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Abstract
The current technology in stationary laser range-

scanning enables high-resolution acquisition of 3D data in
a sequential fashion. Traditionally, range scans are pro-
cessed offline after acquisition, which significantly slows
down the procedure. In this work we alleviate this limi-
tation by developing low-complexity, online detection and
classification algorithms. These algorithms are innovative
in that they classify points into 5 distinct classes (vegetation,
vertical, horizontal, car and curb regions) and robustly de-
termine the level of the ground without requiring any prior
training or parameter estimation. To construct these algo-
rithms we extract cleverly chosen summary statistics which
significantly reduce the dimensionality of the data. This
reduction enables us to contrast the different classes by
appropriately chosen Markov models and then use online
techniques to detect a transition from one Markov model to
the other. The identification of the ground level is further
achieved by taking advantage of statistical properties of the
distribution of the summary statistics. Our algorithms also
use contextual cues to verify the existence of specific classes
of objects. All our algorithms take advantage of the sequen-
tial nature of data acquisition by running in parallel and
labeling points on-the-fly. Thus, these algorithms can be
potentially integrated with the scanner’s hardware and pro-
vide the foundation for the construction of high-resolution
3D data scanners that classify data as acquired. We have
run experiments using complex urban range scans and have
evaluated the classification accuracy against ground-truth.

1. Introduction
The photorealistic modeling of large-scale scenes, such

as urban structures, has received significant attention in re-
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cent years (see for example [10]). The current state of the art
includes the collection of high-resolution point-clouds from
laser scanners. The abundance of high-resolution 3D data
opens the door for new processing algorithms. Thus, the
ability to segment and classify objects of interest in large-
scale urban scenes efficiently and accurately is of major
importance. In this work we present algorithms that al-
low online classification of objects as data is acquired by
the sensor, enabling the efficient processing of voluminous
amounts of data.

In the existing literature (see Sec. 2) point-cloud segmen-
tation and classification algorithms use all the acquired data
in order to split the scene into major surfaces. In a real-time
application though decisions have to be made instantly. In
these cases we need to classify as fast as possible. Thus, se-
quential classification techniques become relevant [2, 12].
The first attempt to achieving on-the-fly classification into
vegetation, vertical and horizontal surfaces is done in [7].
Although this classification is achieved fairly accurately, it
is only a preliminary step to identify the variety of objects
that may arise in an urban scene. In particular, the classifi-
cation of points into only three classes results in a coarse de-
piction of reality in which parts of a car, for example, maybe
classified as horizontal or vertical surfaces or in some in-
stances as vegetation.

In this paper we develop innovative online algorithms of
low-complexity that run in parallel and achieve a far more
detailed classification of objects into horizontal surfaces,
vertical surfaces, curbs, cars and vegetation. We are further
able to identify the level of the ground within the class of
horizontal surfaces. Although achieving this detail appears
as a marginal improvement from the previous classification,
this task is highly non-trivial. Cars, for instance, are char-
acterized by a level of variability and irregularity in surface
that is lesser than what determines a vegetation region and is
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more than what determines a regular surface, whether hor-
izontal or vertical. Moreover, car detection is made even
more complex because of the existence of a large number
of missing data caused by windows and metallic surfaces.
Therefore, achieving a more detailed classification requires
the extraction of more information from the point cloud of
the urban scene, such as the level of the ground and the
curbs, which serve as important contextual cues. To bemore
specific, a fire-hydrant or a newsstand sits behind a curb
while cars do not. It is important to stress that our algo-
rithms, unlike many others in our field, require no learning
or prior parameter estimation.
2. Related work

There is a variety of range image segmentation tech-
niques (for example [5]). These methods do not associate
any classes with the extracted segments and process the
data offline. There is also literature on the topic of classi-
fication of 3D point-clouds using Markov network models
[1, 4, 9, 16]. [11] concentrates specifically on the detection
of cars from range images. The paper uses spin images and
extended Gaussian images and produces very good results.
[6] also presents offline techniques for the segmentation and
detection of various types of objects. These techniques as-
sume that the data becomes available all at once, as opposed
to sequentially. They also require training. Online detection
techniques have been used in 3D computer vision mainly in
the context of a moving sensor [14, 15], as opposed to a
steady high-resolution laser-scanner. The goal is to sepa-
rate between two states: drivable vs. non-drivable terrain.
In [15] a hidden Markov model is used to achieve this goal.
Finally, [13] describes an almost (but not exactly) real-time
approach.

