
22 MAGNETISM

Figure 22.1 The magnificent spectacle of the Aurora Borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force
Base, Alaska. Shaped by the Earth’s magnetic field, this light is produced by radiation spewed from solar storms. (credit: Senior Airman Joshua Strang,
via Flickr)

Chapter Outline
22.1. Magnets

• Describe the difference between the north and south poles of a magnet.
• Describe how magnetic poles interact with each other.

22.2. Ferromagnets and Electromagnets
• Define ferromagnet.
• Describe the role of magnetic domains in magnetization.
• Explain the significance of the Curie temperature.
• Describe the relationship between electricity and magnetism.

22.3. Magnetic Fields and Magnetic Field Lines
• Define magnetic field and describe the magnetic field lines of various magnetic fields.

22.4. Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
• Describe the effects of magnetic fields on moving charges.
• Use the right hand rule 1 to determine the velocity of a charge, the direction of the magnetic field, and the direction of

the magnetic force on a moving charge.
• Calculate the magnetic force on a moving charge.

22.5. Force on a Moving Charge in a Magnetic Field: Examples and Applications
• Describe the effects of a magnetic field on a moving charge.
• Calculate the radius of curvature of the path of a charge that is moving in a magnetic field.

22.6. The Hall Effect
• Describe the Hall effect.
• Calculate the Hall emf across a current-carrying conductor.

22.7. Magnetic Force on a Current-Carrying Conductor
• Describe the effects of a magnetic force on a current-carrying conductor.
• Calculate the magnetic force on a current-carrying conductor.

22.8. Torque on a Current Loop: Motors and Meters
• Describe how motors and meters work in terms of torque on a current loop.
• Calculate the torque on a current-carrying loop in a magnetic field.

22.9. Magnetic Fields Produced by Currents: Ampere’s Law
• Calculate current that produces a magnetic field.
• Use the right hand rule 2 to determine the direction of current or the direction of magnetic field loops.

22.10. Magnetic Force between Two Parallel Conductors
• Describe the effects of the magnetic force between two conductors.
• Calculate the force between two parallel conductors.
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22.11. More Applications of Magnetism
• Describe some applications of magnetism.

Introduction to Magnetism
One evening, an Alaskan sticks a note to his refrigerator with a small magnet. Through the kitchen window, the Aurora Borealis
glows in the night sky. This grand spectacle is shaped by the same force that holds the note to the refrigerator.

People have been aware of magnets and magnetism for thousands of years. The earliest records date to well before the time of
Christ, particularly in a region of Asia Minor called Magnesia (the name of this region is the source of words like magnetic).
Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. A practical
application for magnets was found later, when they were employed as navigational compasses. The use of magnets in
compasses resulted not only in improved long-distance sailing, but also in the names of “north” and “south” being given to the
two types of magnetic poles.

Today magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has enabled the development
of technologies that affect our everyday lives. The iPod in your purse or backpack, for example, wouldn’t have been possible
without the applications of magnetism and electricity on a small scale.

The discovery that weak changes in a magnetic field in a thin film of iron and chromium could bring about much larger changes
in electrical resistance was one of the first large successes of nanotechnology. The 2007 Nobel Prize in Physics went to Albert
Fert from France and Peter Grunberg from Germany for this discovery of giant magnetoresistance and its applications to
computer memory.

All electric motors, with uses as diverse as powering refrigerators, starting cars, and moving elevators, contain magnets.
Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities employ
magnets to separate iron from other refuse. Hundreds of millions of dollars are spent annually on magnetic containment of fusion
as a future energy source. Magnetic resonance imaging (MRI) has become an important diagnostic tool in the field of medicine,
and the use of magnetism to explore brain activity is a subject of contemporary research and development. The list of
applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation of high-speed
trains. Magnetism is used to explain atomic energy levels, cosmic rays, and charged particles trapped in the Van Allen belts.
Once again, we will find all these disparate phenomena are linked by a small number of underlying physical principles.

Figure 22.2 Engineering of technology like iPods would not be possible without a deep understanding magnetism. (credit: Jesse! S?, Flickr)

22.1 Magnets

Figure 22.3 Magnets come in various shapes, sizes, and strengths. All have both a north pole and a south pole. There is never an isolated pole (a
monopole).

All magnets attract iron, such as that in a refrigerator door. However, magnets may attract or repel other magnets.
Experimentation shows that all magnets have two poles. If freely suspended, one pole will point toward the north. The two poles
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are thus named the north magnetic pole and the south magnetic pole (or more properly, north-seeking and south-seeking
poles, for the attractions in those directions).

Universal Characteristics of Magnets and Magnetic Poles

It is a universal characteristic of all magnets that like poles repel and unlike poles attract. (Note the similarity with
electrostatics: unlike charges attract and like charges repel.)

Further experimentation shows that it is impossible to separate north and south poles in the manner that + and − charges
can be separated.

Figure 22.4 One end of a bar magnet is suspended from a thread that points toward north. The magnet’s two poles are labeled N and S for north-
seeking and south-seeking poles, respectively.

Misconception Alert: Earth’s Geographic North Pole Hides an S

The Earth acts like a very large bar magnet with its south-seeking pole near the geographic North Pole. That is why the
north pole of your compass is attracted toward the geographic north pole of the Earth—because the magnetic pole that is
near the geographic North Pole is actually a south magnetic pole! Confusion arises because the geographic term “North
Pole” has come to be used (incorrectly) for the magnetic pole that is near the North Pole. Thus, “North magnetic pole” is
actually a misnomer—it should be called the South magnetic pole.

Figure 22.5 Unlike poles attract, whereas like poles repel.
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Figure 22.6 North and south poles always occur in pairs. Attempts to separate them result in more pairs of poles. If we continue to split the magnet, we
will eventually get down to an iron atom with a north pole and a south pole—these, too, cannot be separated.

The fact that magnetic poles always occur in pairs of north and south is true from the very large scale—for example, sunspots
always occur in pairs that are north and south magnetic poles—all the way down to the very small scale. Magnetic atoms have
both a north pole and a south pole, as do many types of subatomic particles, such as electrons, protons, and neutrons.

Making Connections: Take-Home Experiment—Refrigerator Magnets

We know that like magnetic poles repel and unlike poles attract. See if you can show this for two refrigerator magnets. Will
the magnets stick if you turn them over? Why do they stick to the door anyway? What can you say about the magnetic
properties of the door next to the magnet? Do refrigerator magnets stick to metal or plastic spoons? Do they stick to all types
of metal?

22.2 Ferromagnets and Electromagnets
Ferromagnets
Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called
ferromagnetic, after the Latin word for iron, ferrum. A group of materials made from the alloys of the rare earth elements are
also used as strong and permanent magnets; a popular one is neodymium. Other materials exhibit weak magnetic effects, which
are detectable only with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets (the way iron is
attracted to magnets), they can also be magnetized themselves—that is, they can be induced to be magnetic or made into
permanent magnets.

