Mechanistic Insights into the One-Pot Synthesis of Propargylamines from Terminal Alkynes and Amines in Chlorinated Solvents Catalyzed by Gold Compounds and Nanoparticles

David Aguilar,[a] Maria Contel,*[b] and Esteban P. Urriolabeitia*,[a]

This paper is dedicated to Professor Richard H. Fish on the occasion of his 70th birthday

Abstract: Propargylamines can be obtained from secondary amines and terminal alkynes in chlorinated solvents by a three- and two-component synthesis catalyzed by gold compounds and nanoparticles (Au-NP) under mild conditions. The use of dichloromethane allows for the activation of two C–Cl bonds and a clean transfer of the methylene fragment to the final product. The scope of the reaction as well as the influence of different gold(III) cyclometalated complexes and salts has been investigated. The involvement of gold nanoparticles generated in situ in the process is discussed and a plausible reaction mechanism is proposed on the basis of the data obtained.

Keywords: alkynes · C–C coupling · C–Cl activation · catalysis · gold

Scheme 1. Methods available to form propargylamines.[2]

Introduction

The synthesis of propargylic amines has attracted considerable attention over the last few years due to their pharmaceutical relevance and their importance as building blocks in the preparation of nitrogen-containing molecules, and as key intermediates for natural product synthesis. [1] There are three main synthetic pathways to obtain propargylamines:[2] 1) by stoichiometric nucleophilic reactions; 2) by transition-metal-catalyzed reactions of imines (or enamines), which can be generated from aldehydes and amines; or 3) by the catalytic coupling of a sp³ C–H adjacent to nitrogen with a terminal alkyne (Scheme 1). Gold, silver, and copper compounds have also provided efficient catalysts in the imine-,

[a] Dr. D. Aguilar, Dr. E. P. Urriolabeitia
Departamento de Compuestos Organometálicos
Instituto de Ciencia de Materiales de Aragón
CSIC-Universidad de Zaragoza, Pedro Cerbuna 12
50009 Zaragoza (Spain)
Fax: (+34)976761187
E-mail: esteban@unizar.es

[b] Prof. M. Contel
Chemistry Department, Brooklyn College and the Graduate Center
The City University of New York, New York 11210 (USA)
Fax: (+1)718-951-4607
E-mail: mariacontel@brooklyn.cuny.edu

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201000587.
Activation of carbon–halogen bonds by transition-metal compounds is involved in various organic processes, but the activation of the relatively stable C–Cl bond is an important subject in environmental chemistry (due to the possible degradation of harmful chlorinated compounds).\cite{7} The activation of CH₂Cl₂ by late transition metals has been documented for CoII,\cite{8} RhIII,\cite{9} RuIII,\cite{10} RuII,\cite{11} PdII,\cite{12} and PtII\cite{13} complexes. The activation of the C–Cl bond usually affords M–CH₂Cl or M–CH₂–M organometallic compounds. Dinuclear gold(I) ylide complexes are also known to add CH₂Cl₂ to afford dinuclear AuIII derivatives with a methylene bridge.\cite{13}

The activation of CH₂Cl₂ (wherein CH₂Cl₂ serves as a CH₂ partner) by early transition metals has also been achieved.\cite{14,15} CrII complexes are able to promote methylene transfer from CH₂Cl₂ to an alkene (cyclopropanation, but only in 2% yield) and the direct stoichiometric methyla
dtion of ketones and aldehydes has been recorded for a bimetallic Mg/TiCl₄/THF system.\cite{15} The heterolytic thermal or photocatalytic degradation of CH₂Cl₂ to HCl and CO under aerobic conditions has been described for heterogeneous catalysts and chlorocuprate ions.\cite{16} The C–Cl bond activation described here represents an elegant example of the activation of CH₂Cl₂, which generates and transfers the methylene fragment catalytically (typically 5 mol% catalyst and amounts as low as 1 mol% for longer reaction times) under mild reaction conditions (50°C). AuIII complexes and AgI salts have proven to be effective in similar C–Cl bond activations,\cite{17} but details of these findings were never published. We report herein on the effects of gold compounds and nanoparticles in different oxidation states in such coupling reactions, and suggest a plausible reaction mechanism.

Although gold-catalyzed reactions have been thoroughly studied in the past decade,\cite{19} the study of reaction mechanisms and the isolation/characterization of gold intermediates and/or catalytically active species has not received the same attention. Clarification of the reaction mechanisms is crucial for the rational design of more efficient molecular catalysts.

We reported on the catalytic and cytotoxic/apoptotic properties\cite{19} of gold(III) compounds containing iminophosphorane ligands (such as 1 and 2)\cite{19a,19b} that catalyzed the amination of 2-methylfuran and electron-rich arenes to methyl vinyl ketone.\cite{19a,19b} and the synthesis of 2,5-disubstituted oxazoles through cyclization of N-propargylcarboxamides.\cite{19c}

Iminophosphoranes (R₃P=N-R) constitute a class of compounds that can be readily prepared by different synthetic routes\cite{20} and their electronic and steric properties may be tuned through appropriate choice of R and R'. Not only does the iminophosphorane C,N-backbone confer a marked stability to the metalic center in d₈ square-planar complexes, but also the PR₃ fragment can be used as a spectroscopic marker to follow reactions by ³¹P NMR spectroscopic analysis. We demonstrated that the real catalytic species in these processes were cationic gold(III) cycloaurated complexes generated by abstraction of the chloride ligands in polar solvents further assisted by silver salts.\cite{19d}

Encouraged by these results, we decided to study hydroamination reactions of alkynes with these and related cycloaurated complexes.

