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Abstract

Laser range scanners have now the ability to acquire
millions of 3D points of highly detailed and geometrically
complex urban sites, opening new avenues of exploration in
modeling urban environments. In the traditional modeling
pipeline, range scans are processed off-line after acquisi-
tion. The slow sequential acquisition though is a bottle-
neck. The goal of our work is to alleviate this bottleneck,
by exploiting the sequential nature of the data acquisition
process. We have developed novel online algorithms, never
before used in laser range scanning, that perform data clas-
sification on-the-fly as data is being acquired. These algo-
rithms are extremely efficient, and can be potentially inte-
grated with the scanner’s hardware, rendering a sensor that
not only acquires but also intelligently processes and classi-
fies the scene points. This sensor, armed with the proposed
algorithms, can classify 3D points in real-time as being in
vegetation vs. non-vegetation regions, or in horizontal vs.
vertical regions. The former classification is possible by the
implementation of sequential algorithms through a hidden
Markov model (HMM) formulation, and the latter through
the use of a combination of cleverly designed sequential de-
tection algorithms. We envision an arsenal of algorithms of
this type to be developed in the future.

1. Introduction
The photorealistic modeling of large-scale scenes, such

as urban structures, has received significant attention in re-
cent years [1, 15, 21]. In this paper we describe algorithms
that use mathematical techniques from the areas of applied
probability and sequential statistics for the classification of
the highly complex 3D data that laser scanners acquire, and
for the detection of abrupt changes. Decisions are made on-
the-fly as data is being acquired by the sensor, by extremely
efficient algorithms that yield very robust results. Our goal
is the development of an intelligent sensor that not only ac-
quires but also provides meaningful data classification and
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detection in real time.

The collection of high-resolution point-clouds from laser
scanners is currently a slow process. For instance collecting
10 million 3D points in an urban area can take a signifi-
cant amount of time (in the order of hours using the Leica
ScanStation2 scanner [8]). Point-cloud segmentation algo-
rithms use all the acquired data in order to split the scene
into major surfaces. In a real-time application though de-
cisions have to be made instantly. In these cases we need
to classify as fast as possible. Thus, in this setting sequen-
tial classification techniques become relevant [13, 17]. In
the same framework we wish to detect the spatial locations
of abrupt changes in the environment (i.e. changes between
street to facade level, etc.).

Our approach thus leads to more intelligent sensing and
is beneficial for higher-level recognition and decision pro-
cesses. As one example, the user may want to acquire high-
resolution data from facades, and low-resolution data on
ground-level, or in vegetation areas. In order to achieve
this a classifier that directs the scanning process is needed.
This classifier can classify and detect major surfaces from
an initial low-resolution scan of the scene. Therefore, the
system can then acquire high-resolution scans in the areas
of interest (for instance facades), thus leading to lower cost
of acquisition in terms of time and power consumed. Other
examples include real-time detection and recognition of ob-
jects in a 3D-scene, as well as 3D modeling.

The current technology in laser range-scanning acquires
3D data in an online sequential fashion. Our techniques
are able to take advantage of this fact, and thus make more
accurate decisions sooner while data is being collected, ren-
dering a more efficient data acquisition system.

Our contribution is the development of novel real-time
algorithms for automatic classification during range data ac-
quisition. In particular we present sequential on-line algo-
rithms for: (a) the reliable classification between vegetation
and non-vegetation data, via a novel hidden Markov model
formulation. Note that range data in the areas of vegetation
(trees, etc.) pose significant challenges to current segmen-
tation algorithms, and (b) the reliable classification between
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vertical, and horizontal surfaces in the non-vegetation data
regions. A simple region-growing algorithm that uses the
results of the above classifiers and reliably separates the
data into connected regions of vertical and horizontal sur-
faces. We envision an arsenal of sequential algorithms that
provide classifications of different types in the future.
2. Previous work