Our contribution with respect to earlier work is that
we are able to achieve a far more detailed classification of
data on-the-fly. This is achieved by using cleverly selected
summary statistics that arise from geometrical considera-
tions and which significantly reduce the dimensionality of
the data. These statistics are sequentially computed angles,
which are then appropriately analyzed andmodeled to make
an inference. None of the analysis carried out requires any
training as it relies either on the contrast between models
and the detection of change from one to the other or on the
subsequent estimations of the shape of distributions of the
statistics.
3. Summary Statistics and Algorithms

The scanner, placed on a steady platform, takes mea-
surements of distance to the closest surface sequentially by
emitting a laser beam. Note that it is also possible that no
distance is going to be measured when the laser hits trans-
parent or highly specular surfaces, or when the measured
point is at a distance bigger than a threshold (300 meters
in our setting). The main summary statistics used in our
analysis are (a) Signed angles and (b) Line angles.

To describe the signed angles let us denote by Xi,k =
[xik, yik, zik] the vector of 3D coordinates of the k-th point
in the i-th scanline. Knowledge of the vertical direction
(axis z) is provided by many laser scanners, or can be
easily acquired via hardware, or even computed from the
data in urban scenes (line detection and clustering) and is
thus assumed known. Most robotics application (for in-
stance [15]) make this assumption as well. We now de-
fine Di,k = Xi,k+1 − Xi,k (difference of two successive
measurements in a given scanline i), and Vik: the angle of
the vectorDi,k with the pre-determined z axis (0 to 180 de-
grees), sVik = sik∗Vik: the sign of the dot product between
the vectors Di,k and Di,k−1, multiplied by Vik (signed an-
gle). This sign is positive when the two vectors have the
same orientation and negative otherwise. These statistics
are used to achieve the coarser classification into horizon-
tal, vertical and vegetation classes. They are also used to
provide a first indication of the existence of cars in a given
scan-line.

To describe the line angles let XA = [xA, yA, zA] de-
note the position of the laser scanner and denote by θ the
angle between successive laser beams. That is, θ is the an-
gle between the vectorsXi,k−XA andXi,k+1−XA for all
k = 1, 2, . . . (θ is known). We then determine the sequence
of angles φi,k , for k = 1, 2, . . . by computing the angles be-
tween the vectorsDi,k and Xi,k+1 −XA for k = 1, 2, . . ..
In particular, using the law of sines we obtain

|Xi,k+1 −XA|

|Xi,k+2 −XA|
=

sin(φi,k+1)

sin(φi,k)
. (1)

We now notice that under the assumption that Di,k and
Di,k+1 are co-linear we have φi,k+1 = φi,k−θ which leads
to

φi,k = tan−1

⎧⎨
⎩

sin θ

cos θ −
|Xi,k+1−XA|
|Xi,k+2−XA|

⎫⎬
⎭ , (2)

for k = 1, 2, . . .. We refer the reader to Fig. 1 for an illustra-
tion. We notice that if the assumption of co-linearity holds
between more than two consecutive vectors Di,k+n and
Di,k+1+n for all n = 0, 1, 2, . . ., then φi,k+n = φi,k − nθ.
This leads us to the the line angle summary statistics φ̂k =
φi,k+(k−1)θ for k = 1, 2, . . .within each scanline i, which
are expected to be relatively close to each other if indeed co-
linearity is to hold. Therefore, we use the statistical prop-
erties of the distribution of the line angles to determine the
level of the ground (we assume that the ground is fairly lin-
ear), which together with the coarser classification achieved
by inferential techniques developed using the signed angles
and contextual truth, lead to the detailed classification into
curbs, cars, vertical and horizontal surfaces. Our algorithms
do not require any training. In order to achieve this we use
the following contextual truth about urban scenes: 1. Car
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Figure 1. Four collinear points and line angles φi,k = φ̂k−(k−1)θ
(see text).

objects are located within a finite height from the horizontal
or inclined ground plane. 2. Cars cannot be behind curbs
or walls of buildings. 3. There is a maximum height and
length for cars and maximum height for curbs.