Results and Discussion

Scope of the gold-catalyzed synthesis of propargylamines in chlorinated solvents: Formation and catalytic activity of gold nanoparticles: The cyclization of 5-trimethylsilyl-4-pentynylamine (3)\cite{21} was catalyzed by 1, 2, and gold(III) salts (Table 1), affording yields of the intramolecular hydroamination product 4 comparable to those reported for Na[AuCl₄] with 5-alkynylamines to give tetrahydropyridines (see the Supporting Information).\cite{22}

| Entry | Catalyst [(mol%)] | Ag⁺ [(mol%)] | Time [h] | Yield [%] [a]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AuCl₃ (5)</td>
<td>–</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>Na[AuCl₄] (5)</td>
<td>–</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>1 (5)</td>
<td>–</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>1 (5)</td>
<td>AgOTf (11)</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>1 (5)</td>
<td>AgOTf (6.1)</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>1 (5)</td>
<td>–</td>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>2 (5)</td>
<td>AgOTf (11)</td>
<td>2</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>2 (5)</td>
<td>AgOTf (6.1)</td>
<td>2</td>
<td>70</td>
</tr>
</tbody>
</table>

[a] Isolated yields.

Abstract in Spanish: Se han obtenido propargilaminas a partir de aminas secundarias y algunos terminales en disolventes clorados a través de una síntesis de dos o tres componentes catalizada por compuestos de oro y nanopartículas (Au-NP) en condiciones de reacción suaves. El uso de diclorometano permite la activación de dos enlaces C–Cl y la posterior trasferencia del fragmento metileno al producto final. El alcance de la reacción así como la influencia de diferentes compuestos ormetalicados y sales de oro(III) han sido investigados. Los resultados obtenidos son la base de la discusión sobre la participación de nanopartículas de oro generadas en situ en el proceso así como del posible mecanismo de reacción.
We have also studied the catalytic activity of 1 in intermolecular hydroamination processes with terminal alkynes and secondary amines. However, when Bu₂NH (5b) was added to HCN=Ph (6a) in either THF or toluene in the presence of 1 (5 mol %, 50 °C, 24 h), the expected intermolecular hydroamination product was not obtained and the unreacted starting materials were recovered instead (Scheme 2). Surprisingly, when CH₂Cl₂ was employed we obtained propargylamine 7ba. This compound comes from a three-component coupling of the amine 5b, the alkyne 6a and the CH₂ fragment from the solvent CH₂Cl₂ as will be demonstrated below.

We explored the scope of the reaction for the cycloaurated gold compound 1 as a catalyst under the same reaction conditions (alkyne (2 mmol), amine (2 mmol), 24 h, 50 °C) for three different terminal alkynes and for five different secondary amines (Table 2). No reaction was observed between 1-decyne and HNMe₂. Better yields were obtained with Bu₂NH than with Me₂NH, probably due to the high volatility of the dimethylamino derivatives. The reaction seems to be very sensitive to the nature of the amine because no reaction was observed between the above-mentioned amines and Ph₃P, CyNH, iPr₂NH, or MeBnNH. Amines with linear N-alkylic chains are best tolerated and we observed that more basic amines such as Bu₂NH and piperidine also gave better results (dimethylamino derivatives were more volatile and gave lower isolated yields). The reaction is also sensitive to the nature of the solvent: whereas CH₂Br₂ can be used instead of CH₂Cl₂, other chlorinated solvents, such as CHCl₃ or (CH₂Cl)₂, did not give detectable coupling products (see below). Preliminary reactions with a higher catalyst loading (10 mol %) and a 1:1.2 molar ratio of alkyne to amine afforded higher yields (Table 3 below and Table 1 in the Supporting Information), but the reaction conditions were subsequently optimized to lower the amount of catalyst and to use a 1:1 molar ratio (alkyne/amine).

Table 2. Three-component synthesis of propargylamines in CH₂Cl₂ with 1 as the catalyst (Scheme 2).

<table>
<thead>
<tr>
<th>Amine</th>
<th>6a [%]</th>
<th>6b [%]</th>
<th>6c [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>15 (7aa)</td>
<td>17 (7ab)</td>
<td>0 (7ac)</td>
</tr>
<tr>
<td>5b</td>
<td>58 (7ba)</td>
<td>71 (7bb)</td>
<td>57 (7bc)</td>
</tr>
<tr>
<td>5c</td>
<td>22 (7ca)</td>
<td>21 (7cb)</td>
<td>30 (7cc)</td>
</tr>
<tr>
<td>5d</td>
<td>70 (7da)</td>
<td>36 (7db)</td>
<td>51 (7dc)</td>
</tr>
<tr>
<td>5e</td>
<td>60 (7ea)</td>
<td>70 (7eb)</td>
<td>55 (7ec)</td>
</tr>
</tbody>
</table>

[a] Isolated yields. [b] Reaction conditions: cat. 1 (5 mol %), CH₂Cl₂ (5 mL), amine (2 mmol), 24 h, 50 °C.