There is a variety of range image segmentation tech-
niques including edge detection [3, 18], region growing
[4, 5], polynomial surface fitting [4, 7], and graph-cut ap-
proaches [20]. These methods do not associate any classes
with the extracted segments, and process the data offline.
Also, most of them require the computation of surface nor-
mals from the data (surface normals would be inconsistent
in non-smooth areas). There is also literature on the topic
of classification of 3D point-clouds using Markov network
models [2, 10, 11]. These techniques assume that the data
becomes available all at once, as opposed to sequentially.
They also require training. On-line detection techniques
have been used in 3D computer vision mainly in the con-
text of a moving sensor [16, 19], as opposed to a steady
high-resolution laser-scanner. The goal is to separate be-
tween two states: drivable vs. non-drivable terrain. In [19]
a hidden Markov model is used to achieve this goal. Our
work, on the other hand, is able to classify data on-the-fly
into three regions, one of them being vegetation. In order to
achieve this, we use a cleverly selected measurement model,
which reduces the dimensionality of the data. To this data
we incorporate hidden Markov models and are able to apply
sequential algorithms.
3. Measurement Model

In order to describe the sequential classification method,
let us assume that we are sequentially observing streams of
data in a discrete-time fashion, denoted by⎡

⎢⎢⎣
Stream 1: Z1,1 Z1,2 . . .
Stream 2: Z2,1 Z2,2 . . .

. . . . . . . . . . . .
Stream M: ZM,1 ZM,2 . . .

⎤
⎥⎥⎦

Each of the Zi,j are vectors whose elements include the
3D coordinates and the reflectance value of an acquired 3D
point. I.e. Zi,j = [xij , yij , zij , rij ]. Let us suppose that
we are given a reference plane Π that corresponds to the
horizontal direction. That means that we also know the ver-
tical axis z. Knowledge of the vertical direction (axis z) is
provided by many laser scanners, or can be easily acquired
via hardware. Most robotics application (for instance [19])
make this assumption as well.

Let us denote by Xi,j = [xij , yij , zij] the vector of 3D
coordinates. These coordinates are directly extracted by the
distance and the angles α and β of the emitted laser beam
with respect to the local coordinate system of the laser scan-
ner, whose location is (0, 0, 0) (see Fig. 1 for explanation).

α

β
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Figure 1. Description of laser-scanning mechanism. A set of laser-
beams are emitted toward the scene in a sequential fashion. The
angle between the beams in the vertical direction is α and in the
horizontal β. These angles are fully controllable by the user. The
device measures the distance between the center of projection and
the surface point along the beam direction. Each point is acquired
sequentially in a raster-scanning order (i.e. first column then sec-
ond column, etc. - within each column first row, second row, etc.).

The scanner is placed on a steady platform and takes
measurements of distance to the closest surface sequentially
by emitting a laser beam. The movement of the beam is
fully known and controlled by the user. Note that it is also
possible that no distance is going to be measured when the
laser hits transparent or highly specular surfaces, or when
the measured point is at a distance bigger than a threshold
(300 meters in our setting).

We now define Di,k = Xi,k+1 −Xi,k (difference of two
successive measurements in a given scanline i), and

Vik: the angle of the vector Di,k with the pre-determined z
axis (0 to 180 degrees).

sVik = sik ∗ Vik: the sign of the dot product between the
vectors Di,k and Di,k−1, multiplied by Vik.

From the above definitions all the above quantities are
scalars. As we obtain sequential observations along any
given fixed stream i, we can form the sequence of scalar
random variables {sVik}, k = 1, 2, . . .. Univariate detec-
tion and classification schemes can then be applied to it as
described in the next section.