Figure 22.7 An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold. The iron becomes a
permanent magnet with the poles aligned as shown: its south pole is adjacent to the north pole of the original magnet, and its north pole is adjacent to
the south pole of the original magnet. Note that there are attractive forces between the magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the material
with unlike poles closest, as in Figure 22.7. (This results in the attraction of the previously unmagnetized material to the magnet.)
What happens on a microscopic scale is illustrated in Figure 22.8. The regions within the material called domains act like small
bar magnets. Within domains, the poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains are
small and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the domains
may grow to millimeter size, aligning themselves as shown in Figure 22.8(b). This induced magnetization can be made
permanent if the material is heated and then cooled, or simply tapped in the presence of other magnets.
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Figure 22.8 (a) An unmagnetized piece of iron (or other ferromagnetic material) has randomly oriented domains. (b) When magnetized by an external
field, the domains show greater alignment, and some grow at the expense of others. Individual atoms are aligned within domains; each atom acts like a
tiny bar magnet.

Conversely, a permanent magnet can be demagnetized by hard blows or by heating it in the absence of another magnet.
Increased thermal motion at higher temperature can disrupt and randomize the orientation and the size of the domains. There is
a well-defined temperature for ferromagnetic materials, which is called the Curie temperature, above which they cannot be
magnetized. The Curie temperature for iron is 1043 K (770ºC) , which is well above room temperature. There are several

elements and alloys that have Curie temperatures much lower than room temperature and are ferromagnetic only below those
temperatures.

Electromagnets
Early in the 19th century, it was discovered that electrical currents cause magnetic effects. The first significant observation was
by the Danish scientist Hans Christian Oersted (1777–1851), who found that a compass needle was deflected by a current-
carrying wire. This was the first significant evidence that the movement of charges had any connection with magnets.
Electromagnetism is the use of electric current to make magnets. These temporarily induced magnets are called
electromagnets. Electromagnets are employed for everything from a wrecking yard crane that lifts scrapped cars to controlling
the beam of a 90-km-circumference particle accelerator to the magnets in medical imaging machines (See Figure 22.9).

Figure 22.9 Instrument for magnetic resonance imaging (MRI). The device uses a superconducting cylindrical coil for the main magnetic field. The
patient goes into this “tunnel” on the gurney. (credit: Bill McChesney, Flickr)

Figure 22.10 shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The patterns are
similar. In fact, electromagnets and ferromagnets have the same basic characteristics—for example, they have north and south
poles that cannot be separated and for which like poles repel and unlike poles attract.
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Figure 22.10 Iron filings near (a) a current-carrying coil and (b) a magnet act like tiny compass needles, showing the shape of their fields. Their
response to a current-carrying coil and a permanent magnet is seen to be very similar, especially near the ends of the coil and the magnet.

Combining a ferromagnet with an electromagnet can produce particularly strong magnetic effects. (See Figure 22.11.) Whenever
strong magnetic effects are needed, such as lifting scrap metal, or in particle accelerators, electromagnets are enhanced by
ferromagnetic materials. Limits to how strong the magnets can be made are imposed by coil resistance (it will overheat and melt
at sufficiently high current), and so superconducting magnets may be employed. These are still limited, because superconducting
properties are destroyed by too great a magnetic field.

Figure 22.11 An electromagnet with a ferromagnetic core can produce very strong magnetic effects. Alignment of domains in the core produces a
magnet, the poles of which are aligned with the electromagnet.

Figure 22.12 shows a few uses of combinations of electromagnets and ferromagnets. Ferromagnetic materials can act as
memory devices, because the orientation of the magnetic fields of small domains can be reversed or erased. Magnetic
information storage on videotapes and computer hard drives are among the most common applications. This property is vital in
our digital world.
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Figure 22.12 An electromagnet induces regions of permanent magnetism on a floppy disk coated with a ferromagnetic material. The information stored
here is digital (a region is either magnetic or not); in other applications, it can be analog (with a varying strength), such as on audiotapes.

Current: The Source of All Magnetism
An electromagnet creates magnetism with an electric current. In later sections we explore this more quantitatively, finding the
strength and direction of magnetic fields created by various currents. But what about ferromagnets? Figure 22.13 shows models
of how electric currents create magnetism at the submicroscopic level. (Note that we cannot directly observe the paths of
individual electrons about atoms, and so a model or visual image, consistent with all direct observations, is made. We can
directly observe the electron’s orbital angular momentum, its spin momentum, and subsequent magnetic moments, all of which
are explained with electric-current-creating subatomic magnetism.) Currents, including those associated with other
submicroscopic particles like protons, allow us to explain ferromagnetism and all other magnetic effects. Ferromagnetism, for
example, results from an internal cooperative alignment of electron spins, possible in some materials but not in others.

Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and
south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current
loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair. Since isolated
north and south magnetic poles, called magnetic monopoles, are not observed, currents are used to explain all magnetic
effects. If magnetic monopoles did exist, then we would have to modify this underlying connection that all magnetism is due to
electrical current. There is no known reason that magnetic monopoles should not exist—they are simply never observed—and so
searches at the subnuclear level continue. If they do not exist, we would like to find out why not. If they do exist, we would like to
see evidence of them.

Electric Currents and Magnetism

Electric current is the source of all magnetism.
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Figure 22.13 (a) In the planetary model of the atom, an electron orbits a nucleus, forming a closed-current loop and producing a magnetic field with a
north pole and a south pole. (b) Electrons have spin and can be crudely pictured as rotating charge, forming a current that produces a magnetic field
with a north pole and a south pole. Neither the planetary model nor the image of a spinning electron is completely consistent with modern physics.
However, they do provide a useful way of understanding phenomena.

PhET Explorations: Magnets and Electromagnets

Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a
magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?

Figure 22.14 Magnets and Electromagnets (http://cnx.org/content/m42368/1.4/magnets-and-electromagnets_en.jar)

22.3 Magnetic Fields and Magnetic Field Lines
Einstein is said to have been fascinated by a compass as a child, perhaps musing on how the needle felt a force without direct
physical contact. His ability to think deeply and clearly about action at a distance, particularly for gravitational, electric, and
magnetic forces, later enabled him to create his revolutionary theory of relativity. Since magnetic forces act at a distance, we
define a magnetic field to represent magnetic forces. The pictorial representation of magnetic field lines is very useful in
visualizing the strength and direction of the magnetic field. As shown in Figure 22.15, the direction of magnetic field lines is
defined to be the direction in which the north end of a compass needle points. The magnetic field is traditionally called the B-
field.

Figure 22.15 Magnetic field lines are defined to have the direction that a small compass points when placed at a location. (a) If small compasses are
used to map the magnetic field around a bar magnet, they will point in the directions shown: away from the north pole of the magnet, toward the south
pole of the magnet. (Recall that the Earth’s north magnetic pole is really a south pole in terms of definitions of poles on a bar magnet.) (b) Connecting
the arrows gives continuous magnetic field lines. The strength of the field is proportional to the closeness (or density) of the lines. (c) If the interior of
the magnet could be probed, the field lines would be found to form continuous closed loops.

