality for all 1 ≤ i ≤ k′, we obtain that∑
1≤i≤k′ µ1(2µi − µ1)

2
E∞,...,∞{T~} ≥ g(h1)P∞,...,∞(T~ = Rh1)(3.27)

=g(h1)[1− P∞,...,∞(T~ 6= Rh1)]

≥g(h1)

(
1−

∑
k′+1≤j≤N

µ
j
(2µj − µj)
µ2

1

g(h1)

g(hj)

)
,

where we used (3.26) in the last step. The conclusion of the proposition follows immediately.

As a result of Proposition 3.4, when we only known µ1 and possible ranges for other drift
µi’s, given any γ > 0 and any N -dimensional, predictable, non-singular, stochastic instantaneous
correlation matrix Σt, we can choose the set of thresholds ~ using (3.3) and the transcendental
equation

(3.28)

(
1−

N∑
j=k′+1

µ
j
(2µj − µj)
µ2

1

eh1 − h1 − 1

ehj − hj − 1

)
2(eh1 − h1 − 1)∑

1≤i≤k′ µ1(2µi − µ1)
= γ,

then the resulting N -CUSUM stopping rule T~ ∈ Tγ . Again, Proposition 3.1 then implies that, both
the optimal detection delay infT∈Tγ J

(N)(T ) and the detection delay of this N -CUSUM stopping

rule J (N)(T~), are bounded above by 2
µ21
g(−h1).

3.2. The lower bound. In this subsection, we present a robust lower bound for the optimal
detection delay infT∈Tγ J

(N)(T ). In fact, we can prove a stronger statement: for any stopping

rule T ∈ Tγ , its detection delay J (N)(T ), is bounded below by the optimal detection delay in
one dimension. The proof is accomplished by a change of measure argument as in [24] plus a
decomposition formula for the Radon-Nikodym derivative in N dimensions.
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Lemma 3.5. Let Q = P∞,...,∞ be the law of the N -tuple process Wt := (w
(1)
t , w

(2)
t , . . . , w

(N)
t )

for the Brownian motions defined in (2.1). And let Q1 be the law of the N -tuple process (µ1t +

w
(1)
t , w

(2)
t , . . . , w

(N)
t ). Then for all t > 0,

(3.29)
dQ1

dQ

∣∣∣∣
Ft

= eu
(1)
t · E(B(1))t,

where u
(1)
· is defined in (2.5) and E(B(1))· is the stochastic exponential of the local martingale B

(1)
·

defined in (A.1)-(A.2). Moreover the standard Brownian motions driving B
(1)
· are independent of

w(1).

Proof. The proof can be found in the Appendix.

Proposition 3.6. For any stopping rule T ∈ Tγ, we have J (N)(T ) ≥ (2/µ2
1) g(−ν?1), where ν?i

satisfies g(ν?1) = (µ2
1/2) γ for the function g defined in (2.7).

Proof. Let T be an arbitrary F-stopping rule such that E∞,...,∞{T} ≥ γ holds and observe that

(3.30) J (N)(T ) ≥ J̃ (N)
1 (T ) := sup

s∈R+

essup Es,∞,...,∞{(T − s)+ | Fs} ≥ J̃ (N)
1 (Tν)

where Tν := T ∧T 1
ν ≤ T , a.s., and T 1

ν is the CUSUM stopping rule given in (2.6) for some threshold
ν which will be determined later. Clearly, Tν is a finite stopping rule. In what follows we will
demonstrate that for any given ε > 0, there exists a ν > 0 such that

J̃
(N)
1 (Tν) ≥ 2

µ2
1

g(−ν∗1)− ε.(3.31)

where ν?1 is chosen so that g(ν?1) = (µ2
1/2)γ and the function g is given by (2.7). Because ε in (3.31)

can be arbitrarily small, (3.30) and (3.31) will imply the assertion in the Proposition for i = 1.
This is in a similar light as in [24].

By applying Itô’s formula (see, e.g. [27, Theorem 4.1.2] and [24]) to {g(−y(1)
t )}s∧Tν ≤ t<Tν and

proceed by using similar arguments as in (3.13)-(3.15) in Proposition 3.2, we obtain that, for any
fixed s ∈ R+,

(3.32) Es,∞,...,∞
{

(Tν − s)+| Fs
}

=
2

µ2
1

Es,∞,...,∞{g(−y(1)
Tν

)− g(−y(1)
s ) | Fs}1{Tν ≥ s}.