To be more specific, if the measured points X i,k k =
1, 2, . . . are on the horizontal plane then the measurements
sVik are expected to assume values around 90◦. In the case
that the measured points Xi,k k = 1, 2, . . . are in an almost
vertical surface then the sequence of measurements sV ik

will produce values that are expected to be approximately
90◦ less than the ones on the horizontal plane. If the scan-
ning plane (plane defined by the column i and the center of
projection in Fig. 1) and the vertical surface are perpendicu-
lar to each other then each of the above measurements is ex-
pected to be around 0. In other cases, they would be higher



than 0. The values of these measurements can provide the
orientation of the vertical surface on the horizontal plane.
An example of these values along scanlines can be seen in
Fig. 2. The other important characteristic of the sequence
of signed angles sVik , is that this sequence generates a dis-
tinguishable pattern in vegetation areas. In these areas, the
signed angles alternate rapidly between positive and nega-
tive values. Note that a negative value in sVik indicates a
change in direction between vectors Di,k and Di,k−1. In
areas of solid surfaces the sVik are always positive. Fig. 3
displays the sequence of Di,k that connect successive 3D
points. In the vegetation areas the relative orientation be-
tween these vectors changes, rapidly. This pattern is cap-
tured via a hidden Markov model described in the following
sections.
4. Modeling

Each scanline is considered as a stream of observations
that can be treated in a sequential manner. For each scanline
i each measurement Xi,k is classified as either horizontal,
vertical, or vegetation data. The vegetation classification
is achieved via an online algorithm which detects a change
from one three-state HMM to another.

4.1. Vertical/Horizontal Modeling
In order to distinguish between the horizontal and the

vertical direction we begin by recognizing that the differ-
ence between a “horizontal” and a “vertical” surface is that
the difference in the angles of the former to the z-axis and
the angles of the latter to the z-axis is expected to be around
90◦. In particular, it is natural to expect that the former an-
gles are approximately 90◦ (with some deviations due to an
inclined ground) while the latter ones are approximately 0 ◦

(with some possible deviations too). We thus think of the
sequence of sVik k = 1, 2, . . ., within each fixed scanline i,
as realizations of random variables of the same distribution
(in this case unit variance Gaussians) with either a mean of
μ0 = 90◦ or a mean of μ1 = 0◦. Therefore a change from
a “horizontal” to a “vertical” surface is characterized by a
shift in the mean of these observations.

4.2. Hidden Markov Modeling
Scene areas that include vegetation and trees produce

a unique behavior in the sequence of measurements along
each scanline. In these areas the signed angle sVi,k (see
Sec. 3) measurements alternate rapidly between negative
(around −90◦ degrees) and positive angles, or they are sta-
ble on non-negative values, either around 10◦ or 90◦ de-
grees. Figs. 2 and 3 provide an example.

The above behavior can be captured by hidden Markov
models. In particular, we can introduce a sequence of state
variables {uk} k = 1, 2, . . . which represent the state of
the hidden Markov model at each observation k. We can
then distinguish three states, namely 1, 2 and 3, as follows.
When in state uk = 1, the signed angles sVi,k can be seen
as random variables distributed around a mean of approx-

imately μ1 = 90◦. Similarly, when in state uk = 2, the
signed angles sVi,k can be seen as random variables dis-
tributed around a mean of approximately μ2 = 10◦. Finally,
when in state uk = 3, the signed angles sVi,k can be seen
as random variables distributed around a mean of approxi-
mately μ3 = −90◦. The selection of the above states will
become clear in the sequel.

To formally describe a discrete HMM we need the fol-
lowing parameter triple λ = (A, B, π), where

A = [alr] = [P (uk+1 = r|uk = l)], l, r = 1, 2, 3 (1)

is the state transition matrix of the underlying Markov chain
(i.e. alr is the probability of moving from state l to state r)
and where

π = [πl = P (u1 = l)], l = 1, 2, 3 (2)

is the initial distribution of the underlying Markov states
and

B = [blk] = [fsVik
(x|uk = l)], l = 1, 2, 3 (3)

is the conditional distribution of the observation sV ik (in
scanline i) given the state uk.

For reasons that will become apparent in the sequel we
introduce the forward variable of an HMM as follows:

αk(l) = p(sVi1, . . . , sVik, uk = l|λ), l = 1, 2, 3,

which represents the joint distribution of the data up to ob-
servation k within scanline i and the state at that time given
the parameter triple λ.