Small compasses used to test a magnetic field will not disturb it. (This is analogous to the way we tested electric fields with a
small test charge. In both cases, the fields represent only the object creating them and not the probe testing them.) Figure 22.16
shows how the magnetic field appears for a current loop and a long straight wire, as could be explored with small compasses. A
small compass placed in these fields will align itself parallel to the field line at its location, with its north pole pointing in the
direction of B. Note the symbols used for field into and out of the paper.
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Figure 22.16 Small compasses could be used to map the fields shown here. (a) The magnetic field of a circular current loop is similar to that of a bar
magnet. (b) A long and straight wire creates a field with magnetic field lines forming circular loops. (c) When the wire is in the plane of the paper, the
field is perpendicular to the paper. Note that the symbols used for the field pointing inward (like the tail of an arrow) and the field pointing outward (like
the tip of an arrow).

Making Connections: Concept of a Field

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent
physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields
map electrical forces, and magnetic fields map magnetic forces.

Extensive exploration of magnetic fields has revealed a number of hard-and-fast rules. We use magnetic field lines to represent
the field (the lines are a pictorial tool, not a physical entity in and of themselves). The properties of magnetic field lines can be
summarized by these rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in the
direction of the field line.

2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines per unit
area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.

4. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south
pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from electric
field lines, which begin and end on the positive and negative charges. If magnetic monopoles existed, then magnetic field lines
would begin and end on them.

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
What is the mechanism by which one magnet exerts a force on another? The answer is related to the fact that all magnetism is
caused by current, the flow of charge. Magnetic fields exert forces on moving charges, and so they exert forces on other
magnets, all of which have moving charges.

Right Hand Rule 1
The magnetic force on a moving charge is one of the most fundamental known. Magnetic force is as important as the
electrostatic or Coulomb force. Yet the magnetic force is more complex, in both the number of factors that affects it and in its
direction, than the relatively simple Coulomb force. The magnitude of the magnetic force F on a charge q moving at a speed

v in a magnetic field of strength B is given by

(22.1)F = qvB sin θ,

where θ is the angle between the directions of v and B. This force is often called the Lorentz force. In fact, this is how we

define the magnetic field strength B —in terms of the force on a charged particle moving in a magnetic field. The SI unit for

magnetic field strength B is called the tesla (T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To determine

how the tesla relates to other SI units, we solve F = qvB sin θ for B .

(22.2)B = F
qv sin θ

Because sin θ is unitless, the tesla is

(22.3)1 T = 1 N
C ⋅ m/s = 1 N

A ⋅ m
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(note that C/s = A).

Another smaller unit, called the gauss (G), where 1 G = 10−4 T , is sometimes used. The strongest permanent magnets have
fields near 2 T; superconducting electromagnets may attain 10 T or more. The Earth’s magnetic field on its surface is only about

5×10−5 T , or 0.5 G.

The direction of the magnetic force F is perpendicular to the plane formed by v and B , as determined by the right hand rule
1 (or RHR-1), which is illustrated in Figure 22.17. RHR-1 states that, to determine the direction of the magnetic force on a
positive moving charge, you point the thumb of the right hand in the direction of v , the fingers in the direction of B , and a

perpendicular to the palm points in the direction of F . One way to remember this is that there is one velocity, and so the thumb
represents it. There are many field lines, and so the fingers represent them. The force is in the direction you would push with
your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge.

Figure 22.17 Magnetic fields exert forces on moving charges. This force is one of the most basic known. The direction of the magnetic force on a
moving charge is perpendicular to the plane formed by v and B and follows right hand rule–1 (RHR-1) as shown. The magnitude of the force is

proportional to q , v , B , and the sine of the angle between v and B .

Making Connections: Charges and Magnets

There is no magnetic force on static charges. However, there is a magnetic force on moving charges. When charges are
stationary, their electric fields do not affect magnets. But, when charges move, they produce magnetic fields that exert forces
on other magnets. When there is relative motion, a connection between electric and magnetic fields emerges—each affects
the other.

Example 22.1 Calculating Magnetic Force: Earth’s Magnetic Field on a Charged Glass Rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field.
To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate
the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place
where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as
shown in Figure 22.18.)
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Figure 22.18 A positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is
straight down as shown. A negative charge moving in the same direction would feel a force straight up.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation
F = qvB sin θ to find the force.

Solution

The magnetic force is

(22.4)F = qvb sin θ.

We see that sin θ = 1 , since the angle between the velocity and the direction of the field is 90º . Entering the other given
quantities yields

(22.5)F = ⎛
⎝20×10–9 C⎞

⎠(10 m/s)⎛
⎝5×10–5 T⎞

⎠

= 1×10–11 (C ⋅ m/s)⎛⎝
N

C ⋅ m/s
⎞
⎠ = 1×10–11 N.

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit,
since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce
very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge
in a Magnetic Field: Examples and Applications.

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
Magnetic force can cause a charged particle to move in a circular or spiral path. Cosmic rays are energetic charged particles in
outer space, some of which approach the Earth. They can be forced into spiral paths by the Earth’s magnetic field. Protons in
giant accelerators are kept in a circular path by magnetic force. The bubble chamber photograph in Figure 22.19 shows charged
particles moving in such curved paths. The curved paths of charged particles in magnetic fields are the basis of a number of
phenomena and can even be used analytically, such as in a mass spectrometer.
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Figure 22.19 Trails of bubbles are produced by high-energy charged particles moving through the superheated liquid hydrogen in this artist’s rendition
of a bubble chamber. There is a strong magnetic field perpendicular to the page that causes the curved paths of the particles. The radius of the path
can be used to find the mass, charge, and energy of the particle.

So does the magnetic force cause circular motion? Magnetic force is always perpendicular to velocity, so that it does no work on
the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected, but not the
speed. This is typical of uniform circular motion. The simplest case occurs when a charged particle moves perpendicular to a
uniform B -field, such as shown in Figure 22.20. (If this takes place in a vacuum, the magnetic field is the dominant factor

determining the motion.) Here, the magnetic force supplies the centripetal force Fc = mv2 / r . Noting that sin θ = 1 , we see

that F = qvB .

Figure 22.20 A negatively charged particle moves in the plane of the page in a region where the magnetic field is perpendicular into the page
(represented by the small circles with x’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, and so velocity changes in
direction but not magnitude. Uniform circular motion results.

Because the magnetic force F supplies the centripetal force Fc , we have

(22.6)
qvB = mv2

r .

Solving for r yields

(22.7)r = mv
qB .

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q , moving at a speed v
perpendicular to a magnetic field of strength B . If the velocity is not perpendicular to the magnetic field, then v is the
component of the velocity perpendicular to the field. The component of the velocity parallel to the field is unaffected, since the
magnetic force is zero for motion parallel to the field. This produces a spiral motion rather than a circular one.
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Example 22.2 Calculating the Curvature of the Path of an Electron Moving in a Magnetic Field: A
Magnet on a TV Screen

A magnet brought near an old-fashioned TV screen such as in Figure 22.21 (TV sets with cathode ray tubes instead of LCD
screens) severely distorts its picture by altering the path of the electrons that make its phosphors glow. (Don’t try this at
home, as it will permanently magnetize and ruin the TV.) To illustrate this, calculate the radius of curvature of the path of

an electron having a velocity of 6.00×107 m/s (corresponding to the accelerating voltage of about 10.0 kV used in some

TVs) perpendicular to a magnetic field of strength B = 0.500 T (obtainable with permanent magnets).