The online algorithms that we run in parallel are (1) the
coarse classification algorithm, (2) the ground algorithm,
(3) the curb algorithm and (4) the car algorithm. In the sec-
tions that follow we describe each of the above algorithms
in detail.

4. The coarse classification algorithm
This algorithm is used to achieve a coarse classification

into vegetation (T), horizontal surfaces (H) and vertical sur-
faces (V). It is described in full detail in [7] and is based
on the fact that scene areas which include vegetation and
trees produce a unique behavior in the sequence of measure-
ments along each scanline. In vegetation areas the signed
angle sVi,k measurements (see Sec. 3) alternate rapidly be-
tween negative (around −90◦ degrees) and positive angles,
while in horizontal and vertical surfaces they are stable on
non-negative values (around 0◦ or 90◦ degrees). The de-
tection algorithm of [7] detects vegetation by distinguish-
ing between two hidden Markov models; the first one cap-
tures slow transitions between the −90◦, 0◦ and 90◦ states
and the second one fast transitions between the same states
(each state is modeled by a Gaussian with mean −90◦, 0◦,
and 90◦ respectively). The distinction between horizontal
and vertical surfaces is achieved through an online cumula-
tive sum (CUSUM) algorithm [12] that detects a change in
the mean of the signed angles sVi,k by 90◦.

5. The ground algorithm
The ground algorithm uses the coarse classification algo-

rithm of Sec. 4 and consecutively computes angles φ̂k (see
Sec. 3) to make an inference. It is divided into two parts (a
& b) described below.

(Part a) The part that runs within each scanline i (begin
with i = 1) which consists of the following steps. This
part detects a sequence of horizontal points that could be
potentially on the ground.

1. Find the first 10 consecutive points classified as hor-
izontal H (skip missing points M ). If such points
cannot be found exit. Otherwise, calculate φ̂k for
k = 1, . . . , n. Set n = 9.

2. Apply the mean-shift algorithm [3] to determine the
number of modes in the distribution of φ̂k for k =
1, . . . , n.

3. If the number of modes from step 2 is one and the next
point is classified as H then set n = n + 1, calculate
φ̂n and go to step 2. If not, then stop and declare points
k = 1, . . . , n−1 as potential ground (PG). These n−1
points have similar φ̂k ’s, meaning that they are likely
to come from a linear surface. Also, we record the
average of the 5 smallest (since ground is on a low-
surface) z-coordinates of the points classified as (PG)
and denote it by zi. This is the estimate of the height
of the ground.

Note that the above algorithm stops at the first instance it
encounters a point of class V or T .

(Part b) The part that runs across scanlines. This part
verifies potential ground points as actual ground and com-
putes a robust estimate of the height of the ground. We start
by running the algorithm of part (a) for the first N scan-
lines (N is the number of scanlines we need to visit be-
fore we have at least 50 zi estimates). Our goal is to find
a dominant estimate of the height of the ground that we call
zg. To this end we run the mean-shift algorithm on the zi’s
(i = 1, . . . , 50) and set as zg the main mode. This is our ro-
bust estimate for the height of the ground in the beginning
of our scan. After that we do the following:

1. Start again from the first scanline (set i = 1).

2. If i > N run the algorithm of part (a) (for i <= N it
has been already executed).

3. If |zi − zg|/|zg| < 10% (i.e. zi is close to the domi-
nant estimate) we declare the potential ground points
PG as ground (G). Furthermore, starting from the last
G point, visit all successive horizontal (H) points that
are almost collinear and give to them the G label as
well (grow ground). If i > 50 update the dominant
estimate zg by calculating the main mode of the distri-
bution z1, . . . , zi. Set i = i+ 1 and go to step 2.

4. If |zi− zg|/|zg| ≥ 10% (i.e. zi is not close to the dom-
inant estimate), run the algorithm of part (a), but now
start after the last PG point (remove the PG label from
the previous PG points). If you are able to find a new
set of PG points go back to 3. If not, set i = i+ 1 and
go to step 2.