It is easily checked that the following recursion holds for
the forward variable

αk+1(r) =

[
3∑

l=1

αk(l)alr

]
br(k+1), r = 1, 2, 3 (4)

with initial condition

α1(r) = π(r)br1, r = 1, 2, 3. (5)

In our set-up we model the conditional distribution of
the {sVik}, k = 1, 2, . . ., given the state variable uk by
a Gaussian distribution with means μl, where l = 1, 2, 3
as above. That is, the B in Eq. 3 is a matrix of Gaussian
probabilities.

Fig. 2 provides an intuition to our thinking. The part of
the data before observation 189 could be captured by a two
state HMM with states 1 and 2 or by a three state HMM
with states in which the transition probability to and from
the third state is simply 0. The transition from state 1 to
2 and vice versa appears to be relatively slow or unlikely.
On the other hand after observation 189 (i.e. after the start



of the vegetation region), the transition between all three
states appears relatively fast or likelier.

We can thus detect the beginning of vegetation by de-
tecting a change from an HMM model with “unlikely” tran-
sitions to one with “likely” transitions. In particular, let
λ0 = (A0, B, π) and λ1 = (A1, B, π) be the parameter
of the HMM before and after the change. We set

A0 =

⎡
⎣ p1 p2 1 − p1 − p2

q1 q2 1 − q1 − q2

r1 r2 1 − r1 − r2

⎤
⎦

where p1 = 0.9, p2 = 0.1, q1 = 0.1, q2 = 0.9, r1 = r2 =
0, and A0 is the matrix of Eq. 1 corresponding to the initial
HMM model with parameter triple λ0. The selected values
for the entries of A0 thus ensure that the HMM is relatively
stable at state 1 or state 2.

We also set

A1 =

⎡
⎣ p′1 p′2 1 − p′1 − p′2

q′1 q′2 1 − q′1 − q′2
r′1 r′2 1 − r′1 − r′2

⎤
⎦

where p′1 = p′2 = q′1 = q′2 = r′1 = r′2 = 1/3, and A1 is
the matrix of Eq. 1 corresponding to the alternative HMM
model with parameter triple λ1. This transition probabil-
ity matrix A1 captures the fact that transitions from state to
state are “likelier” after the change and the fact that nega-
tive values in the signed angles are also possible after the
change. The two HMM models with parameters λ0 and λ1

give rise to two distinct sequences of forward variables (see
Eqs. 4 and 5) which we denote by {α0

k(r)} and {α1
k(r)},

k = 1, 2, . . . respectively.
5. Sequential Classification

We will begin by describing two main algorithms used
in sequential classification and quickest detection. The first
is known as the sequential probability ratio (SPRT) test and
the second one is known as the cumulative sum (CUSUM)
test. For an overview of these tests please refer to [13]. For
simplicity in exposition we will drop the subscript i, since
we consider sequential observations {sVk} k = 1, 2, . . .
within a specific scanline. The classical problem of sequen-
tial identification addresses the issue of determining which
of two simple hypotheses (H0 or H1) concerning the dis-
tribution of our data is true, subject to pre-specified levels
of type I (probability of rejecting H0 when H0 is true) and
type II errors (probability of rejecting H1 when H1 is true).
In particular, let

H0 : sVk ∼ f0, k = 1, 2, . . .
versus

H1 : sVk ∼ f1, k = 1, 2, . . . (6)

where f0 describes the distribution of the data under H0,
and f1 under H1. The algorithm we construct determines

the first instance (the number of observations necessary) at
which to stop and declare which of the two hypotheses to
select subject to a pre-specified level α and β of type I and
type II errors respectively. In [17] it is seen that the fastest
algorithm that addresses this problem is known as the se-
quential probability ratio test (SPRT) and it consists of stop-
ping at observation number

N = inf
{

n;
f1(sV1, . . . , sVn)
f0(sV1, . . . , sVn)

/∈ (A, B)
}

,

(where (A, B) is the open interval from A to B) and declar-
ing that hypothesis H1 (or H0) is true if exit occurs at B
(or at A). The functions f1 and f0 are the joint distributions
of (sV1, . . . , sVn) under H1 and H0 respectively. The con-
stants A and B are related to α and β through the equations

1 ≤ B � 1 − β

α
,

1 ≥ A � β

1 − α
.