Figure 22.21 Side view showing what happens when a magnet comes in contact with a computer monitor or TV screen. Electrons moving toward
the screen spiral about magnetic field lines, maintaining the component of their velocity parallel to the field lines. This distorts the image on the
screen.

Strategy

We can find the radius of curvature r directly from the equation r = mv
qB , since all other quantities in it are given or known.

Solution

Using known values for the mass and charge of an electron, along with the given values of v and B gives us

(22.8)
r = mv

qB =
⎛
⎝9.11×10−31 kg⎞

⎠
⎛
⎝6.00×107 m/s⎞

⎠
⎛
⎝1.60×10−19 C⎞

⎠(0.500 T)

= 6.83×10−4 m
or

(22.9)r = 0.683 mm.
Discussion

The small radius indicates a large effect. The electrons in the TV picture tube are made to move in very tight circles, greatly
altering their paths and distorting the image.

Figure 22.22 shows how electrons not moving perpendicular to magnetic field lines follow the field lines. The component of
velocity parallel to the lines is unaffected, and so the charges spiral along the field lines. If field strength increases in the direction
of motion, the field will exert a force to slow the charges, forming a kind of magnetic mirror, as shown below.
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Figure 22.22 When a charged particle moves along a magnetic field line into a region where the field becomes stronger, the particle experiences a
force that reduces the component of velocity parallel to the field. This force slows the motion along the field line and here reverses it, forming a
“magnetic mirror.”

The properties of charged particles in magnetic fields are related to such different things as the Aurora Australis or Aurora
Borealis and particle accelerators. Charged particles approaching magnetic field lines may get trapped in spiral orbits about the
lines rather than crossing them, as seen above. Some cosmic rays, for example, follow the Earth’s magnetic field lines, entering
the atmosphere near the magnetic poles and causing the southern or northern lights through their ionization of molecules in the
atmosphere. This glow of energized atoms and molecules is seen in Figure 22.1. Those particles that approach middle latitudes
must cross magnetic field lines, and many are prevented from penetrating the atmosphere. Cosmic rays are a component of
background radiation; consequently, they give a higher radiation dose at the poles than at the equator.

Figure 22.23 Energetic electrons and protons, components of cosmic rays, from the Sun and deep outer space often follow the Earth’s magnetic field
lines rather than cross them. (Recall that the Earth’s north magnetic pole is really a south pole in terms of a bar magnet.)

Some incoming charged particles become trapped in the Earth’s magnetic field, forming two belts above the atmosphere known
as the Van Allen radiation belts after the discoverer James A. Van Allen, an American astrophysicist. (See Figure 22.24.)
Particles trapped in these belts form radiation fields (similar to nuclear radiation) so intense that manned space flights avoid them
and satellites with sensitive electronics are kept out of them. In the few minutes it took lunar missions to cross the Van Allen
radiation belts, astronauts received radiation doses more than twice the allowed annual exposure for radiation workers. Other
planets have similar belts, especially those having strong magnetic fields like Jupiter.
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Figure 22.24 The Van Allen radiation belts are two regions in which energetic charged particles are trapped in the Earth’s magnetic field. One belt lies
about 300 km above the Earth’s surface, the other about 16,000 km. Charged particles in these belts migrate along magnetic field lines and are
partially reflected away from the poles by the stronger fields there. The charged particles that enter the atmosphere are replenished by the Sun and
sources in deep outer space.

Back on Earth, we have devices that employ magnetic fields to contain charged particles. Among them are the giant particle
accelerators that have been used to explore the substructure of matter. (See Figure 22.25.) Magnetic fields not only control the
direction of the charged particles, they also are used to focus particles into beams and overcome the repulsion of like charges in
these beams.

Figure 22.25 The Fermilab facility in Illinois has a large particle accelerator (the most powerful in the world until 2008) that employs magnetic fields
(magnets seen here in orange) to contain and direct its beam. This and other accelerators have been in use for several decades and have allowed us
to discover some of the laws underlying all matter. (credit: ammcrim, Flickr)

Thermonuclear fusion (like that occurring in the Sun) is a hope for a future clean energy source. One of the most promising
devices is the tokamak, which uses magnetic fields to contain (or trap) and direct the reactive charged particles. (See Figure
22.26.) Less exotic, but more immediately practical, amplifiers in microwave ovens use a magnetic field to contain oscillating
electrons. These oscillating electrons generate the microwaves sent into the oven.
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Figure 22.26 Tokamaks such as the one shown in the figure are being studied with the goal of economical production of energy by nuclear fusion.
Magnetic fields in the doughnut-shaped device contain and direct the reactive charged particles. (credit: David Mellis, Flickr)

Mass spectrometers have a variety of designs, and many use magnetic fields to measure mass. The curvature of a charged
particle’s path in the field is related to its mass and is measured to obtain mass information. (See More Applications of
Magnetism.) Historically, such techniques were employed in the first direct observations of electron charge and mass. Today,
mass spectrometers (sometimes coupled with gas chromatographs) are used to determine the make-up and sequencing of large
biological molecules.

22.6 The Hall Effect
We have seen effects of a magnetic field on free-moving charges. The magnetic field also affects charges moving in a conductor.
One result is the Hall effect, which has important implications and applications.

Figure 22.27 shows what happens to charges moving through a conductor in a magnetic field. The field is perpendicular to the
electron drift velocity and to the width of the conductor. Note that conventional current is to the right in both parts of the figure. In
part (a), electrons carry the current and move to the left. In part (b), positive charges carry the current and move to the right.
Moving electrons feel a magnetic force toward one side of the conductor, leaving a net positive charge on the other side. This
separation of charge creates a voltage ε , known as the Hall emf, across the conductor. The creation of a voltage across a
current-carrying conductor by a magnetic field is known as the Hall effect, after Edwin Hall, the American physicist who
discovered it in 1879.

Figure 22.27 The Hall effect. (a) Electrons move to the left in this flat conductor (conventional current to the right). The magnetic field is directly out of
the page, represented by circled dots; it exerts a force on the moving charges, causing a voltage ε , the Hall emf, across the conductor. (b) Positive
charges moving to the right (conventional current also to the right) are moved to the side, producing a Hall emf of the opposite sign, –ε . Thus, if the
direction of the field and current are known, the sign of the charge carriers can be determined from the Hall effect.
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One very important use of the Hall effect is to determine whether positive or negative charges carries the current. Note that in
Figure 22.27(b), where positive charges carry the current, the Hall emf has the sign opposite to when negative charges carry the
current. Historically, the Hall effect was used to show that electrons carry current in metals and it also shows that positive
charges carry current in some semiconductors. The Hall effect is used today as a research tool to probe the movement of
charges, their drift velocities and densities, and so on, in materials. In 1980, it was discovered that the Hall effect is quantized, an
example of quantum behavior in a macroscopic object.