Table 3. Synthesis of propargylamines 7ba, 7bd, and 8bd in CH₂Cl₂ with isolated Au-NP (nano-12) synthesized by the Brust method. A comparison with K[AuCl₄] is given in the table.

<table>
<thead>
<tr>
<th>Cat.</th>
<th>7bd + 8bd [%]</th>
<th>7ba [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano-12[1]</td>
<td>94 (7bd/8bd, 1:0.5)</td>
<td>75</td>
</tr>
<tr>
<td>K[AuCl₄][2]</td>
<td>93 (7bd/8bd, 1:0.5)</td>
<td>75</td>
</tr>
<tr>
<td>Nano-12[1]</td>
<td>90 (7bd/8bd, 1:0.05)</td>
<td>76</td>
</tr>
<tr>
<td>K[AuCl₄][2]</td>
<td>91 (7bd/8bd, 1:0.08)</td>
<td>83</td>
</tr>
</tbody>
</table>

[a] Reaction conditions: cat. (10 mol %), solvent (5 mL), 50 °C, 24 h, alkyne/amine (1:1). [b] Reaction conditions: cat. (1 mol %), solvent (5 mL), 50 °C, 72 h, alkyne/amine (1:1:2).

The nature of the alkyne has a critical influence over the general process, as depicted in Scheme 3. The reaction of Me₃SiC≡CH (6d) with R’NH (5a-e) in CH₂Cl₂ under the same conditions gave two different propargylamines (Table 4). The main product of the mixture was the CH₂Cl₂ activation product (7ad-ed), whereas the minor product (8ad-ed) arose from the formal coupling of one R’N fragment, one Me₃SiC≡C unit, and a CH(Me) group that comes from a second Me₃SiC≡CH alkyne molecule (see below). The nature of the silyl substituent is crucial for the synthesis of compound 8. For instance, the terminal alkyne Me₂CC≡CH (6b) did not afford propargylamines of the type 8 with a Me₃CC≡C unit.

Compound 8ed was not formed under the reaction conditions. Compound 8bd was obtained as the exclusive product under similar reaction conditions in chlorinated solvents, such as CHCl₃ or CICH₂CH₂Cl, with yields of 90 %. A similar reaction between Et₃NH and acetylene (13.6 atm) to afford 3-diethylaminobut-1-yne, catalyzed by CuBr (20 mol %) in THF at 100 °C, was described as early as 1949.[23]

We tested other gold(III) derivatives with different charges, such as the simple gold(III) salt K[AuCl₄] (anionic) and new cationic cycloaurated phosphane-containing derivatives 9 and 10 (Scheme 4).

The synthesis and characterization of 9 and 10 are described in the Experimental Section. Mono- and dicaticonic derivatives 9 and 10, respectively, are cleanly obtained from...
Moreover, the catalytic activity and selectivity of K-[AuCl4] was similar to that of 1 when amines were added to the terminal alkyne Me3SiC≡CH (6d) (Table 6 and Scheme 3). With more basic amines, the selectivity towards the CH2Cl2 activation product was higher. Again 8ed (with piperidine) could not be obtained under these reaction conditions.

With K[AuCl4], the catalyst load (Table 3) could be reduced to 1 mol% (for amine 5b and alkyne 6d) to give the mixture of products in 91% yield in a similar ratio 7bd/8bd (1:0.08) but after longer reaction times (72 vs. 24 h). Exchanging CH2Cl2 with other chlorinated solvents resulted in the clean synthesis of product 8bd; with CHCl3 or CICH2CH2Cl the yields of isolated product were 90% and 93%, respectively. In the case of the reaction of amine 5b and alkyne 6d in nonchlorinated solvents, such as THF or CH3CN, the C–Cl activation product 7bd was clearly not observed and, instead, the chiral product 8bd was obtained in low yields (40 and 10%, respectively) together with starting materials and some unidentified amine derivatives.

The results of our study on the catalytic activity of the mono- and dicationic cycloaurated derivatives 9 and 10 are collected in Table 7. We investigated the standard reaction in CH2Cl2 and the particular case of the Me3SiC≡CH alkyne (6d) with nBu2NH (5b). The catalytic activity was similar to that observed for 1 and K[AuCl4] for phenylacetylene (6a), but decreased for the other alkynes. In the case of trimethylsilylacetylene (6d), the propargylamine was exclusively derived from CH2Cl2 activation (7ba).

In contrast to our previous studies with gold(III) complexes, for which we demonstrated that the catalytically active species were discrete gold(III) derivatives,[19] it seems that the real catalytically active species here are gold nano-

Table 6. Two-versus three-component synthesis[a,b] of propargylamines in CH2Cl2 with K[AuCl4] as the catalyst (Scheme 3).