In the special case in which the {sVk}, k = 1, 2, . . . are
i.i.d. (independent and identically distributed) unit variance
Gaussian random variables with means μ0 and μ1 under
each of the hypotheses H0 and H1 respectively, N simpli-
fies to

N =
inf

{
n; (μ1 − μ0)

∑n
k=1

(
sVk − 1

2 (μ1 + μ0)
)

/∈ (a, b)
}

,

where a = ln A < 0 and b = ln B > 0 and a decision in
favor of H1 (or H0) is taken if exit occurs through b (a).

The problem of quickest detection is concerned with de-
termining the first instance τ at which the mechanism by
which observations are generated changes. That is, the first
time that the distribution of the random variables {sVk}
changes from f0 to f1. One of the most well-known al-
gorithms which addresses this problem is known as the
CUSUM algorithm and was introduced in [12]. It is also
known to enjoy very strong optimality properties as later
proved in [9]. For an overview of these results please re-
fer to [13]. To mathematically describe the problem, we
assume that

sV1, sV2, . . . , sVτ−1 ∼ f0,

sVτ , sVτ+1, . . . ∼ f1.

where f0 and f1 are defined as above. The CUSUM algo-
rithm stops and declares a change at the first n for which

T =
inf

{
n; sup1≤τ≤n ln f1(sVτ ,...,sVn)

f0(sVτ ,...,sVn| sVτ−1,...,sV1) ≥ h
}

.

In the special case in which the sequence of random vari-
ables are i.i.d. before and after the change point τ the form



of the CUSUM simplifies to inf{n; Sn ≥ h} with

Sn = max{0, Sn−1 + g(sVn)}, S0 = 0, (7)

with g(sVn) = ln f1(sVn)
f0(sVn) .

In particular, under the assumption that {sVk}, k =
1, 2, . . . are i.i.d. unit variance Gaussian random variables
with mean μ0 and μ1 under each of the hypotheses H0 and
H1 respectively, the sequence {Sn} of Eq. 7 simplifies to

Sn = max
{

0, Sn−1 + sVn − μ1 + μ0

2

}
, S0 = 0, (8)

when μ1 > μ0 and

Sn = max
{

0, Sn−1 −
[
sVn − μ1 + μ0

2

]}
, S0 = 0, (9)

when μ1 < μ0. Now recall that the CUSUM algorithm is
a result of repeated SPRT’s with left boundary a = ln A =
0. In particular the CUSUM is the first time that repeated
SPRT’s exit the interval (a, b) on the right [14] with b = h.

It is important to notice that in the case in which the se-
quence of {sVk} k = 1, 2, . . . is modeled through a hidden
Markov model, the simplification of Eq. 7 fails to hold. In
particular,

ln
f1(sVτ , . . . , sVn)

f0(sVτ , . . . , sVn| sVτ−1, . . . , sV1)
=

n∑
i=τ+1

ln
f1(sVi| sVi−1, . . . , sVτ )
f0(sVi| sVi−1, . . . , sV1)

+

ln
f1(sVτ )

f0(sVτ | sVτ−1, . . . , sV1)

Since the CUSUM algorithm is a result of repeated ap-
plications of the SPRT, this gives rise to the following
CUSUM-like modification of Eq. 7 as suggested in [6]:

Sn = max{0, Sn−1 + g(sVn, . . . , sVk)}, S0 = 0, (10)

where

g(sVn, . . . , sVk) = ln
f1(sVn| sVn−1, . . . , sVk)
f0(sVn| sVn−1, . . . , sVk)

and sVk is the last sample after the last reset, i.e. Sk−1 = 0.
Similarly, under the hidden Markov model the SPRT

may be written in the form

N = inf

{
n;

n∑
i=1

ln
f1(sVi|sVi−1, . . . , sV1)
f0(sVi|sVi−1, . . . , sV1)

/∈ (a, b)

}
, (11)

with a = ln A and b = ln B.
To conclude this section, we notice that it is possible to

express fj(sVk|sVk−1, . . . , sV1), j = 0, 1 in terms of the
forward variable of an HMM by noticing that

fj(sVk|sVk−1, . . . , sV1) =
∑3

l=1 αj
k(l)∑3

l=1 αj
k−1(l)

, (12)

for each j = 0 and j = 1.

6. Region classification algorithms
In this section we will apply the algorithms developed in

the previous section to classify horizontal vs. vertical sur-
faces and vegetation vs. non-vegetation regions. Both algo-
rithms are extremely efficient and easy to implement. They
require O(1) operations per observation, and O(1) memory
space. They can thus be implemented at the sensing level
without slowing down the acquisition process.

6.1. Horizontal vs. Vertical classification
Using the Gaussian modeling of Sec. 4.1, it is now pos-

sible to apply the CUSUM algorithm of Eq. 9 to detect
a change from a horizontal to a vertical surface by using
μ0 = 90◦ and μ1 = 0◦, which leads to μ0+μ1

2 = 45◦. The
CUSUM algorithm is simply the update of Sn according
to Eq. 9, and the declaration of a change when Sn exceeds
threshold h.

There are a number of important points to be made here.
To begin, we notice that when we have an inclined surface
we may have a μ0 greater than or less than 90◦. The mean
that will then characterize a vertical surface will deviate
from μ0 by approximately 90◦. In other words, we will have
μ1 = μ0−90◦. Now, the proposed algorithm will still work
as long as Ef0 [Vk] − 45◦ > 0, while Ef1 [Vk] − 45◦ < 0.

In practice, we have used a threshold h = 20, which
makes the algorithm sensitive enough to capture deviations
from the horizontal surface.

Once a detection from a horizontal to a vertical surface
is made, it is also important to detect the end of the vertical
surface. This is achieved by using the opposite CUSUM al-
gorithm as in Eq. 8. In order to make this algorithm more
sensitive we have used a value of μ0+μ1

2 = 30◦ and a thresh-
old of h = 15. The first instance at which this CUSUM al-
gorithm stops marks the end of the vertical surface and the
detection of the horizontal surface.

By using a combination of these algorithms it thus be-
comes possible to distinguish horizontal and vertical re-
gions.

6.2. Vegetation detection and classification
As discussed in section 4.2 we can capture the begin-

ning of vegetation as the first instance in a sequence of our
data at which there is a change from an HMM model with
“unlikely” transitions to one with “likely” transitions. We
are now in a position to describe the CUSUM-like algo-
rithm of Eq. 10, which detects a change from an HMM with
λ0 = (A0, B, π) to an HMM with λ1 = (A1, B, π) as sug-
gested in [6].

1. Set n = 1. Set S0 = 0, and α0
0(l) = α1

0(l) = 1 for
l = 1, 2, 3 (this is necessary for the first iteration of the
update of step 3).

2. Initialize the forward variables using αj
n(l) =

1
3φ( sV1−μl

σl
), l = 1, 2, 3 for each j = 0 and j = 1,

where φ denotes the Gaussian kernel.



3. Update using

Sn =

Sn−1 + ln
∑3

l=1 α1
n(l)/

∑3
l=1 α1

n−1(l)∑3
l=1 α0

n(l)/
∑3

l=1 α0
n−1(l)

.

4. If Sn > b, with b = h, stop and exit; If Sn < a,
with (a = 0), set Sn = 0, n = n + 1 and go to 2. If
a < Sn < b (a = 0, b = h) continue.