The ground algorithm generates sequentially a robust esti-
mate of the ground points (G) along with the height zg of
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the ground at each scanline (for scanlines that do not contain
ground points the following algorithms use the last updated
zg for a height estimate).
6. The curb algorithm

Curbs provide an important cue for recognition and clas-
sification in urban scenes. In our setting we are using the de-
tected curbs to provide context for possible location of cars.
Our curb detection algorithm consists of two parts: a) one
part that runs within each scanline on-the-fly and provides
possible starting points for curbs, and b) a second part that
verifies the existence of a curb after the whole curb has been
sensed from the scanner. To determine possible starting
points for curbs within a scanline we just record the first ver-
tical (V) pointXi,k after the last ground point (G) (see Sec.
5 for detection of ground points) for which TestUnder(Xi,k)
is False (see Sec. 7.3 for explanation of test). We giveXi,k

the label of a possible curb point (PC). Note that we ter-
minate our search of PC points whenever the z-coordinate
exceeds a reasonable level above the ground estimate (see
threshold theight in Sec. 7.3). In order though to verify the
existence of a curb we have to look at the sequence of scan-
lines containing it. To achieve this we perform a sequen-
tial labeling region growing algorithm on only the vertical
(V) points and sequentially produce connected components
RV1, . . . , RVn of vertical points. If a completed such com-
ponent happens to include at least one point that is a pos-
sible curb (PC) then we further investigate that particular
region. We first calculate its vertical height. If it is above a
threshold tcurb it is discarded (tcurb = 0.2m in our settings)
since curbs cannot exceed a specific height. If it consists of
a significant number of scanlines (three and above in our
experiments) we accept it as a curb. Otherwise (too few
scanlines) we make sure that the median vertical curvature
of the points in the region is small and then accept the re-
gion as a curb. Our algorithm is not missing any curb in our
datasets.
7. The car algorithm

We begin by running the online detection of horizontal,
vertical and vegetation regions as described in [7]. In that
framework as each scan pointXi,k of scanline i is received
it is classified to be either horizontalH , vertical V , or veg-
etation T . Note that every point gets a classification, so for
instance a point that is in an inclined surface not on vege-
tation regions will get either an H or V classification (i.e.
mostly horizontal, or mostly vertical). One problem of the
vegetation detection algorithm in [7] is that it is very sensi-
tive and regions within car objects can be labeled as T . In
order to alleviate this problem we modified the online veg-
etation detection algorithm of [7] in order to make it less
sensitive (see Sec. 7.1). We thus add one extra class T ′

to the classification results. Each scan point Xi,k can be
classified to be in T ′, meaning that it is in vegetation re-
gion with higher probability. Note that now T ′ is missing

chunks of vegetation regions. We keep both classes T and
T ′ for each point (i.e. a point that is in both T and T ′ has
very high probability of being in vegetation region than a
point of class T only). See Fig. 2 for an example.

The car detection algorithm works as follows. At each
point in a scanline the classifiers of [7] are run in parallel
with the classifier of less sensitive vegetation T ′ (Sec. 7.1).
An online CUSUM-like statistic (see [2]) that sets off a trig-
ger at index (i, k) is used to decide whether the scanline i
may contain a car or not. If the trigger is set off then the
goal is to identify within that scanline i intervals of points
that could potentially be parts of cars. These intervals can
contain only horizontal H , vertical V , or vegetation points
T that are not of class T ′. Finally each interval may con-
tain missing points. A missing pointM is one for which the
laser was sent but no response was recorded by the sensor.
This maybe due to transparent or highly reflective surfaces
for instance.

The next step in our detection consists of seg-
menting each scanline i into a set of intervals
[t1(0), t2(0)], . . . , [t1(m − 1), t2(m − 1)], where t1(p) is
the index of the first point and t2(p) is the last point of
the p-th interval (m intervals in total). The criteria for the
dividers of each interval are explained in detail in Sec. 7.3
(see Fig. 4 for one such interval). Potential car regions
are then only to be decided upon within these intervals
according to further tests which verify the existence or not
of a car.

