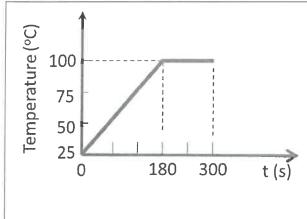

1. (2D kinematics; 30%) As shown below, an object is launched from a 100-m building-top with a speed of 25m/s in an angle of 60 degree from horizontal and lands on the ground. Use $g = 10 \text{ m/s}^2$ for this problem.

- a. What is the vertical initial-launching speed? Ans. 22 m/s
- b. How long does it take for the object to reach to the maximum height? Ans. 2ν
- c. What is the maximum height the object can reach above the ground? Ans. $\frac{125}{100}$ M
- d. How long does it take for the object to reach the ground after reaching the maximum height? Ans. 55
- e. How far horizontally the object can reach away from the building when it lands?

 Ans. 40 M
- f. What is the vertical speed just before it hits the ground?

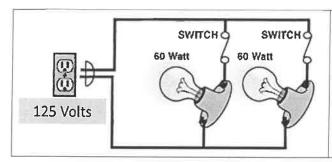
Ans. 50 W/S


2. (Dynamics/energetics, system/sub-system, action/reaction forces; 40%) Two mass-blocks initially (t = 0) at rest in the position A as shown below are being pushed by a force F on a frictionless table top to the position B.

Given: F = 100 N, $m_1 = 16 \text{ kg}$, $m_2 = 4 \text{ kg}$, and $\Delta x = 20 \text{ m}$.

- a. Net force on the two-block system, Ans. \ bo N
- b. The value acceleration of two-block system, Ans. 5 m/3
- c. The value of action force on block-m₂, Ans. 10 N
- d. The value of reaction force on block-m₁, Ans. 20 N
- e. Net force on block-m₁, Ans. 80 N
- f. Net force on the block-m2, Ans. 20N
- g. Work done by the force F when the mass-blocks is being pushed from the position A to B, Ans. 2,000 $\stackrel{\frown}{\sim}$
- h. Kinetic energy of the mass-blocks at the position B, Ans.

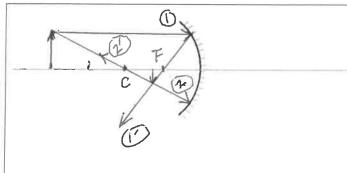
3. (Heat capacity, latent heat of evaporation; 10%) In our lab experiment, 0.50-kg water at room temperature, 25 °C, was being heated by a heater. The temperature vs. time was measured as shown below (ideal case).



Given the specific heat for water, C_w = 4186 J/ (kg oC), Find:

- a. the value of temperature increase at t = 180 s, Ans. 75°
- b. the value of energy transferred to water at t = 180 s, Ans. 150.9153
- c. energy transfer rate during the heating process from 0 to 180 s, P_h , Ans. 812 W
- d. At t = 300 s, the heater was turned off and the amount of water was re-weighted to be 0.46 kg. What is the latent heat of water evaporation, $\Delta m = \frac{1}{2} \ln \frac{1$

Ans. 26 × 106 5/kg


4. (Ohm's law, and electric power, 10%) Two Incandescent light bulbs, specified as 60 W @ 120 V, are connected to the local power supply (V = 125 V) as shown below.

Find:

- a. the value of resistance of the left light bulb, Ans. $240 \, \Omega$
- b. the current passing the left light bulb, Ans. 0.52 R
- c. the voltage on the right light bulb, Ans. $\underline{115 \text{ V}}$
- d. the actual electric power of right light bulb, Ans. 65 W

5. (Geometric optics; 10%)

Given: R = 20 mm, $h_0 = 10$ mm (height), and p = 40 mm. Find:

- a) Focal length, f. Ans. \D CM
 - b) q, Ans. \3.3cm
 - c) h_i, Ans. _ -3.3 cm
 - d) Ray-diagram confirmation [you must show 1-1' and 2-2'rays] (6%)
 - e) Is the image real or virtual? Ans. Yeal

Topics	Reference Equations		
Kinematics (a ≠ 0)	$v = v_0 + at$	$x = x_0 + v_0 t + (1/2)at^2$	$v^2 = {v_0}^2 + 2a(x - x_0)$
Newton's 2 nd law	$\mathbf{F}_{\text{net}} = \mathbf{m} \; \boldsymbol{a}$		
Specific heat/latent heat	$\Delta Q = c m \Delta T$	$L = \Delta Q/\Delta m$	$\Delta Q_{eva} = P_h \Delta t_{eva}$
Ohm's law	I = V/R	P=IV	
Geometric optics	$1/p + 1/q = 1/f$; $f = \pm R/2$	M=hothi M=hi/ho	M = -q/p
Math	$\sin(60^\circ) = \frac{\sqrt{3}}{2}$	$\cos(60^{\circ}) = \frac{1}{2}$	