5. Update αj
n+1(r) for each j = 0 and j = 1 according

to the recurrence of Eq. 4. Set n = n+1. Goto step 3.

We set the threshold h of the above CUSUM-like algorithm
to h = 10 and call the observation number on which it
exits N . The observation N signifies the possible begin-
ning of the region of vegetation. We need to verify that this
is indeed the beginning of vegetation, and also detect the
end of that region, once its beginning has been identified.
Now the problem is turned into one of testing two hypothe-
ses, namely H0 under which the HMM with parameter λ0

is true (corresponding to non-vegetation) versus H 1 under
which the HMM with parameter λ1 is true (corresponding
to vegetation).

This is achieved by modifying the CUSUM-like algo-
rithm into an SPRT algorithm, with a being negative (set to
a = −5) and b = h (set to h = 10 in our experiments).
We start from observation N + 1 (since at N the CUSUM
went off), and perform steps 1,2,3 and 5 as above, while
modifying step 4 to an SPRT algorithm, as follows:

4. If Sn > b or Sn < a we stop and exit. Otherwise, we
continue on Step 5.

We call the observation number on which the SPRT algo-
rithm exits N+M . If SN+M < a we repeat the sequence of
the above two algorithms (CUSUM-like followed by SPRT)
starting at N +M +1. Otherwise if SN+M > b we classify
the M points between observations N and N + M as vege-
tation, and continue running a sequence of SPRT algorithms
until an exit at a occurs, at which point we declare the end
of the vegetation region. Please note that if the CUSUM-
like algorithm never goes off, no vegetation is declared at
that scanline. Similarly, if the SPRT algorithm never goes
off, again no vegetation is declared.

The parameters σ1, σ2 and σ3 are first set to nominal
values and then σ1 and σ2 estimated using a trimmed vari-
ance estimator over the regions of horizontal and vertical
surfaces. The parameter σ3 is then set equal to σ1. It is
interesting to point out that the algorithm is fairly robust to
changes in these parameters.
6.3. Region Growing

The classification results for each 3D point allows for
a fast sequential region growing algorithm. This sequen-
tial algorithm places clusters of connected 3D points of the

same class. The algorithms runs in parallel with the afore-
mentioned classification, i.e. the cluster of each point is de-
cided just after the point is acquired by the sensor. The
algorithm works briefly as follows. Let us provide labels to
clusters sequentially, starting from 0. At each point, we call
lnum the label of the current cluster of points. Let us con-
sider the k-th 3D point in scanline i (i.e. point Pi,k). Let us
suppose that the class of this point has been decided to be
Ci,k, where Ci,k is either H (horizontal), V (vertical), or T
(vegetation). If its class is T then we proceed to the next
point (i.e. vegetation points are not placed on connected
components due to their irregular structure). Due to the se-
quential nature of data-acquisition the class Ci,k−1 of the
previous point Pi,k−1 in the scanline, and the class Ci−1,k

of the corresponding point in the previous scanline (in case
i > 1) have already been determined. Note, also that it is
possible that one or both of the points Pi,k−1, and Pi−1,k

can be missing, meaning that the sensor did not provide
any measurement due to to high-specularity, or distance
greater than a limit. Consider the following boolean val-
ues Ai,k−1 = (Ci,k == Ci,k−1) ∧ (|Pi,k − Pi,k−1| < L1),
and Ai−1,k = (Ci,k == Ci−1,k)∧ (|Pi,k −Pi−1,k| < L2).
Each one of the booleans is true iff the current class agrees
with the class of the neighboring point, and the distance
between the two points is below a user-specified limit. If,
now, both Ai,k−1 and Ai−1,k are false (i.e. the class Ci,k

of the currently sensed (and not missing) point is different
than both Ci,k−1 and Ci−1,k, or the distance of the point
between its neighbors is great), then a new cluster with la-
bel lnum = lnum + 1 is being created. The point Pi,k is
placed on this new cluster. Otherwise, if just one of Ai,k−1