Using Girsanov’s theorem (see, e.g. [22, Chapter 3, Theorem 5.1]) and Lemma 3.5 at the finite
stopping rule Tν ∧ n for a fixed n > 0, we have that

Es,∞,...,∞{g(−y(1)
Tν∧n)− g(−y(1)

s ) | Fs}11{Tν∧n>s}

= E∞,...,∞
{

eu
(1)
Tν∧n−u

(1)
s · E(B(1))Tν∧n

E(B(1))s
[g(−y(1)

Tν∧n)− g(−y(1)
s )]

∣∣∣Fs}11{Tν∧n>s}.

Consider the enlargement of filtration Fat = Ft ∨ G(1)
T 1
ν

. Then clearly, Fat ≡ Ft for all t ≥ T 1
ν , but on

the event {Tν ∧ n > s}, for all t ∈ [s, Tν ∧ n] ⊂ [0, T 1
ν ], we have Ft ( Fat . By the tower property of
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ROBUSTNESS OF THE N -CUSUM STOPPING RULE 15

conditional expectation, on the event that {Tν ∧ n > s},

E∞,...,∞
{

eu
(1)
Tν∧n−u

(1)
s · E(B(1))Tν∧n

E(B(1))s
[g(−y(1)

Tν∧n)− g(−y(1)
s )]

∣∣∣Fs}(3.33)

=E∞,...,∞
{

eu
(1)
Tν∧n−u

(1)
s [g(−y(1)

Tν∧n)− g(−y(1)
s )] · E∞,...,∞

{E(B(1))Tν∧n
E(B(1))s

∣∣∣Fas}∣∣∣Fs}
=E∞,...,∞

{
eu

(1)
Tν∧n−u

(1)
s [g(−y(1)

Tν∧n)− g(−y(1)
s )]

∣∣∣Fs},
where the last equality is due to the fact that E(B(1))t is a F-exponential martingale (under as-
sumption equation (2.2)) driven by Brownian motions that are independent of w(1) (see Lemma
3.5). Similarly, it can be shown that,

11{Tν∧n>s} =11{Tν∧n>s}E∞,...,∞{e
u
(1)
Tν∧n−u

(1)
s | Fs},(3.34)

We now let n ↑ ∞ in (3.33) and (3.34). From the fact that u
(1)
Tν∧n − u

(1)
s ≤ u

(1)
Tν∧n − m

(1)
Tν∧n =

y
(1)
Tν∧n ≤ ν, and the monotonicity of function g(−h), we have that

0 < eu
(1)
Tν∧n−u

(1)
s ≤ eν <∞ and |g(−y(1)

Tν∧n)− g(−y(1)
s )| ≤ 2 g(−ν) <∞, ∀n > 0

and thus the bounded convergence theorem implies that, on the event {Tν > s},

1 = E∞,...,∞{eu
(1)
Tν
−u(1)s | Fs}(3.35)

(3.36) Es,∞,...,∞{g(−y(1)
Tν

)− g(−y(1)
s ) | Fs} = E∞,...,∞{eu

(1)
Tν
−u(1)s [g(−y(1)

Tν
)− g(−y(1)

s )] | Fs}.

It follows from (3.30), (3.32), (3.35) and (3.36), that

J̃
(N)
1 (Tν)E∞,...,∞{eu

(1)
Tν
−u(1)s | Fs}1{Tν>s} = J̃

(N)
1 (Tν)1{Tν>s}(3.37)

≥ Es,∞,...,∞{(Tν − s)+ | Fs}1{Tν>s}

=
2

µ2
1

E∞,...,∞{eu
(1)
Tν
−u(1)s [g(−y(1)

Tν
)− g(−y(1)

s )] | Fs}1{Tν>s}.

Following the same arguments as in Theorem 2 of [24], we integrate both sides of the above inequality

with respect to (−dm
(1)
s ) for all s ∈ [0, Tν ] and then take the expectation under P∞,...,∞. We

therefore obtain that

J̃
(N)
1 (Tν)E∞,...,∞

{
eu

(1)
Tν

∫ Tν

0
e−u

(1)
s (−dm(1)

s )

}
≥ 2

µ2
1

E∞,...,∞
{

eu
(1)
Tν

∫ Tν

0
e−u

(1)
s [g(−y(1)

Tν
)− g(−y(1)

s )](−dm(1)
s )

}
.