<table>
<thead>
<tr>
<th>Amine</th>
<th>6d [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>60 (7ad/8ad, 1:0.3)</td>
</tr>
<tr>
<td>5b</td>
<td>90 (7bd/8bd, 1:0.1)</td>
</tr>
<tr>
<td>5c</td>
<td>46 (7cd/8cd, 1:0.05)</td>
</tr>
<tr>
<td>5d</td>
<td>42 (7dd/8dd, 1:0.8)</td>
</tr>
<tr>
<td>5e</td>
<td>73 (7ed/8ed, 1:0.0)</td>
</tr>
</tbody>
</table>

[a] Isolated yields. [b] Reaction conditions: cat. K[AuCl4] (5 mol%), CH2Cl2 (5 mL), alkyne (2 mmol), amine (2 mmol), 24 h, 50°C.

Table 7. Two-versus three-component synthesis[a,b] of propargylamines derived from nBu2NH (5b) in CH2Cl2 with cationic cycloaurated gold(III) derivatives 9 and 10 as catalysts (Equations 2 and 3).

<table>
<thead>
<tr>
<th>Cat.</th>
<th>6a [%]</th>
<th>6b [%]</th>
<th>6c [%]</th>
<th>6d [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>80 (7ba)</td>
<td>60 (7bb)</td>
<td>47 (7bc)</td>
<td>34 (7bd/8bd, 1:0.0)</td>
</tr>
<tr>
<td>10</td>
<td>75 (7ba)</td>
<td>65 (7bb)</td>
<td>43 (7bc)</td>
<td>30 (7bd/8bd, 1:0.0)</td>
</tr>
</tbody>
</table>

[a] Isolated yields. [b] Reaction conditions: cat. 9 or 10 (5 mol%), CH2Cl2 (5 mL), alkyne (2 mmol), amine (2 mmol), 24 h, 50°C.
particles (Au-NP) generated in situ at the beginning of the reaction by reduction of the gold precursors with the amine. We always observed an immediate change of the color of the gold(III)-containing solutions from yellow to deep red upon addition of the amine in all reactions. Au-NP were reported to be formed by reduction of gold(III) salts with amines.[24] Moreover, Au I halides, AuCl, and AuBr can also generate Au-NP with narrow size distribution under mild conditions (60 °C).[25] Similar to those used in the catalytic conditions reported herein (50 °C).

We have been able to characterize these deep-red solutions to test for the presence of gold colloids in the formation of 7ba with K[AuCl4] (nano-11). Indeed, TEM analysis of these gold materials (aliquot of the solution deposited onto a carbon-coated copper grid and blotted) as well as X-ray diffraction studies (from the powdered sample after removal of all solvents) confirmed the formation of homogeneous nanoparticles with a 3 nm radius (see the Supporting Information). As expected, isolable gold nanoparticles prepared by literature methods (nano-12),[26] were also catalytically active in CH2Cl2 in the reactions described herein (Table 3) and the yields of products 7ba and 7bd/8bd obtained were similar to those achieved with K[AuCl4].

Reaction mechanism: We have elucidated the origin of the CH2 (in propargylamines of type 7) and C(H)Me (in propargylamines of type 8) fragments. NMR spectroscopy experiments proved that the CH2 fragment in 7ba comes from the CH2Cl2 solvent. When the K[AuCl4]-catalyzed reaction of PhC≡CH (6a) and Bu2NH (5b) was performed in CH2Cl2, the signal in the 1H NMR spectra corresponding to the CH2 fragment at δ = 3.63 ppm in the final product ([D2]7ba) disappeared (Figure 1). The fact that the new isolated compound incorporated deuterium (CD2 fragment) was further confirmed by 1H NMR analysis and mass spectrometry (see the Supporting Information).

![Figure 1. 1H NMR spectra of: a) 7ba and b) [D2]7ba.](image)

In the case of the C(H)Me fragment, we excluded the theoretical possibility of participation by the solvent by performing an experiment with Me3SiC≡CH (6d) and Bu2NH (5b) in CDCl3; as expected, compound 8bd did not show incorporation of 2H in the C(H)Me unit. The generation of the C(H)Me unit can be explained by a desilylation reaction of the starting alkyne. The reaction of an equimolar mixture of Me3SiC≡CH (6d) and PhC≡CH (6a) with two equivalents of Bu2NH (5b) in CH2Cl2, gave the cross-coupling product PhC≡C-C(H)Me-NBu2 (13) in 15% yield, together with the expected products 7ba (4%), 7bd (41%), and 8bd (40%) (see Scheme 5 and the Supporting Information). This result clearly showed that the incorporation of the C(H)Me unit is related to the presence of the silylalkyne in the starting mixture because the reaction of PhC≡CH (6a) with Bu2NH (5b) gave only 7ba.

![Scheme 5. Gold-catalyzed cross-coupling reaction of Bu2NH (5b) with two different alkynes (trimethylsilylacetylene (6d) and phenylacetylene (6a)) in CH2Cl2.](image)

The definitive proof of the origin of the C(H)Me fragment came from the reaction of isotopically enriched alkyne Me3Si13C≡CH (13C-6d) with Bu2NH (5b) (CH2Cl2, 24 h, 50°C). The 13C{1H} NMR spectrum of the resulting mixture shows unambiguously the presence of a spin system due to the 13C13C13CH3 skeleton: the signal at about δ = 50 ppm, which was assigned to the 13CH carbon, appears as a ddd by coupling with the other three 13C nuclei (13C-8bd, see Figure 2 and detailed assignment of signals in the Supporting Information).