The Hall effect has other uses that range from the determination of blood flow rate to precision measurement of magnetic field
strength. To examine these quantitatively, we need an expression for the Hall emf, ε , across a conductor. Consider the balance

of forces on a moving charge in a situation where B , v , and l are mutually perpendicular, such as shown in Figure 22.28.
Although the magnetic force moves negative charges to one side, they cannot build up without limit. The electric field caused by
their separation opposes the magnetic force, F = qvB , and the electric force, Fe = qE , eventually grows to equal it. That is,

(22.10)qE = qvB

or

(22.11)E = vB.

Note that the electric field E is uniform across the conductor because the magnetic field B is uniform, as is the conductor. For

a uniform electric field, the relationship between electric field and voltage is E = ε / l , where l is the width of the conductor and
ε is the Hall emf. Entering this into the last expression gives

(22.12)ε
l = vB.

Solving this for the Hall emf yields

(22.13)ε = Blv (B, v, and l, mutually perpendicular),

where ε is the Hall effect voltage across a conductor of width l through which charges move at a speed v .

Figure 22.28 The Hall emf ε produces an electric force that balances the magnetic force on the moving charges. The magnetic force produces
charge separation, which builds up until it is balanced by the electric force, an equilibrium that is quickly reached.

One of the most common uses of the Hall effect is in the measurement of magnetic field strength B . Such devices, called Hall
probes, can be made very small, allowing fine position mapping. Hall probes can also be made very accurate, usually
accomplished by careful calibration. Another application of the Hall effect is to measure fluid flow in any fluid that has free
charges (most do). (See Figure 22.29.) A magnetic field applied perpendicular to the flow direction produces a Hall emf ε as

shown. Note that the sign of ε depends not on the sign of the charges, but only on the directions of B and v . The magnitude

of the Hall emf is ε = Blv , where l is the pipe diameter, so that the average velocity v can be determined from ε providing
the other factors are known.
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Figure 22.29 The Hall effect can be used to measure fluid flow in any fluid having free charges, such as blood. The Hall emf ε is measured across
the tube perpendicular to the applied magnetic field and is proportional to the average velocity v .

Example 22.3 Calculating the Hall emf: Hall Effect for Blood Flow

A Hall effect flow probe is placed on an artery, applying a 0.100-T magnetic field across it, in a setup similar to that in Figure
22.29. What is the Hall emf, given the vessel’s inside diameter is 4.00 mm and the average blood velocity is 20.0 cm/s?

Strategy

Because B , v , and l are mutually perpendicular, the equation ε = Blv can be used to find ε .

Solution

Entering the given values for B , v , and l gives

(22.14)ε = Blv = (0.100 T)⎛
⎝4.00×10−3 m⎞

⎠(0.200 m/s)
= 80.0 μV

Discussion

This is the average voltage output. Instantaneous voltage varies with pulsating blood flow. The voltage is small in this type of
measurement. ε is particularly difficult to measure, because there are voltages associated with heart action (ECG voltages)
that are on the order of millivolts. In practice, this difficulty is overcome by applying an AC magnetic field, so that the Hall emf
is AC with the same frequency. An amplifier can be very selective in picking out only the appropriate frequency, eliminating
signals and noise at other frequencies.

22.7 Magnetic Force on a Current-Carrying Conductor
Because charges ordinarily cannot escape a conductor, the magnetic force on charges moving in a conductor is transmitted to
the conductor itself.

Figure 22.30 The magnetic field exerts a force on a current-carrying wire in a direction given by the right hand rule 1 (the same direction as that on the
individual moving charges). This force can easily be large enough to move the wire, since typical currents consist of very large numbers of moving
charges.
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We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges.
(The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd is

given by F = qvdB sin θ . Taking B to be uniform over a length of wire l and zero elsewhere, the total magnetic force on the

wire is then F = (qvdB sin θ)(N) , where N is the number of charge carriers in the section of wire of length l . Now,

N = nV , where n is the number of charge carriers per unit volume and V is the volume of wire in the field. Noting that

V = Al , where A is the cross-sectional area of the wire, then the force on the wire is F = (qvdB sin θ)(nAl) . Gathering

terms,

(22.15)F = (nqAvd)lB sin θ.

Because nqAvd = I (see Current),

(22.16)F = IlB sin θ

is the equation for magnetic force on a length l of wire carrying a current I in a uniform magnetic field B , as shown in Figure
22.31. If we divide both sides of this expression by l , we find that the magnetic force per unit length of wire in a uniform field is

F
l = IB sin θ . The direction of this force is given by RHR-1, with the thumb in the direction of the current I . Then, with the

fingers in the direction of B , a perpendicular to the palm points in the direction of F , as in Figure 22.31.

Figure 22.31 The force on a current-carrying wire in a magnetic field is F = IlB sin θ . Its direction is given by RHR-1.

Example 22.4 Calculating Magnetic Force on a Current-Carrying Wire: A Strong Magnetic Field

Calculate the force on the wire shown in Figure 22.30, given B = 1.50 T , l = 5.00 cm , and I = 20.0 A .

Strategy

The force can be found with the given information by using F = IlB sin θ and noting that the angle θ between I and B
is 90º , so that sin θ = 1 .

Solution

Entering the given values into F = IlB sin θ yields

(22.17)F = IlB sin θ = (20.0 A)(0.0500 m)(1.50 T)(1).

The units for tesla are 1 T = N
A ⋅ m ; thus,

(22.18)F = 1.50 N.
Discussion

This large magnetic field creates a significant force on a small length of wire.
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Magnetic force on current-carrying conductors is used to convert electric energy to work. (Motors are a prime example—they
employ loops of wire and are considered in the next section.) Magnetohydrodynamics (MHD) is the technical name given to a
clever application where magnetic force pumps fluids without moving mechanical parts. (See Figure 22.32.)

Figure 22.32 Magnetohydrodynamics. The magnetic force on the current passed through this fluid can be used as a nonmechanical pump.

A strong magnetic field is applied across a tube and a current is passed through the fluid at right angles to the field, resulting in a
force on the fluid parallel to the tube axis as shown. The absence of moving parts makes this attractive for moving a hot,
chemically active substance, such as the liquid sodium employed in some nuclear reactors. Experimental artificial hearts are
testing with this technique for pumping blood, perhaps circumventing the adverse effects of mechanical pumps. (Cell
membranes, however, are affected by the large fields needed in MHD, delaying its practical application in humans.) MHD
propulsion for nuclear submarines has been proposed, because it could be considerably quieter than conventional propeller
drives. The deterrent value of nuclear submarines is based on their ability to hide and survive a first or second nuclear strike. As
we slowly disassemble our nuclear weapons arsenals, the submarine branch will be the last to be decommissioned because of
this ability (See Figure 22.33.) Existing MHD drives are heavy and inefficient—much development work is needed.

Figure 22.33 An MHD propulsion system in a nuclear submarine could produce significantly less turbulence than propellers and allow it to run more
silently. The development of a silent drive submarine was dramatized in the book and the film The Hunt for Red October.

22.8 Torque on a Current Loop: Motors and Meters
Motors are the most common application of magnetic force on current-carrying wires. Motors have loops of wire in a magnetic
field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical
energy is converted to mechanical work in the process. (See Figure 22.34.)
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Figure 22.34 Torque on a current loop. A current-carrying loop of wire attached to a vertically rotating shaft feels magnetic forces that produce a
clockwise torque as viewed from above.