and Ai−1,k is true, then the point Pi,k is added to the cluster
of the neighbor that makes the boolean true. Finally if both
Ai,k−1 and Ai−1,k are true, then clusters of the neighbors
are merged (if they are not already the same). The point P i,k

is added to the merged cluster. Note that no actual merging
needs to take place (that would be an expensive operation),
but a fast union-find data structure can be used for keeping
track of the merged sets. Results of region growing can be
seen in Fig. 5. In summary the region growing algorithm,
can in real-time provide vertical vs. horizontal clusters of
3D points. This information can be used by higher-level
recognition processes.

7. Results and Conclusions
We have tested our algorithms on a number of scans

in busy urban settings, that include acquisition of ground
levels, vegetation, moving objects, and building structures.
Our acquisition device is the Leica ScanStation2 [8]. This is
a time-of-flight scanner with a spherical field of view, that
generates a sequence of 3D points at a distance of up to
300m and accuracy of 5mm per point. Visualizations of our
results can be seen in Figs. 2, 4, and 5. The results are very
accurate. Very small mis-classification can appear within
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Figure 2. A plot of the signed angles sVik for a scanline (see Sec.
3). The sequence of sVik is shown in blue. Overlaid is a red plot of
three different values that correspond to the class of each measured
point as detected by our algorithms (0 representing horizontal sur-
face, -75 representing vertical surface, and -45 representing vege-
tation). The regions where the signed angles are close to 90◦ are
horizontal, the ones that are close to 0◦ are vertical. The regions
in which there is a high variation between positive and negative
angles are vegetation areas.

Figure 3. Sequence of 3D points along a specific scanline i in a
vegetation region. The vectors connecting successive 3D points
are also shown. The signed angle sVik between successive vectors
changes rapidly between positive and negative values. A negative
value signifies a change in orientation between successive vectors.
See Fig. 2 for the actual values.

vegetation regions, though. Also there is a small delay in
the detection of the end of the vegetation regions. Note
that our algorithms have not yet been integrated on the sen-
sor’s hardware. For more results please visit the homepage
of the second author. In summary, in this paper we pre-
sented extremely efficient algorithms (O(1) operations per
point, O(1) space) for the real-time sequential classification
of range points of urban scenes. These algorithms can lead
to new intelligent sensors, that not only acquire, but also
process and classify the data on-the-fly. We envision the
development of more classification algorithms on the same
framework.

Figure 4. (Top) Texture-mapped 3D point cloud of urban scene.
Note presence of vegetation, and of vertical spikes. These spikes
correspond to moving objects (people in most cases). (Middle-
Bottom): Two views of the scan, where the three class separation
into horizontal (green color), vertical (purple color) and vegetation
(red color) is shown. Note that each point is being assigned to one
of the three classes on-line (i.e. just after it has been acquired by
the sensor). No off-line post-processing has been performed to
the dataset. The results are very robust, and even small vertical
surfaces (steps) are extracted reliably. Vertical spikes are correctly
classified. Vegetation regions are very robustly classified as well.
Note that some parts of solid objects that appear after or between
vegetation regions will be mis-classified as vegetation regions, due
to the decision delay of the on-line algorithms.



Figure 5. Region growing results (see Sec. 6.3). The images show
the sequentially generated connected clusters of vertical and hor-
izontal regions. Vegetation points are not placed on connected
components (colored red in the images). The fast sequential algo-
rithm uses the three established classes for each range point. No
off-line post-processing has been performed to the dataset. The
robust initial classification allows for fast and correct separation
of regions. Note that missing data between scanlines may sepa-
rate connected regions. The correct classification of vegetation,
allows for robust distinction between vertical and horizontal re-
gions. Without the vegetation detection, parts of the non-solid re-
gions would have been misclassified. Note the classification of
small vertical steps, and of the trunks of trees. Higher-level pro-
cesses may use this information (for instance: a solid trunk with
vegetation on top of it can be recognized as a tree).
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