![Figure 2. 13C NMR spectrum of 13C-8bd showing the 13C=13C=CH13CH3 spin system (CH and CH3 signals).](image)
porting Information). A proposal to account for the formation of propargylamines of the type 8 is outlined in Scheme 6.

![Scheme 6. Formation of propargylamines of type 8 from trimethylsilylacetylene (6d).](image)

At this point, we considered what role the gold nanoparticles could play in the catalytic process. One important factor is the oxidation state of the gold-containing species (mainly nanoparticles) that are generated in situ by reduction of the gold(III) complexes by the secondary amine before the addition of the terminal alkyne and subsequent catalytic reaction. To gain some insight into this aspect of the reaction, we ran an X-ray photoelectron spectroscopy (XPS) experiment (see explanations in the Supporting Information) on the solution generated by the reduction of K[AuCl₄] with Bu₂NH (5b) in CH₂Cl₂ (nano-14). The XPS spectrum (Figure 3) shows the typical doublet (due to spin–orbital splitting) for an electron on a 4f level of gold. Each component of the doublet is called 4f⁷/₂ and 4f⁵/₂. The deconvolution of the resulting signal indicates that two different oxidation states in these colloids is shown in Table 8.

Table 8. Assignment of oxidation states in the XPS deconvolution experiment from nano-14 (Figure 3).

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Binding energy [eV]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au⁰</td>
<td>83.8</td>
<td>87.7</td>
</tr>
<tr>
<td>Au¹</td>
<td>84.6</td>
<td>88.3</td>
</tr>
</tbody>
</table>

Figure 3. XPS deconvolution spectra from nano-14 generated by reduction of K[AuCl₄] by amine (Scheme 2, Table 5, Table 8).

Most of the gold species (84%) were found to be in oxidation state 0 and 16% in oxidation state 0. The XPS technique can measure the composition of the examined surface up to a depth of 10 nm. We can assume that, in a homogeneous sample such as this one (see Figure SI 1 in the Supporting Information), the composition in the surface is representative of the whole sample. Thus, no gold(III) was found in these solutions or in the nanoparticles. In the threecomponent coupling of aldehydes, terminal alkyne, and amine catalyzed by supported Au-NP on CeO₂ or ZrO₂, it was demonstrated that the catalytic activity was directly related to the content of Au(III) in these nanoparticles.[18] The authors claimed that the support led to stabilization of the gold(III) species and allowed its reduction to gold(I) or metallic gold and a higher catalytic activity. However, gold(III) and gold(I) derivatives and unsupported Au-NP were also catalytically active in these couplings.[4,5b,c,6]

In Scheme 7, we propose a plausible reaction mechanism for the formation of propargylamines of type 7 (Scheme 2) in CH₂Cl₂.

The first step of the proposed catalytic cycle is the reduction of all gold(III) complexes and salts by the amine to Au⁻–Au⁰. The working hypothesis here is that the Au⁻ fragments are the catalytically active species in this process. The next step is the addition of the terminal alkyne and the formation of alkynylgold(I) species. The synthesis of ethynyl(arene)gold compounds from gold(I) derivatives such as [AuCl(SMe₂)] with terminal alkynes and NEt₃ as a base has been previously reported.[27] Moreover, the formation of alkynylgold(I) and alkynylgold(III) species has been proposed as the first step in the A³ coupling reaction of terminal alkynes, amines, and aldehydes to afford propargylamines.[4,5] The alkynylgold(I) species 16 should react with the CH₂Cl₂ and give the Au(III) species 17 by oxidative addition of the CH₂Cl₂ through activation of one C–Cl bond. Such an oxidative addition has been reported for dinuclear gold(I) ylide derivatives in the formation of dinuclear gold(II) complexes with the methylene group as a bridge ligand.[15] The addition of CH₂X₂ with X = Br or I to dinuclear gold(I) derivatives is also known[28,29] to afford either dinuclear gold(II) complexes with the methylene bridging the gold centers[28] or to mononuclear gold(III) derivatives.[29] Subsequent reductive elimination of highly reactive 17 would afford the corresponding propargylchloride 19 and gold(I) species 18. Reductive eliminations on alkynylgold(III) derivatives have been described before to afford RC≡C-containing products and gold(I) complexes.[30] The reaction of propargylchloride with an amine may
render the final product 7. The catalytic cycle can close because the AuI species 18 could further react with more alkyn to give 16. Alternatively, the cycle could be closed by further oxidative addition of propargyl chloride to the gold(I) species 18 to afford gold(III) species 20. By reaction with quaternary ammonium salts, compound 20 would generate a gold(III) intermediate 21 containing the propargylic fragment and the amine, which, by reductive elimination, would afford propargylamines 7ae–7de and the gold(I) species that is able to restart the catalytic cycle.