Let us examine the force on each segment of the loop in Figure 22.34 to find the torques produced about the axis of the vertical
shaft. (This will lead to a useful equation for the torque on the loop.) We take the magnetic field to be uniform over the
rectangular loop, which has width w and height l . First, we note that the forces on the top and bottom segments are vertical
and, therefore, parallel to the shaft, producing no torque. Those vertical forces are equal in magnitude and opposite in direction,
so that they also produce no net force on the loop. Figure 22.35 shows views of the loop from above. Torque is defined as
τ = rF sin θ , where F is the force, r is the distance from the pivot that the force is applied, and θ is the angle between r
and F . As seen in Figure 22.35(a), right hand rule 1 gives the forces on the sides to be equal in magnitude and opposite in

direction, so that the net force is again zero. However, each force produces a clockwise torque. Since r = w / 2 , the torque on

each vertical segment is (w / 2)F sin θ , and the two add to give a total torque.

(22.19)τ = w
2 F sin θ + w

2 F sin θ = wF sin θ
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Figure 22.35 Top views of a current-carrying loop in a magnetic field. (a) The equation for torque is derived using this view. Note that the perpendicular
to the loop makes an angle θ with the field that is the same as the angle between w / 2 and F . (b) The maximum torque occurs when θ is a right

angle and sin θ = 1 . (c) Zero (minimum) torque occurs when θ is zero and sin θ = 0 . (d) The torque reverses once the loop rotates past

θ = 0 .

Now, each vertical segment has a length l that is perpendicular to B , so that the force on each is F = IlB . Entering F into
the expression for torque yields

(22.20)τ = wIlB sin θ.

If we have a multiple loop of N turns, we get N times the torque of one loop. Finally, note that the area of the loop is A = wl ;
the expression for the torque becomes

(22.21)τ = NIAB sin θ.
This is the torque on a current-carrying loop in a uniform magnetic field. This equation can be shown to be valid for a loop of any
shape. The loop carries a current I , has N turns, each of area A , and the perpendicular to the loop makes an angle θ with

the field B . The net force on the loop is zero.

Example 22.5 Calculating Torque on a Current-Carrying Loop in a Strong Magnetic Field

Find the maximum torque on a 100-turn square loop of a wire of 10.0 cm on a side that carries 15.0 A of current in a 2.00-T
field.

Strategy

Torque on the loop can be found using τ = NIAB sin θ . Maximum torque occurs when θ = 90º and sin θ = 1 .

Solution
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For sin θ = 1 , the maximum torque is

(22.22)τmax = NIAB.

Entering known values yields

(22.23)τmax = (100)(15.0 A)⎛
⎝0.100 m2⎞

⎠(2.00 T)
= 30.0 N ⋅ m.

Discussion

This torque is large enough to be useful in a motor.

The torque found in the preceding example is the maximum. As the coil rotates, the torque decreases to zero at θ = 0 . The

torque then reverses its direction once the coil rotates past θ = 0 . (See Figure 22.35(d).) This means that, unless we do

something, the coil will oscillate back and forth about equilibrium at θ = 0 . To get the coil to continue rotating in the same

direction, we can reverse the current as it passes through θ = 0 with automatic switches called brushes. (See Figure 22.36.)

Figure 22.36 (a) As the angular momentum of the coil carries it through θ = 0 , the brushes reverse the current to keep the torque clockwise. (b) The
coil will rotate continuously in the clockwise direction, with the current reversing each half revolution to maintain the clockwise torque.

Meters, such as those in analog fuel gauges on a car, are another common application of magnetic torque on a current-carrying
loop. Figure 22.37 shows that a meter is very similar in construction to a motor. The meter in the figure has its magnets shaped
to limit the effect of θ by making B perpendicular to the loop over a large angular range. Thus the torque is proportional to I
and not θ . A linear spring exerts a counter-torque that balances the current-produced torque. This makes the needle deflection

proportional to I . If an exact proportionality cannot be achieved, the gauge reading can be calibrated. To produce a
galvanometer for use in analog voltmeters and ammeters that have a low resistance and respond to small currents, we use a
large loop area A , high magnetic field B , and low-resistance coils.
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Figure 22.37 Meters are very similar to motors but only rotate through a part of a revolution. The magnetic poles of this meter are shaped to keep the
component of B perpendicular to the loop constant, so that the torque does not depend on θ and the deflection against the return spring is

proportional only to the current I .

22.9 Magnetic Fields Produced by Currents: Ampere’s Law
How much current is needed to produce a significant magnetic field, perhaps as strong as the Earth’s field? Surveyors will tell
you that overhead electric power lines create magnetic fields that interfere with their compass readings. Indeed, when Oersted
discovered in 1820 that a current in a wire affected a compass needle, he was not dealing with extremely large currents. How
does the shape of wires carrying current affect the shape of the magnetic field created? We noted earlier that a current loop
created a magnetic field similar to that of a bar magnet, but what about a straight wire or a toroid (doughnut)? How is the
direction of a current-created field related to the direction of the current? Answers to these questions are explored in this section,
together with a brief discussion of the law governing the fields created by currents.

Magnetic Field Created by a Long Straight Current-Carrying Wire: Right Hand Rule 2
Magnetic fields have both direction and magnitude. As noted before, one way to explore the direction of a magnetic field is with
compasses, as shown for a long straight current-carrying wire in Figure 22.38. Hall probes can determine the magnitude of the
field. The field around a long straight wire is found to be in circular loops. The right hand rule 2 (RHR-2) emerges from this
exploration and is valid for any current segment—point the thumb in the direction of the current, and the fingers curl in the
direction of the magnetic field loops created by it.
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Figure 22.38 (a) Compasses placed near a long straight current-carrying wire indicate that field lines form circular loops centered on the wire. (b) Right
hand rule 2 states that, if the right hand thumb points in the direction of the current, the fingers curl in the direction of the field. This rule is consistent
with the field mapped for the long straight wire and is valid for any current segment.

The magnetic field strength (magnitude) produced by a long straight current-carrying wire is found by experiment to be

(22.24)
B = µ0 I

2πr (long straight wire),

where I is the current, r is the shortest distance to the wire, and the constant µ0 = 4π × 10−7 T ⋅ m/A is the permeability

of free space. (µ0 is one of the basic constants in nature. We will see later that µ0 is related to the speed of light.) Since the

wire is very long, the magnitude of the field depends only on distance from the wire r , not on position along the wire.

Example 22.6 Calculating Current that Produces a Magnetic Field

Find the current in a long straight wire that would produce a magnetic field twice the strength of the Earth’s at a distance of
5.0 cm from the wire.

Strategy

The Earth’s field is about 5.0×10−5 T , and so here B due to the wire is taken to be 1.0×10−4 T . The equation

B = µ0 I
2πr can be used to find I , since all other quantities are known.

Solution

Solving for I and entering known values gives

(22.25)
I = 2πrB

µ0
=

2π⎛
⎝5.0×10−2 m⎞

⎠
⎛
⎝1.0×10−4 T⎞

⎠

4π×10−7 T ⋅ m/A
= 25 A.