7.1. Less sensitive vegetation detection
As described in Sec. 4 vegetation areas can be detected

coarsely. Due to the sensitivity of this algorithm to small
non-vegetation areas (that can be unfortunately part of cars)
we now consider the difference of signed angles sDi,k =
sVi,k − sVi,k−1 between successive points on a scanline.
The new three states are modeled as Gaussians with means
of −150◦, 0◦, and 150◦. We want to detect a change be-
tween two hypotheses H0 and H1, the former correspond-
ing to a non-vegetation region and the latter to a vegetation
region, both captured by two distinct HMM models. To be
more specific, let us represent the transition matrix for each
of the two Markov models by

M =

⎡
⎣

p1 p2 1− p1 − p2
q1 q2 1− q1 − q2
r1 r2 1− r1 − r2

⎤
⎦ (3)

Then underH0: p1 = q1 = r1 = 0.1, p2 = q2 = r2 = 0.8
[i.e. tendency to reach or stay at state 2 (mean around 0◦ -
no vegetation], and underH1: p1 = p2 = q1 = q2 = r1 =
r2 = 1

3
[i.e. tendency to fluctuate between all states]. We

thus use the same CUSUM-like algorithm as described in
[7] with threshold h = 10, but we change the input and the
mean and standard deviation (allowing for a larger value in
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Figure 2. (Left) Initial vegetation detection algorithm (blue: ver-
tical, green: horizontal, red: vegetation (class T )). (Right) Less
sensitive vegetation detection (Sec. 7.1). Red shows vegetation re-
gions with high probability (class T ′). Some vegetation regions
are missed, but there are now much fewer misclassifications on
non-vegetation areas.

this case) of the random variables in each state. The selec-
tion of the exact transition probabilities, standard deviations
and threshold h does not significantly change the results as
long as the described behavior is maintained. Intuitively
what we did was to introduce more noise in our observa-
tions since sDi,k is an approximation of the first derivative
of sVi,k. Therefore, the algorithm is now less sensitive to
changes of regular surfaces to irregular surfaces. For a re-
sult of this algorithm see Fig. 2.

7.2. Determination of suspicious scanlines
In order to decide whether a given scanline i could po-

tentially contain a car, we run an online CUSUM-like al-
gorithm on the sequence of acquired data points that are
currently classified as H or V , or are missing (M ). Note
that when we receive a point that is classified as T ′ we stop
this online algorithm. The idea is to now distinguish a reg-
ular surface (which can also contain steps, holes or other
small obstacles) from a region that could contain cars. The
former are characterized by points which would customar-
ily be identified as horizontal H and others corresponding
to steps or other small obstacles which would customarily
be characterized as V . Missing data is possible mainly due
to inability to sense, or less frequently, small holes. Cars
on the other hand are characterized by curved surfaces and
continuous chunks of missing data due to mirrors, windows
or metallic areas Thus, a possible way to capture and con-
trast a ground region to a possible car region is by using two
separate Markovmodels; the one corresponding to a regular
surface should have an enhanced probability in the horizon-
tal H and vertical V states and low probability to missing
statesM . A possible car region on the other hand due to its
curved surface and the persistence of missing data should
be characterized by a higher likelihood of transition from
a horizontal H state to a vertical V and/or a missing state
M and vice versa. We therefore devise an online CUSUM-
like algorithm to detect a change from one Markov model
(regular surface) to another (car). The states of the models

Figure 3. Determination of suspicious scanlines (Sec. 7.2). Trig-
ger points along scanlines shown as brown [blue: vertical, green:
horizontal, red: vegetation (class T ′)]. Two arrows help to visual-
ize two of the triggers. These scanlines contain cars. See the pdf
for color.

are H (state 1), V (state 2) and M (state 3). The algorithm
is the same as in Sec. 7.1 but the transition matrix (3) is
different. The transition matrix (3) specifications for each
Markov model are: under H0: p1 = 0.8, p2 = 0.1, q1 =
0.09, q2 = 0.9, r1 = 0.6, r2 = 0.3 [i.e. tendency to stay
at horizontal or vertical state; state of missing data does not
sustain itself and it most probably reverts to horizontal], and
under H1: p1 = 0.5, p2 = 0.25, q1 = 0.25, q2 = 0.5, r1 =
0.25, r2 = 0.25 [i.e. tendency to change between states].
This online CUSUM sets off a trigger the first time it de-
tects a change from H0 to H1. The threshold used in this
algorithm is h = 1. The selection of the exact transition
probabilities and threshold h does not significantly change
the results as long as the described behavior is maintained.
Example of scanlines that produce triggers can be seen in
Fig. 3.

It is important to note that such a trigger could be set
off not only as a result of the presence of a car region but
also in the presence of vegetation or even (in rare cases) as
a result of a big hole on the ground. Therefore we use this
trigger only as an indicator of a suspicion of the presence of
a car and proceed to run further tests, including the divider
algorithm that follows, beforewe make a final decision. The
next section describes processing in scanlines that contain
triggers.