Notice that the measure dm
(1)
s is supported on the random set {s | y(1)

s = 0} = {s | u(1)
s = m

(1)
s },

and that g(0) = 0, thus we obtain that

J̃
(N)
1 (Tν)E∞,...,∞{ey

(1)
Tν − eu

(1)
Tν } ≥ 2

µ2
1

E∞,...,∞{[ey
(1)
Tν − eu

(1)
Tν ] g(−y(1)

Tν
)}.
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On the other hand, by letting s = 0 in (3.37) we have that

J̃
(N)
1 (Tν)E∞,...,∞{eu

(1)
Tν } ≥ 2

µ2
1

E∞,...,∞{eu
(1)
Tν g(−y(1)

Tν
)}.

In all, we have that

J̃
(N)
1 (Tν)E∞,...,∞{ey

(1)
Tν } ≥ 2

µ2
1

E∞,...,∞{ey
(1)
Tν g(−y(1)

Tν
)}(3.38)

holds.
To relate the detection delay in (3.38) to the first false alarm constraint γ, we use similar argu-

ments as in (3.13)-(3.15) in Proposition 3.2, to obtain that

2

µ2
1

E∞,...,∞{g(y
(1)
Tν

)} = E∞,...,∞{Tν}.(3.39)

By taking the limit as ν ↑ ∞ and using monotone convergence theorem, we have that Tν ↑ T , and
limν↑∞ E∞,...,∞{Tν} = E∞,...,∞{T} ≥ γ, which implies that there exists a large enough ν, such that

2

µ2
1

E∞,...,∞{g(y
(1)
Tν

)} = E∞,...,∞{Tν} ≥ γ − ε

holds for any pre-specified ε > 0. Now consider the non-negative function p(y) := ey [g(−y) −
g(−ν?1)]− g(y) + g(ν?1), using which we trivially have E∞,...,∞{p(y(1)

Tν
)} ≥ 0, implying that

E∞,...,∞{ey
(1)
Tν g(−y(1)

Tν
)} ≥ E∞,...,∞{ey

(1)
Tν } g(−ν?1) + E∞,...,∞{g(y

(1)
Tν

)} − g(ν?1)(3.40)

= E∞,...,∞{ey
(1)
Tν } g(−ν?1) + E∞,...,∞{g(y

(1)
Tν

)} − µ2
1

2
γ

≥ E∞,...,∞{ey
(1)
Tν } g(−ν?1)− µ2

1

2
ε

≥ E∞,...,∞{ey
(1)
Tν } [g(−ν?1)− µ2

1

2
ε],

since E∞,...,∞{ey
(1)
Tν } ≥ 1. The above inequality in (3.40) together with (3.38) yields (3.31), which

completes the proof.

4. Asymptotic optimality of the N-CUSUM stopping rule. In this section we demon-
strate the asymptotic optimality of the N -CUSUM stopping rule T~ for ~ chosen such that (3.2)
and either (3.17) or (3.24) hold, or (3.3) and (3.28) hold. To this end, we examine the asymptotic
behavior of the robust upper and low bounds established in Section 3. We show that the additional
detection delay of T~ over the optimal detection delay remains bounded as the mean time of the
first false alarm γ increases without bound.

Let any sufficiently large γ > 0 and recall from Section 3 (in particular Propositions 3.1 and 3.6)
that the optimal detection delay in (2.4) is bounded from below and above as:

(4.1)
2

µ2
1

g(−ν?1) ≤ inf
T∈Tγ

J (N)(T ) ≤ J (N)(T~) ≤ 2

µ2
1

g(−h1),

where the set of thresholds ν?1 and ~ is respectively determined using (µ2
1/2)g(ν?1) = γ and either

(3.2) together with (3.17) or with (3.24), or (3.3) together with (3.28), when the drifts’ sizes µi are
all known and equal or unequal,5 or partially known, respectively.

5Note that when the drifts µi are different, we do not necessarily require the uniqueness of ~ that solves (3.2) and
(3.24).
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It is easily seen from Result 3 in the Appendix of [18] that, as γ →∞,

ν?1 = log
µ2

1

2
+ log γ + o(1),(4.2)

2

µ2
1

g(−ν?1) =
2

µ2
1

(
log

µ2
1

2
+ log γ − 1 + o(1)

)
.(4.3)

Moreover, when all the drifts are known and µi = µ > 0 for all i = 1, . . . , N , the thresholds
hi = h > 0 for all i = 1, . . . , N . Using (3.17) and Result 3 in the Appendix of [18] we have that, as
γ →∞,

h1 = log
Nµ2

1

2
+ log γ + o(1),(4.4)

2

µ2
1

g(−h1) =
2

µ2
1

(
log

Nµ2
1

2
+ log γ − 1 + o(1)

)
.(4.5)

As a result, we have the following optimality result.