Discussion

So a moderately large current produces a significant magnetic field at a distance of 5.0 cm from a long straight wire. Note
that the answer is stated to only two digits, since the Earth’s field is specified to only two digits in this example.
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Ampere’s Law and Others
The magnetic field of a long straight wire has more implications than you might at first suspect. Each segment of current
produces a magnetic field like that of a long straight wire, and the total field of any shape current is the vector sum of the fields
due to each segment. The formal statement of the direction and magnitude of the field due to each segment is called the Biot-
Savart law. Integral calculus is needed to sum the field for an arbitrary shape current. This results in a more complete law, called
Ampere’s law, which relates magnetic field and current in a general way. Ampere’s law in turn is a part of Maxwell’s equations,
which give a complete theory of all electromagnetic phenomena. Considerations of how Maxwell’s equations appear to different
observers led to the modern theory of relativity, and the realization that electric and magnetic fields are different manifestations of
the same thing. Most of this is beyond the scope of this text in both mathematical level, requiring calculus, and in the amount of
space that can be devoted to it. But for the interested student, and particularly for those who continue in physics, engineering, or
similar pursuits, delving into these matters further will reveal descriptions of nature that are elegant as well as profound. In this
text, we shall keep the general features in mind, such as RHR-2 and the rules for magnetic field lines listed in Magnetic Fields
and Magnetic Field Lines, while concentrating on the fields created in certain important situations.

Making Connections: Relativity

Hearing all we do about Einstein, we sometimes get the impression that he invented relativity out of nothing. On the contrary,
one of Einstein’s motivations was to solve difficulties in knowing how different observers see magnetic and electric fields.

Magnetic Field Produced by a Current-Carrying Circular Loop
The magnetic field near a current-carrying loop of wire is shown in Figure 22.39. Both the direction and the magnitude of the
magnetic field produced by a current-carrying loop are complex. RHR-2 can be used to give the direction of the field near the
loop, but mapping with compasses and the rules about field lines given in Magnetic Fields and Magnetic Field Lines are
needed for more detail. There is a simple formula for the magnetic field strength at the center of a circular loop. It is

(22.26)
B = µ0 I

2R (at center of loop),

where R is the radius of the loop. This equation is very similar to that for a straight wire, but it is valid only at the center of a
circular loop of wire. The similarity of the equations does indicate that similar field strength can be obtained at the center of a
loop. One way to get a larger field is to have N loops; then, the field is B = Nµ0I / (2R) . Note that the larger the loop, the

smaller the field at its center, because the current is farther away.

Figure 22.39 (a) RHR-2 gives the direction of the magnetic field inside and outside a current-carrying loop. (b) More detailed mapping with compasses
or with a Hall probe completes the picture. The field is similar to that of a bar magnet.

Magnetic Field Produced by a Current-Carrying Solenoid
A solenoid is a long coil of wire (with many turns or loops, as opposed to a flat loop). Because of its shape, the field inside a
solenoid can be very uniform, and also very strong. The field just outside the coils is nearly zero. Figure 22.40 shows how the
field looks and how its direction is given by RHR-2.

878 Chapter 22 | Magnetism

This OpenStax book is available for free at http://cnx.org/content/col11406/1.9



Figure 22.40 (a) Because of its shape, the field inside a solenoid of length l is remarkably uniform in magnitude and direction, as indicated by the
straight and uniformly spaced field lines. The field outside the coils is nearly zero. (b) This cutaway shows the magnetic field generated by the current
in the solenoid.

The magnetic field inside of a current-carrying solenoid is very uniform in direction and magnitude. Only near the ends does it
begin to weaken and change direction. The field outside has similar complexities to flat loops and bar magnets, but the magnetic
field strength inside a solenoid is simply

(22.27)B = µ0nI (inside a solenoid),

where n is the number of loops per unit length of the solenoid (n = N / l , with N being the number of loops and l the

length). Note that B is the field strength anywhere in the uniform region of the interior and not just at the center. Large uniform
fields spread over a large volume are possible with solenoids, as Example 22.7 implies.

Example 22.7 Calculating Field Strength inside a Solenoid

What is the field inside a 2.00-m-long solenoid that has 2000 loops and carries a 1600-A current?

Strategy

To find the field strength inside a solenoid, we use B = µ0nI . First, we note the number of loops per unit length is

(22.28)n = N
l = 2000

2.00 m = 1000 m−1 = 10 cm−1 .

Solution

Substituting known values gives

(22.29)B = µ0nI = ⎛
⎝4π×10−7 T ⋅ m/A⎞

⎠
⎛
⎝1000 m−1⎞

⎠(1600 A)
= 2.01 T.

Discussion

This is a large field strength that could be established over a large-diameter solenoid, such as in medical uses of magnetic
resonance imaging (MRI). The very large current is an indication that the fields of this strength are not easily achieved,
however. Such a large current through 1000 loops squeezed into a meter’s length would produce significant heating. Higher
currents can be achieved by using superconducting wires, although this is expensive. There is an upper limit to the current,
since the superconducting state is disrupted by very large magnetic fields.

There are interesting variations of the flat coil and solenoid. For example, the toroidal coil used to confine the reactive particles in
tokamaks is much like a solenoid bent into a circle. The field inside a toroid is very strong but circular. Charged particles travel in
circles, following the field lines, and collide with one another, perhaps inducing fusion. But the charged particles do not cross field
lines and escape the toroid. A whole range of coil shapes are used to produce all sorts of magnetic field shapes. Adding
ferromagnetic materials produces greater field strengths and can have a significant effect on the shape of the field.
Ferromagnetic materials tend to trap magnetic fields (the field lines bend into the ferromagnetic material, leaving weaker fields
outside it) and are used as shields for devices that are adversely affected by magnetic fields, including the Earth’s magnetic field.
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PhET Explorations: Generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can
use them to make a bulb light.

Figure 22.41 Generator (http://cnx.org/content/m42382/1.3/generator_en.jar)

22.10 Magnetic Force between Two Parallel Conductors
You might expect that there are significant forces between current-carrying wires, since ordinary currents produce significant
magnetic fields and these fields exert significant forces on ordinary currents. But you might not expect that the force between
wires is used to define the ampere. It might also surprise you to learn that this force has something to do with why large circuit
breakers burn up when they attempt to interrupt large currents.

The force between two long straight and parallel conductors separated by a distance r can be found by applying what we have
developed in preceding sections. Figure 22.42 shows the wires, their currents, the fields they create, and the subsequent forces
they exert on one another. Let us consider the field produced by wire 1 and the force it exerts on wire 2 (call the force F2 ). The

field due to I1 at a distance r is given to be

(22.30)
B1 = µ0 I1

2πr .

Figure 22.42 (a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by RHR-2. (b) A view
from above of the two wires shown in (a), with one magnetic field line shown for each wire. RHR-1 shows that the force between the parallel
conductors is attractive when the currents are in the same direction. A similar analysis shows that the force is repulsive between currents in opposite
directions.

This field is uniform along wire 2 and perpendicular to it, and so the force F2 it exerts on wire 2 is given by F = IlB sin θ with

sin θ = 1 :

(22.31)F2 = I2lB1.