7.3. Divider detection
Within a scanline that the trigger of Sec. 7.2 goes off a

set of intervals [t1(0), t2(0)], . . . , [t1(m − 1), t2(m − 1)]
that could potentially contain car regions need to be com-
puted. These intervals can contain points currently classi-
fied as horizontalH or vertical V , as well as missing points
M . This is achieved by calculating the dividers t1(p) and
t2(p) (p = 0, . . . ,m− 1). For an example see Fig. 4.
Searching for first dividers. We start by detecting the first
divider t1(p). Initially p = 0. A potential first divider is the
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first point along the scanline where there is a transition from
a horizontalH to a vertical V surface. This is due to the na-
ture of the car as an object above the ground.Let us say that
the change to the V surface happens at point k along the
scanline. If the angle sVi,k corresponds to a gradual change
into a vertical surface (i.e. sVi,k < l1 or sVi,k > l2 )1,
then this point is considered as the first divider as it usu-
ally signifies the appearance of a tire. Otherwise (i.e. if
l1 ≤ sVi,k ≤ l2)2 then the transition is more sudden. That
can identify a bumper or the side of a car or another ver-
tical surface (e.g. a pole or an obstacle). We thus need
to further identify the case of a bumper or the side of car
which is achieved by performing the following additional
test: TestUnder(Xi,k). We compute the Euclidean distance
d(Xi,k − XA) between the k-th point and the origin XA

(i.e. scanner’s location). We also compute the same dis-
tance for L = 30 previous points d(Xi,k−j −XA), for all
j = 1, . . . , L. Out of these distances we compute the max-
imum M . If the difference between d(Xi,k −XA) and M
is small 3 that means that the k-th point is the furthest away
from the scanner. TestUnder(Xi,k) is set to False and in that
case we don’t choose that point as the first divider (this case
corresponds to a vertical obstacle, not a car) and we con-
tinue the search using the algorithm from the beginning of
this paragraph. Otherwise (TestUnder(Xi,k) is set to True,
i.e. the k-th is not the furthest away from the scanner) some
previous points are under the surface of the divider. This is
the case that identifies the location of a potential bumper or
side of car and we declare t1(p) = Xi,k.
Searching for next dividers. Successive dividers are
specified as sudden changes in distances between suc-
cessive points Xi,n and Xi,n+N where N is either one
(i.e. next point in scanline) or greater than one but
all points Xi,n+1, . . . ,Xi,n+N−1 are missing. Thus if
d(Xi,n,Xi,n+N) is above a threshold tsep

4 and the vector
Xi,n+N−Xi,n is forward looking (i.e. does not point back
towards the scanner) then divider t2(p) = Xi,n and divider
t1(p+1) = Xi,n+N. At this point the interval [t1(p), t2(p)]
and the beginning of the next interval t2(p + 1) have been

1We choose l1 = −5◦ and l2 = 20◦. A value of 0◦ corresponds
to an abrupt change to the vertical, since the z axis is the known vertical
direction. We provide a slack around this sudden jump, giving more slack
to positive angles because small steps can be misclassified as tires. Note
that due to the rotation invariance of a tire these thresholds do not have to
be adjusted in the case of inclined ground.

2Note that these thresholds do not have to be adjusted in cases of in-
clined ground surfaces. In that case the transition will appear more gradual
and will be captured by the first test.

3We use the threshold 0.01m. This threshold should be above the stan-
dard deviation of the noise level of the scanner (it is larger by one order of
magnitude).

4We choose tsep = 4m. Our goal is to provide one car within each
interval. That threshold allows in most cases separation between two dif-
ferent car regions. In the cases where the scanline gets two cars very close
to each other two or more cars can be within the same interval. But they
will still be identified as car regions.

identified. Within the identified interval a further test is per-
formed. This test detects whether after the beginning of the
interval a long almost perfectly horizontal surface exists5. If
such a surface is identified from point K to point L within
the interval [t1(p), t2(p)] then that means that we have a
transition from an object to the ground in that interval. In
that case we terminate interval p at K (i.e. t2(p) = K),
we ignore the original divider t2(p + 1) and we restart the
search for the first divider of the next interval p+1 by look-
ing for the first divider once again. This is achieved by ap-
plying the algorithm of the previous paragraph after point
L. Essentially we are looking for another object of interest
within the scanline. Otherwise (i.e. in the case in which the
interval [t1(p), t2(p)] does not contain any long horizontal
region), set p = p + 1 and look for t2(p) and t1(p + 1) by
applying the algorithm of this paragraph.