Theorem 4.1. Assume that the drift sizes are all known and µi = µ > 0 for all i = 1, . . . , N .
Then for any predictable, non-singular, stochastic instantaneous correlation matrix covariance ma-
trix Σt, the N -CUSUM stopping rule T~ defined in Algorithm 2.1, where the set of thresholds ~ is
chosen using (3.2) and (3.17), is asymptotically optimal to the problem (2.4). More specifically, the
difference between the detection delay of the N -CUSUM stopping rule, J (N)(T~), and the optimal
detection delay infT∈Tγ J

(N)(T ), is bounded above by 2
µ21

logN , as γ →∞.

Proof. The result follows from (4.1), (4.3) and (4.5):

0 ≤J (N)(T~)− inf
T∈Tγ

J (N)(T ) ≤ 2

µ2
1

g(−h1)− 2

µ2
1

g(−ν?1)

≤ 2

µ2
1

(
log

Nµ2
1

2
+ log γ − 1 + o(1)

)
− 2

µ2
1

(
log

µ2
1

2
+ log γ − 1 + o(1)

)
=

2

µ2
1

logN + o(1),

as γ →∞.

On the other hand, in the more general case that the drifts are all known and µ1 = . . . = µk <
mini>k µi, using (3.2), (3.24), and Result 3 in the Appendix of [18], we obtain that,

h1 = log
kµ2

1

2
+ log γ + o(1),(4.6)

2

µ2
1

g(−h1) =
2

µ2
1

(
log

kµ2
1

2
+ log γ − 1 + o(1)

)
.(4.7)

It follows that we have the following optimality result.

Theorem 4.2. Assume that the drift sizes are known and 0 < µ1 = . . . = µk < mini>k µi.
Then for any predictable, non-singular, stochastic instantaneous correlation matrix Σt, the N -
CUSUM stopping rule T~ defined in Algorithm 2.1, where the set of thresholds ~ is chosen using
(3.2) and (3.24), is asymptotically optimal to the problem (2.4). More specifically, the difference
between the detection delay of the N -CUSUM stopping rule, J (N)(T~), and the optimal detection
delay infT∈Tγ J

(N)(T ), is bounded above by 2
µ21

log k, as γ → ∞. In particular, if k = 1, then T~ is

equivalent to the optimal solution to (2.4) asymptotically.
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Proof. The result follows from (4.1), (4.3) and (4.9):

0 ≤J (N)(T~)− inf
T∈Tγ

J (N)(T ) ≤ 2

µ2
1

g(−h1)− 2

µ2
1

g(−ν?1)

≤ 2

µ2
1

(
log

kµ2
1

2
+ log γ − 1 + o(1)

)
− 2

µ2
1

(
log

µ2
1

2
+ log γ − 1 + o(1)

)
=

2

µ2
1

log k + o(1),

as γ →∞. If k = 1, the above upper bound for J (N)(T~)− infT∈Tγ J
(N)(T ) is o(1), and hence, the

N -CUSUM stopping rule is equivalent to the optimal solution to (2.4) asymptotically.

Finally, if we only know µ1 and have partial information about other drifts, i.e. µi ∈ [µ
i
, µi] for

all i = 2, . . . , N and 0 < µ1 = µ
2

= . . . = µ
k′
< mini>k′ µi for some k′ ∈ {1, 2, . . . , N − 1}. using

(3.3), (3.28), and Result 3 in the Appendix of [18], we obtain that,

h1 = log

∑
1≤i≤k′ µ1(2µi − µ1)

2
+ log γ + o(1),(4.8)

2

µ2
1

g(−h1) =
2

µ2
1

(
log

∑
1≤i≤k′ µ1(2µi − µ1)

2
+ log γ − 1 + o(1)

)
.(4.9)

It follows that we have the following optimality result.