We performed a set of experiments to provide evidence for some steps of this proposed mechanism. We tested the catalytic activity of gold(I) derivatives such as [AuCl(tht)] (tht = tetrahydrothiophene) and [AuCl(PPh3)] in the formation of propargylamines 7ba and 7bd–8bd in CH2Cl2 under the standard reaction conditions (alkyne (2 mmol), amine (2 mmol), cat. (5 mol%), 24 h, 50°C) and found that both compounds were able to catalyze the reactions (Table 9). However, slightly lower yields were obtained: a 40–65% yield of 7ba, compared with an average value of 75% using gold(III) precursors, and a 52–60% yield of the mixture 7bd–8bd compared with an average value of 90% using neutral or anionic gold(III) compounds. In the case of trimethylsilylacetylene, complete selectivity towards the CH3Si activation product 7bd was found when [AuCl(PPh3)] was used as the catalyst. Interestingly, the catalytic reactions performed with AuI complexes did not develop the deep-red color observed in reactions using AuIII complexes. Since we have shown that gold(I) catalyzes efficiently the formation of propargylamines, we wondered about the presence of NP in these reaction mixtures. Transmission electron microscopy (TEM) analysis of the mixture of [AuCl(tht)] and HNBu2 (5b) shows a very small amount (almost zero) of very small nanoparticles (approximately 2–3 nm, see TEM image of 22 in the Supporting Information). The influence of the ligand coordinated to the AuI–Cl, either tetrahydrothiophene or PPh3, on the stability of the AuI compound must be strong. Gold(I) halides without other stabilizing ligands are able to afford stable nanoparticles of 12 nm radius by reduction with alkylamines. In our case, it seems that the AuI derivatives with other stabilizing ligands do not produce Au-NP under the reaction conditions (50°C) in the presence of alkylamines.

The interaction of the Au-NP with the alkyn should result in a plausible alkynyl–AuI compound that could also be catalytically active. We have checked this possibility, and have found that the complex [Ph3PAu=C=CPh] efficiently catalyzes the coupling between Bu2NH (5b) and PhCCCH (6a), giving the propargylamine 7ba in 61% yield, and providing proof that the alkynyl species could be involved in the catalytic cycle.

The next step is the oxidative addition of CH3Cl to the formed alkynyl–AuI complex. In this respect, we have performed a comparative study of the reaction of Ph=C=CH (6a) with Bu2NH (5b) in either CH3Cl or CH3Br. Monitoring the reaction leading to 7ba by NMR spectroscopic analysis, revealed that the process is more rapid for CH3Br (see the Supporting Information). This fact strongly suggests that incorporation of the solvent onto the gold catalyst proceeds through an oxidative addition reaction. At this point, we can consider two ways to close the catalytic cycle, as proposed before. In the first, a reductive elimination in 17 gives propargyl chloride and an AuI species 18, which could restart the catalytic cycle. We found that the reaction between propargyl chloride and an AuI species 18, which could restart the catalytic cycle.

![Scheme 7. Proposed reaction mechanism for the gold-catalyzed synthesis of propargylamines of type 7 in CH2Cl2.](image)

Table 9. Synthesis of propargylamines 7ba, 7bd, and 8bd in CH2Cl2 with gold(I) compounds.

<table>
<thead>
<tr>
<th>Cat. [a]</th>
<th>7bd + 8bd [%] [b]</th>
<th>7ba [%] [c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ClAu(tht)]</td>
<td>52 (7bd/8bd, 0.7:1)</td>
<td>65</td>
</tr>
<tr>
<td>[ClAu(PPh3)]</td>
<td>60 (7bd/8bd, 1:0.0)</td>
<td>40</td>
</tr>
</tbody>
</table>

[a] Isolated yields. [b] Reaction conditions: cat. (5 mol%), solvent (5 mL), 50°C, 72 h, alkyn/amine (1:1.2).
glycolamide (from Aldrich) and Bu$_2$NH (5b) to afford propargylamine 7ba proceeds cleanly in CH$_2$Cl$_2$ without the assistance of a catalyst (with a slight excess of amine, and a 1:1.2 molar ratio of propargylchloride/alkylamine). This indicates that the key step of the catalytic process may indeed be the activation of CH$_2$Cl$_2$ by an alkynyl-gold(I) species (mono or polynuclear) formed in situ by reduction of gold(III) complexes by the amine, and subsequent reaction of the gold(I) species with terminal alkynes in basic media. An alternative way to close the catalytic cycle involves the oxidative addition of propargylchloride to Au(I) species, an alternative way to close the catalytic cycle involves the oxidative addition of propargylchloride to Au(I) species.

A C H T U N G T R E N N U N G reaction conditions (see TEM image of not produce considerable amounts of nanoparticle under the are lower; this could be correlated to the fact that they did discriminate between these two pathways.