The intervals [t1(p), t2(p)] do not contain points of class
T ′. This is achieved by terminating the divider detection
algorithm after the first point of the class T ′ is identified (i.e.
point with high probability of being vegetation). A second
termination condition for the divider detection algorithm
is at the first measured 3D point with z-coordinate higher
than a threshold theight. Due to our online computation of
ground surfaces we have a robust estimate of the current
height of the ground at each scanline. We are thus adjusting
automatically theight to be at a reasonable distance above
the current ground estimate (i.e. we are adding 2m to the
ground height). Our algorithm is not looking for cars out of
context.
Further division of intervals Before continuing with
further processing of the intervals [t1(p), t2(p)], p =
0, . . . ,m − 1 in order to decide whether they belong to
cars or not we do a further subdivision of each of the inter-
vals by subtracting long sequences of consecutive vertical
points (these regions are obvious and normally correspond
to strictly vertical obstacles or trunks of trees). This may
result in cutting each interval [t1(p), t2(p)] into disjoint in-
tervals [v1(pj), v2(pj)], j = 0, . . . , r − 1.

7.4. The high verticals algorithm
This algorithm runs within each scanline i and is search-

ing to find the first continuous sequence of vertical points
Xi,k, . . . ,Xi,k+M such that the last point’s Xi,k+M z-
coordinate is well beyond the ground. Since we have a reli-
able estimate of the height of the ground from the algorithm
of Sec. 5 we can robustly set such a threshold (in our set-
ting we add 2.5m to the current height of the ground). If
point Xi,k+M indeed exists then we calculate its horizon-
tal distance dh from the scanner (i.e. length of projection
of Xi,k+M −XA on known horizontal plane) . Now every
point whose horizontal distance from the scanner is greater

5We use a threshold of 3m since it is not possible to find long horizon-
tal regions of that length on car regions. This threshold can be adjusted
appropriately if needed.
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Figure 4. The divider algorithm (Sec. 7.3) in one example scanline.
(Top) Distance between successive points (horizontal axis: index
of scan point - vertical axis: distance between successive points)
[distance is shown as negative when it can not be computed due to
missing points]. After the first divider there are two subsequent di-
viders. This generates three intervals that are displayed with differ-
ent colors (red-cyan-red). Parts of the scanline that are not within
dividers are displayed as purple. The last interval is terminated
due to reaching the limit in theight (see Sec. 7.3). (Middle) Ac-
tual scanline that produced the distance graph shown on top. The
points are displayed with the same color-code as above. Before
the correction, horizontal surfaces on the ground, or tree regions
can be part of the intervals. (Bottom) Same scanline after the cor-
rections. Only two intervals survive and the ground points are not
part of them. The last interval reverts to a tree region by the al-
gorithm of Sec. 7.5 (note that this algorithm is applied on signed
angles and not distances).

than dh cannot take the label of a car (C) since we assume
that no car can lie behind such vertical objects (i.e. vertical
walls or large poles). This check is extremely useful and it
allows us once again not to search for cars out of context.

7.5. Fourier transform for car vs. vegetation
As a result of the divider algorithm of Sec. 7.3 we have

identified the intervals [v1(0), v2(0)], . . . , [v1(r−1), v2(r−
1)] of potential cars.

Our final test consists of transforming the sequence of
points in each of the intervals [v1(j), v2(j)] j = 0, . . . , r−1
into the frequency domain by applying a Fourier transform.
This algorithm is used to distinguish a tree from a car re-
gion. As a result of that we are able to classify each point
in the interval as part class C (car) or C′ (car complement).