Theorem 4.3. Assume that the µ1 is known, µi ∈ [µ
i
, µi] for all i = 2, . . . , N and that 0 <

µ1 = µ
2

= . . . = µ
k′
< mini>k′ µi for some k′ ∈ {1, . . . , N − 1}. Then for any predictable, non-

singular, stochastic instantaneous correlation matrix Σt, the N -CUSUM stopping rule T~ defined
in Algorithm 2.1, where the set of thresholds ~ is chosen using (3.3) and (3.28), is asymptotically
optimal to the problem (2.4). More specifically, the difference between the detection delay of the
N -CUSUM stopping rule, J (N)(T~), and the optimal detection delay infT∈Tγ J

(N)(T ), is bounded
above by

2

µ2
1

log(
∑

1≤i≤k′
(2µi/µ1 − 1)),

as γ →∞. In particular, if k′ = 1, then T~ is equivalent to the optimal solution to (2.4) asymptot-
ically.

Proof. The result follows from (4.1), (4.3) and (4.9):

0 ≤J (N)(T~)− inf
T∈Tγ

J (N)(T ) ≤ 2

µ2
1

g(−h1)− 2

µ2
1

g(−ν?1)

≤ 2

µ2
1

(
log

∑
1≤i≤k′ µ1(2µi − µ1)

2
+ log γ − 1 + o(1)

)
− 2

µ2
1

(
log

µ2
1

2
+ log γ − 1 + o(1)

)
=

2

µ2
1

log

∑
1≤i≤k′(2µi − µ1)

µ1
+ o(1),

as γ →∞. If k′ = 1, the above upper bound for J (N)(T~)− infT∈Tγ J
(N)(T ) is o(1), and hence, the

N -CUSUM stopping rule is equivalent to the optimal solution to (2.4) asymptotically.
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Remark 4.1. From Definition 2.1, we know that the order of the asymptotic optimality achieved
in Theorems 4.1, 4.2, 4.3 is of the second order. If µ1 is strictly smaller than all the other drifts
(k = 1 in Theorem 4.2 and k′ = 1 in Theorem 4.3), then the N -CUSUM stopping rule given by
Algorithm 2.1, and either (3.2) and (3.24), or (3.3) and (3.28) exhibits third order asymptotic
optimality. Moreover, it can be seen after a perusal of the proofs that the order of the asymptotic
optimality of the N -CUSUM does not change if we model µi’s as F-adapted processes bounded by
known constants µ

i
and µi, for all i = 2, . . . , N .

5. Applications. In this section we discuss one of the applications of the results in decen-

tralized communication systems. Let us now suppose that each of the observation processes {ξ(i)
t }

become sequentially available at a particular location monitored by sensor Si, which then employs
an asynchronous communication scheme to a central fusion center. In particular, sensor Si commu-
nicates to the central fusion center only when it wants to signal an alarm, which is elicited according
to a CUSUM stopping rule T ihi as in (2.9) adapted to the small filtration {Git}. The observations
received at the N sensors can change dynamics at distinct unknown points τi. An example of such
a case is described in [2] where the motivation suggested arises in the health-monitoring of mechan-
ical, civil and aeronautic structures. The fusion center, whose objective is to detect the first time
when there is a change in at least one of the sensors devises a minimal strategy; that is, it declares
that a change has occurred at the first instance when one of the sensors communicates an alarm.
The implication of the main Theorems in Section 4 is that in fact this strategy is the best, at least
asymptotically, in that there is no loss in performance, between the case in which the fusion center

receives the raw data {ξ(1)
t , . . . ξ

(N)
t } summarized in the large filtration {Ft} directly and the case

in which the communication that takes place is limited to the decentralized setup. In other words,
the CUSUM stopping rule T~ is a sufficient statistic (at least asymptotically) of the minimum N
possibly distinct change points. That is, the stopping rule T~ is an asymptotically optimal solution
to the problems of quickest detection presented in (2.4). In practice sensors are cheap and easy to
replace devices whereas central fusion centers or central processing units are not. Transferring most
of the processing work to the sensors while incurring no loss in the efficiency of the system is thus
valuable and can render cost and speed effective communication systems.

6. Summary. In this paper we study the problem of detecting the minimum of N different
change points in a N -dimensional Brownian system with partial information of the drifts and an
arbitrary, predictable, non-singular, stochastic instantaneous correlation matrix Σt. It is shown that,
under an extended Lorden’s minmax criterion, the N -CUSUM stopping rule exhibits asymptotic
optimality in the tradeoff between detection delay and false alarms, as the mean time to the first
false alarm increases without bound. Moreover, the performance of the N -CUSUM stopping rule
under dependence is no worse than that under independence [18]. This optimality result is obtained
by establishing a robust upper bound and a robust lower bound for the optimal detection delay.
The contribution of this work can be seen in two folds. First, we designed a low complexity, efficeint
stopping rule without using the explicit information of the covariance matrix Σt. This stopping rule
is guaranteed to have a comparable performance or identical performance as the optimal stopping
rule, even with cross-correlated observations - a non-trivial extension to the existing literature and
the first formal treatment of correlated noise in change-point detection. Secondly, the robust bounds
obtained in this work provide a unified robust probabilistic (rather than analytical) approach to
treat detection problems with multiple change-points or multiple alternatives [15, 16, 38]. This is
especially useful when the analytical characteristic such as joint density or Green functions are not
explicitly available.
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APPENDIX A