The fact that the more basic amines give better yields in these processes confirms our hypothesis that gold(III) has to be reduced to lower oxidation states to achieve higher catalytic activity. K[AuCl$_4$] and cyclometalated 1 give similar yields, whereas the more cationic species with phosphane substituents give lower yields of product. This may arise from a combination of factors, such as the higher stability of the cationic pincer derivatives towards reduction and/or the ease of formation/stability of the alkynylgold derivatives formed in situ. The nanoparticle size may also play an important role. It has been demonstrated that in the A$_2$ coupling of aldehyde, terminal alkyne, and aldehyde by recyclable gold nanoparticles, a size of 20 nm was optimal to afford high yields of products at 75–80°C in 12 h, with a catalyst load of 10 mol% Au-NP. We think that cationic derivatives may afford Au-NP with a lower content of Au and/or a different size, and that this may be the reason for the lower yield. We have already seen that, although gold(I) compounds have proven to be catalytically active in the formation of propargylamine 7ba, the yields of isolated product are lower; this could be correlated to the fact that they did not produce considerable amounts of nanoparticle under the reaction conditions (see TEM image of 22 in the Supporting Information). What seems clear is that the key steps in the catalytic process involve the reduction of gold(III) complexes to gold(I)-containing nanoparticles, and the production of catalytically active species able to act as the C–Cl bonds in the CH$_2$Cl$_2$.

Conclusion

Reduction of gold(III) compounds and salts in situ generates gold(I)-containing nanoparticles that are efficient catalysts for the one-pot synthesis of propargylamines from alkenes and amines in chlorinated solvents under mild conditions. Importantly, we have shown that CH$_2$Cl$_2$ can be activated by these nanoparticles, and some other gold(I) species, to serve as a CH$_2$ partner that could lead to potentially relevant gold-catalyzed chemical processes.

Experimental Section

General methods: Solvents and amines were dried and distilled under argon by using standard procedures before use. Elemental analyses were carried out with a Perkin-Elmer 2400-B microanalyser. Infrared spectra (4000–300 cm$^{-1}$) were recorded with a Perkin-Elmer Spectrum One FTIR spectrophotometer from nujol mulls between polyethylene sheets. The 1H, 13C[H], and 31P[H] NMR spectra were recorded in CD$_2$Cl$_2$, CD$_3$Cl, or CH$_2$Cl$_2$ (D$_2$)[7ba] at 25°C with Bruker ARX-300, AvanceII-300, Avance-400, or Avance-500 spectrometers (δ, ppm; J, Hz); 1H and 13C[H] were referenced by using the solvent signal as internal standard; 31P[H] was externally referenced to H$_2$PO$_4$ (85%). The mass spectra (MALDI-4+) and (ESI-4+) were recorded from solutions in CH$_2$Cl$_2$, or MeOH with a MALDI-TOF MICROFLEX (Bruker) spectrometer (DC/IR as matrix). Compounds 1$^{[10]}$, 5a$^{[10]}$, 5b$^{[12]}$, 6a–d$^{[25]}$, [Au(C=CPh)](PP$_3$)$_2$) and [Au(C=PPh)]$^{[25]}$ were synthesized as reported before. All other chemicals and reagents were commercially available and used without further purification.

Propargylamines 7 and 8: Typical optimized procedure: The gold catalyst (1. K[AuCl$_4$], 9, 10, nano-12, [AuCl(H)], [Au(C=CPH)](PP$_3$)$_2$) or [Au(C=CPh)](PP$_3$)$_2$) (5 mol%) was added to a solution of amine 5a–e (2 mmol) in CH$_2$Cl$_2$ (5 mL). The corresponding alkyne 6a–d (2 mmol) was subsequently added to the resulting mixture, which was stirred at 50°C for 24 h. Subsequent filtration through Celite and complete removal of the solvent gave the crude mixture, which afforded the final products after purification by column chromatography on silica gel. Details of the purification procedures used for the different propargylamines, as well as spectroscopic data and selected spectra, are provided in the Supporting Information.

Experiments with deuterated CH$_2$Cl$_2$ and CD$_2$Cl$_2$ to give [D$_2$]7ba: Catalyst K[AuCl$_4$] (5 mol%) was added to a solution of Bu$_2$NH (5a; 2 mmol) in CD$_2$Cl$_2$ (5 mL), then phenylacetylene (6b; 2 mmol) was added to the resulting mixture, which was stirred at 50°C for 24 h. Subsequent filtration through Celite and complete removal of the solvent gave a crude mixture that afforded pure [D$_2$]7ba after purification by column chromatography on silica gel (n-hexane/ACOEt, 95:5). Yield: 60%; MS (ESI+): m/e (%): 246 (100) [M$^+$]. For the relevant spectra, see Figure 2 and the Supporting Information.

Reaction with CH$_3$Br, to give 7ba: Catalyst K[AuCl$_4$] (5 mol%) was added to a solution of Bu$_2$NH (5a; 2.4 mmol) in CH$_2$Br$_2$ (5 mL), followed by phenylacetylene (6b; 2.2 mmol). The resulting mixture was stirred at 50°C for 24 h. Subsequent filtration through Celite and complete removal of the solvent gave a crude mixture that afforded the final product 7ba after purification by column chromatography on silica gel (n-hexane/ACOEt, 95:5). Yield: 73%. For NMR spectra, see the Supporting Information.