As a result of the less sensitive vegetation algorithm of
Sec. 7.1 many regions that are part of vegetation are now
given the classification H or V . We thus need to apply
a test within each of the intervals [v1(j), v2(j)] that clas-
sifies them as tree vs non-tree (likely car). This is done
by transforming the signed angle data sVi for each of the
points in the interval [v1(j), v2(j)] into the frequency do-
main (Fourier transform). In particular, letN be the number
of points in the interval [v1(j), v2(j)] for a fixed j. Since the

numbers sVi are real the array of frequencies repeats itself
for k > N

2
. We thus only need to consider the frequencies

F (k) for k = 0, . . . , N
2
if N is even and k = 0, . . . , N−1

2
if

N is odd. We now select the maximum of these frequencies
MX = max0≤k≤N

2
|Fk| and compute the set of all fre-

quencies S =
{

N
8
≤ k ≤ N

2
; |F (k)| > MX

2

}
, which are

greater than MX
2

. If the set S is empty, then the variation in
the array of {sVi} i = 0, . . . , N − 1 is rather stable signify-
ing a region that is more likely to be a car than vegetation.
If, on the other hand, the array of signed angles results in at
least one frequency that is above half of the maximumMX
this is more likely to signify a high-variation region, in this
case vegetation. Note that the F (0), i.e. the 0 frequency,
is most likely to be the highest one in any case. Our algo-
rithm decides on the classification C (car) when the set S is
empty. If the set S is non-empty the labeling given by the
initial classification algorithm is given to each of the points
in the interval [v1(j), v2(j)].

7.6. Final processing stage
Once all the data has been processed by the Fourier trans-

form analysis of the last subsection, everything that has not
been classified as a car now recovers its original classifica-
tion which was decided upon by the initial vegetation al-
gorithm described in [7]. This concludes the car detection
algorithm.

8. Combination of algorithms
The coarse classification algorithm is the base and runs

online in each scanline producing labels horizontal (H), ver-
tical (V), and vegetation (T). Part (a) of the ground algo-
rithm is run for the first N scanlines in parallel with the
coarse classification algorithm in order to estimate the ini-
tial level of the ground. We then start again from the first
scanline. The following algorithms run in sequence within
each scanline: (1) Part (b) of the ground algorithm that com-
putes and verifies ground points (G) as well as the current
estimate of the level of the ground, (2) the curb algorithm
that generates potential curb points (PC), and (3) the car al-
gorithm. Finally, whenever part (b) of the curb algorithm
identifies a verified curb, we need to revisit (i.e. go back to)
the scanlines that contain the curb. At last we correct (i.e.
revert to the coarse classification labels) any car points that
have been detected behind the curb.

9. Results and Conclusions
We have tested our algorithms on a number of scans

in busy urban settings, which include ground, vegetation,
moving objects, cars and other urban structures. Our acqui-
sition device is the Leica ScanStation2 [8]. This is a time-
of-flight scanner with a spherical field of view, that gener-
ates a sequence of 3D points at a distance of up to 300m
and accuracy of 5mm per point. Visualizations of some re-
sults can be seen in Fig. 5. We have also developed an intu-
itive user-interface for the ground-truth labeling of 3D point
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Figure 5. (Top & Bottom) Online car detection results. The de-
tected car point are displayed with yellow color. Horizontal sur-
faces are shown in green, vertical in blue, and vegetation in red.
Ground is shown in white. No offline post-processing has been
performed to the dataset. See the pdf for color.

clouds. We tested our online classification results against
ground-truth and produced precision-recall numbers and the
confusion matrix shown in Table 1. These figures demon-
strate the high accuracy of our algorithms. The precision for
car objects is 0.96 and the recall 0.86. In some cases, per-
sistent spikes (introduced by moving objects) can be iden-
tified as cars. The incorporation of context (ground, curbs,
high-verticals) along with the clever online techniques pro-
vide very accurate results. The fact that no training is in-
volved proves the possibility to generate accurate classifi-
cations using a small set of contextual rules along with in-
novative statistical techniques. Our algorithms consist of
various stages. Each stage is significant (with the exception
of the one of Sec. 7.5 that could be ommitted). Also, the de-
tection of the ground provides an extremely significant cue.
We were very careful in designing the ground-detection al-
gorithm since possible errors in it would be detrimental for
the whole pipeline. Our ground and curb detection tech-
niques provide almost perfect results. Our future work in-
cludes the online classification of different types of urban
objects, as well as combination of online methods with of-
fline techniques. We would also like to evaluate each stage
of the algorithm separately in order to discover its relevant
significance. Finally, we will investigate the effect of learn-
ing the parameters that we have used in our HMM models.
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