1. **Electric force/field/potential/potential-energy, 5/ea.** Given: \(q_1 = q_2 = q_3 = 25 \mu C \) in Fig. 1.

 - **Note:** x- and y-axis in cm unit. Find:
 - (a) Force exerted on \(q_3 \) (magnitude) \(\text{Ans. } 4.91 \times 10^{-19} N \) (direction) \(\text{Ans. } +y \)
 - (b) Electric field at the origin \(O \) (0, 0)? (magnitude) \(\text{Ans. } 2.5 \times 10^8 \text{ V/m} \) (direction) \(\text{Ans. } y \)
 - (c) Electric potential at the origin \(O \) \(\text{Ans. } 2.25 \times 10^7 \text{ V} \)
 - (d) If charge \(q_4 = 50 \mu C \) is placed on the origin \(O \), what is the electric potential energy of \(q_4 \)? \(\text{Ans. } 1.25 J \)

2. **Magnetic force/field/flux, Faraday's-Lenz's Law, 4/ea.** A single square coil consists of four conducting wires (ab, bc, cd, and da) with length of 2 m each, and total resistance of 10 ohm placed into a linearly decreasing magnetic field zone indicated by X.

 - **Notes:**
 - a) Magnetic flux change rate? \(\text{Ans. } -2 \text{ mT/s} \)
 - b) Emf generated in the wires? \(\text{Ans. } 2 \text{ V} \)
 - c) Induced current in wires? \(\text{Ans. } 0.2 \text{ A} \)
 - d) The direction of induced current? \(\text{Ans. } \) (Must clearly indicate on the diagram on left)
 - e) Will the coil be forced to move? Yes. \(\) or No.

3. **DC circuits, 4/ea.**

 - (a) The value of current \(i_1 \)? \(\text{Ans. } 2/4 \text{ A} \)
 - (b) The value of current \(i_2 \)? \(\text{Ans. } -1/4 \text{ A} \)
 - (c) The value of current \(i_3 \)? \(\text{Ans. } 3/4 \text{ A} \)
 - (d) The voltage on the 5-ohm resistor? \(\text{Ans. } 1.43 \text{ V} \)
 - (e) The power dissipated on the 20-ohm resistor? \(\text{Ans. } 3.67 \text{ W} \)

4. **a. c. circuits, 4/ea.**

 - Given: 1) a.c. source: \(i(t) = 10 \sin(376.8t) \)
 - 2) \(R = 200 \text{ ohm}; C = 35.2 \mu F; \) and \(L = 200 \text{ mH}. \) Find:
 - (a) The rms voltage on the resistor \(R. \) \(\text{Ans. } 1.4 \text{ kV} \)
 - (b) The max voltage on \(L. \) \(\text{Ans. } 154 \text{ V} \)
 - (c) The max voltage on capacitor \(C. \) \(\text{Ans. } 154 \text{ V} \)
 - (d) Is the circuit in a resonance? \(\text{Ans. } \) Yes. \(\) or No.
 - (e) The value of average power dissipated on the resistor? \(\text{Ans. } 10 \text{ kW} \)

5. **Geometric optics, 4/ea.** Given: A thin lens's focus length, \(f = 20 \text{ mm} \).

 - (a) Where is the image location when \(p = 10 \text{ mm?} \) \(\text{Ans. } -20 \text{ mm} \)
 - (b) If \(h_o = 10 \text{ mm in (a)}, \) what is the value of \(h_i? \) \(\text{Ans. } 20 \text{ mm} \)
 - (c) Referred to (a) and (b), verify your answers using ray diagram on left \(\text{Ans. } \) (must show at least 2 rays: 11° and 22° or 33°)
 - (d) If another converging lens with focus length of 10 mm is placed at the dashed-line position, find the final image location. \(\text{Ans. } 15 \text{ mm} \). (e) is image real \(\sqrt{ } \) or virtual \(\).