Gold-catalyzed cross-coupling reaction of Bu$_2$NH (5b) with trimethylsilylacetylene (6d) and phenylacetylene (6a) in CH$_2$Cl$_2$: Catalyst K[AuCl$_4$] (5 mol%) was added to a solution of Bu$_2$NH (5a; 3.1 mmol) in CH$_2$Br$_2$ (5 mL), followed by either phenylacetylene (6a; 1.6 mmol) or trimethylsilylacetylene (6d; 1.6 mmol). The resulting mixture was stirred at 50°C for 24 h. Subsequent filtration through Celite and complete removal of the solvent gave a crude mixture that afforded the products 7ba, 7bd, 8bd, and 13 after purification by column chromatography on silica gel (n-hexane/ACOEt, 80:20).

Experiments with 13C-enriched trimethylsilylacetylene (13C-6d) to give 13C-8bd: Catalyst K[AuCl$_4$] (5 mol%) was added to a solution of Bu$_2$NH (5a; 1 mmol) in CH$_2$Br$_2$ (5 mL), followed by 13C-enriched trimethylsilylacetylene (1.6 mmol). The resulting mixture was stirred at 50°C for 24 h. Subsequent filtration through Celite and complete removal of the solvent gave a crude mixture of products 13C-7bd and 13C-8bd.

Synthesis of 7a: Catalyst AgClO$_4$ (0.074 g, 0.36 mmol) was added to a solution of orthouarated complex 1 (0.201 g, 0.32 mmol) in anhydrous THF (20 mL). The resulting suspension was stirred for 30 min at RT with exclusion of light, and then filtered through a Celite pad to remove the insoluble AgCl formed. The freshly prepared solution was treated with PPh$_3$ (0.085 g, 0.32 mmol) and stirred for 2 h at RT. The solvent was sub-
One-Pot Synthesis of Propargylamines

was applied to a glow-discharged carbon-coated copper grid and blotted.

Synthesis of 10

was dissolved in THF (5 mL) and (2 mmol) in anhydrous THF (20 mL). The resulting suspension was stirred for 30 min with exclusion of light, and then filtered and vacuum-dried. Yield: 0.133 g (39.2\%)

was obtained as a yellow solid that was filtered and vacuum-dried. Yield: 0.118 g (30.3\%) was added to the freshly prepared solution and the reaction mixture was stirred for 2 h. After the reaction time, the solvent was evaporated to a small volume (ca. 1 mL) and Et2O (30 mL) was added. By continuous stirring, compound 10 was obtained as a white solid that was filtered and vacuum-dried.

was added to the suspension in Et2O (5 mL) with Bu2NH (2 mmol) in Et2O (5 mL) with K[AuCl4] (5 mol%, after stirring for 5 min at RT, was applied to a glow-discharged carbon-coated copper grid and blotted. The specimen was imaged with a JEOL-2000FXII high-resolution transmission electron microscope (point to point resolution 0.28 nm) and images were recorded on a Gatan MSC-794 camera, using the Digital Micrograph software (from Gatan).

X-ray photoelectron spectroscopy

XPS measurements of nano-14, which was prepared by reduction of K[AuCl4] with BuNH (5b), were taken with a Kratos AXIS Ultra DLD (Kratos Tech.) spectrometer. Samples were prepared under a cover of argon gas and placed in a vacuum before measurement. While collecting the survey scans, the following parameters were used: Au4f, monochromatic excitation source (1486.6 eV working at 15 kV and 10 mA, pass energy = 120 eV. To confirm the oxidation state of the various gold species, high-resolution scans were also taken by using a pass energy of 20 eV.

Acknowledgements

Funding from MICINN (CTQ2008-01784, Spain) and Brooklyn College (US) is gratefully acknowledged. D.A. thanks DGA (Spain) for a Ph.D. grant. The authors also thank Prof. Fernando López Ortíz (Universidad de Almería, Spain) for his stimulating and constructive comments and Prof. Jesús Santamaría and Dr. Silvia Irusta (INA, Universidad de Zaragoza) for facilitating the XPS measurements.

The specimen was imaged with a JEOL-2000FXII high-resolution transmission electron microscope (point to point resolution 0.28 nm) and images were recorded on a Gatan MSC-794 camera, using the Digital Micrograph software (from Gatan).

X-ray photoelectron spectroscopy

XPS measurements of nano-14, which was prepared by reduction of K[AuCl4] with BuNH (5b), were taken with a Kratos AXIS Ultra DLD (Kratos Tech.) spectrometer. Samples were prepared under a cover of argon gas and placed in a vacuum before measurement. While collecting the survey scans, the following parameters were used: Au4f, monochromatic excitation source (1486.6 eV working at 15 kV and 10 mA, pass energy = 120 eV. To confirm the oxidation state of the various gold species, high-resolution scans were also taken by using a pass energy of 20 eV.

Acknowledgements

Funding from MICINN (CTQ2008-01784, Spain) and Brooklyn College (US) is gratefully acknowledged. D.A. thanks DGA (Spain) for a Ph.D. grant. The authors also thank Prof. Fernando López Ortíz (Universidad de Almería, Spain) for his stimulating and constructive comments and Prof. Jesús Santamaría and Dr. Silvia Irusta (INA, Universidad de Zaragoza) for facilitating the XPS measurements.

For some representative recent reviews on gold catalysis, see:

For some representative recent reviews on gold catalysis, see:

Published online: June 25, 2010