Let us denote by Σ1
t = (ρi,jt )i,j 6=1 the (N − 1) × (N − 1) matrix obtained from Σt by removing

its first column and first row, and by Σ̃1
t the (N − 1)× (N − 1) matrix (ρ1,i

t · ρ
1,j
t )i,j 6=1. We further

introduce a local martingale

B
(1)
t = −µ1

∫ t

0
(ρ2,1
s , . . . , ρN,1s )(Σ1

s − Σ̃1
s)
−1
(√

1− (ρ2,1
s )2dw̃(2)

s , . . . ,

√
1− (ρN,1s )2dw̃(N)

s

)′
,(A.1)

w̃
(i)
t =

∫ t

0

dw
(i)
s − ρi,1s dw

(1)
s√

1− (ρi,1s )2

, 2 ≤ i ≤ N.(A.2)

The local martingale B(1) will naturally appear in (A.8) of the following proof. We are now ready
to prove the assertion in Lemma 3.5.

Proof of Lemma 3.5. Since Σt is non-singular at all time a.s., we can use a Cholesky decom-
position to obtain a lower triangular, non-singular matrix-valued process Lt = (Li,jt )1≤i,j≤N , and a
N -dimensional standard Brownian motion Z = (z(1), . . . , z(N))′, such that

(A.3) dW ′t = Lt dZt

holds. In particular, we have L1,1
t ≡ 1, z

(1)
t ≡ w

(1)
t , and Li,1t = ρi,1t for all 2 ≤ i ≤ N . Using

Girsanov’s theorem (see, e.g. [22, Chapter 3, Theorem 5.1]) and the condition in (2.2), the measure
change from Q to Q1 is given by the exponential martingale

(A.4)
dQ1

dQ

∣∣∣∣
Ft

= E(

∫ ·
0
νsdZs)t,

where ν = (ν(1), . . . , ν(N)) is a N -tuple process, such that

(A.5)
(
µ1, 0, . . . , 0

)′
= Ltν

′
t.

It is easily seen that ν
(1)
t ≡ µ1. Moreover, from Li,1t = ρi,1t for any 2 ≤ i ≤ N , we know that,

(A.6) L̃t

(
ν

(2)
t , . . . , ν

(N)
t

)′
= −µ1

(
ρ2,1
t , . . . , ρN,1t

)′
,

where L̃t = (Li,jt )2≤i,j≤N is a (N − 1)× (N − 1) non-singular matrix-valued process . On the other
hand, notice that

d(z
(2)
t , . . . , z

(N)
t )′ = (L̃t)

−1
(

dw
(2)
t − ρ

2,1
t dw

(1)
t , . . . , dw

(N)
t − ρN,1t dw

(1)
t

)′
.(A.7)
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Using the equations in (A.6) and (A.7), we conclude that

∫ t

0
νsdZs

(A.8)

=

∫ t

0
ν(1)
s dz(1)

s +

∫ t

0

(
ν

(2)
s , . . . , ν

(N)
s

)
(dz(2)

s , . . . ,dz(N)
s )′

= µ1w
(1)
t − µ1

∫ t

0
(ρ2,1
s , . . . , ρN,1s )(L̃′s)

−1(L̃s)
−1
(

dw(2)
s − ρ2,1

s dw(1)
s , . . . , dw(N)

s − ρN,1s dw(1)
s

)′
= µ1w

(1)
t − µ1

∫ t

0
(ρ2,1
s , . . . , ρN,1s )(Σ1

s − Σ̃1
s)
−1
(√

1− (ρ2,1
s )2dw̃(2)

s , . . . ,

√
1− (ρN,1s )2dw̃(N)

s

)′
= µ1w

(1)
t +B

(1)
t .

where the third equality follows from the fact that L̃t(L̃t)
′ + Σ̃1

t = Σ1
t holds (see accompanying

internet supplement). Finally, by the way we construct B(1), we know that the Brownian motions
that drive B(1) and w(1) are independent, and this completes the proof.
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