By Newton’s third law, the forces on the wires are equal in magnitude, and so we just write F for the magnitude of F2 . (Note

that F1 = −F2 .) Since the wires are very long, it is convenient to think in terms of F / l , the force per unit length. Substituting

the expression for B1 into the last equation and rearranging terms gives

(22.32)F
l = µ0 I1 I2

2πr .

F / l is the force per unit length between two parallel currents I1 and I2 separated by a distance r . The force is attractive if

the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the pinch effect in electric arcs and plasmas. The force exists whether the currents are in wires or
not. In an electric arc, where currents are moving parallel to one another, there is an attraction that squeezes currents into a
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smaller tube. In large circuit breakers, like those used in neighborhood power distribution systems, the pinch effect can
concentrate an arc between plates of a switch trying to break a large current, burn holes, and even ignite the equipment. Another
example of the pinch effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by
magnetic forces.

The operational definition of the ampere is based on the force between current-carrying wires. Note that for parallel wires
separated by 1 meter with each carrying 1 ampere, the force per meter is

(22.33)
F
l =

⎛
⎝4π×10−7 T ⋅ m/A⎞

⎠(1 A)2

(2π)(1 m) = 2×10−7 N/m.

Since µ0 is exactly 4π×10−7 T ⋅ m/A by definition, and because 1 T = 1 N/(A ⋅ m) , the force per meter is exactly

2×10−7 N/m . This is the basis of the operational definition of the ampere.

The Ampere

The official definition of the ampere is:

One ampere of current through each of two parallel conductors of infinite length, separated by one meter in empty space

free of other magnetic fields, causes a force of exactly 2×10−7 N/m on each conductor.

Infinite-length straight wires are impractical and so, in practice, a current balance is constructed with coils of wire separated by a
few centimeters. Force is measured to determine current. This also provides us with a method for measuring the coulomb. We
measure the charge that flows for a current of one ampere in one second. That is, 1 C = 1 A ⋅ s . For both the ampere and the
coulomb, the method of measuring force between conductors is the most accurate in practice.

22.11 More Applications of Magnetism
Mass Spectrometry
The curved paths followed by charged particles in magnetic fields can be put to use. A charged particle moving perpendicular to
a magnetic field travels in a circular path having a radius r .

(22.34)r = mv
qB

It was noted that this relationship could be used to measure the mass of charged particles such as ions. A mass spectrometer is
a device that measures such masses. Most mass spectrometers use magnetic fields for this purpose, although some of them
have extremely sophisticated designs. Since there are five variables in the relationship, there are many possibilities. However, if
v , q , and B can be fixed, then the radius of the path r is simply proportional to the mass m of the charged particle. Let us

examine one such mass spectrometer that has a relatively simple design. (See Figure 22.43.) The process begins with an ion
source, a device like an electron gun. The ion source gives ions their charge, accelerates them to some velocity v , and directs a
beam of them into the next stage of the spectrometer. This next region is a velocity selector that only allows particles with a
particular value of v to get through.
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Figure 22.43 This mass spectrometer uses a velocity selector to fix v so that the radius of the path is proportional to mass.

The velocity selector has both an electric field and a magnetic field, perpendicular to one another, producing forces in opposite
directions on the ions. Only those ions for which the forces balance travel in a straight line into the next region. If the forces
balance, then the electric force F = qE equals the magnetic force F = qvB , so that qE = qvB . Noting that q cancels, we

see that

(22.35)v = E
B

is the velocity particles must have to make it through the velocity selector, and further, that v can be selected by varying E and

B . In the final region, there is only a uniform magnetic field, and so the charged particles move in circular arcs with radii
proportional to particle mass. The paths also depend on charge q , but since q is in multiples of electron charges, it is easy to

determine and to discriminate between ions in different charge states.

Mass spectrometry today is used extensively in chemistry and biology laboratories to identify chemical and biological substances
according to their mass-to-charge ratios. In medicine, mass spectrometers are used to measure the concentration of isotopes
used as tracers. Usually, biological molecules such as proteins are very large, so they are broken down into smaller fragments
before analyzing. Recently, large virus particles have been analyzed as a whole on mass spectrometers. Sometimes a gas
chromatograph or high-performance liquid chromatograph provides an initial separation of the large molecules, which are then
input into the mass spectrometer.

Cathode Ray Tubes—CRTs—and the Like
What do non-flat-screen TVs, old computer monitors, x-ray machines, and the 2-mile-long Stanford Linear Accelerator have in
common? All of them accelerate electrons, making them different versions of the electron gun. Many of these devices use
magnetic fields to steer the accelerated electrons. Figure 22.44 shows the construction of the type of cathode ray tube (CRT)
found in some TVs, oscilloscopes, and old computer monitors. Two pairs of coils are used to steer the electrons, one vertically
and the other horizontally, to their desired destination.
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Figure 22.44 The cathode ray tube (CRT) is so named because rays of electrons originate at the cathode in the electron gun. Magnetic coils are used
to steer the beam in many CRTs. In this case, the beam is moved down. Another pair of horizontal coils would steer the beam horizontally.

Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) is one of the most useful and rapidly growing medical imaging tools. It non-invasively
produces two-dimensional and three-dimensional images of the body that provide important medical information with none of the
hazards of x-rays. MRI is based on an effect called nuclear magnetic resonance (NMR) in which an externally applied
magnetic field interacts with the nuclei of certain atoms, particularly those of hydrogen (protons). These nuclei possess their own
small magnetic fields, similar to those of electrons and the current loops discussed earlier in this chapter.

When placed in an external magnetic field, such nuclei experience a torque that pushes or aligns the nuclei into one of two new
energy states—depending on the orientation of its spin (analogous to the N pole and S pole in a bar magnet). Transitions from
the lower to higher energy state can be achieved by using an external radio frequency signal to “flip” the orientation of the small
magnets. (This is actually a quantum mechanical process. The direction of the nuclear magnetic field is quantized as is energy in
the radio waves. We will return to these topics in later chapters.) The specific frequency of the radio waves that are absorbed and
reemitted depends sensitively on the type of nucleus, the chemical environment, and the external magnetic field strength.
Therefore, this is a resonance phenomenon in which nuclei in a magnetic field act like resonators (analogous to those discussed
in the treatment of sound in Oscillatory Motion and Waves) that absorb and reemit only certain frequencies. Hence, the
phenomenon is named nuclear magnetic resonance (NMR).

NMR has been used for more than 50 years as an analytical tool. It was formulated in 1946 by F. Bloch and E. Purcell, with the
1952 Nobel Prize in Physics going to them for their work. Over the past two decades, NMR has been developed to produce
detailed images in a process now called magnetic resonance imaging (MRI), a name coined to avoid the use of the word
“nuclear” and the concomitant implication that nuclear radiation is involved. (It is not.) The 2003 Nobel Prize in Medicine went to
P. Lauterbur and P. Mansfield for their work with MRI applications.

The largest part of the MRI unit is a superconducting magnet that creates a magnetic field, typically between 1 and 2 T in
strength, over a relatively large volume. MRI images can be both highly detailed and informative about structures and organ
functions. It is helpful that normal and non-normal tissues respond differently for slight changes in the magnetic field. In most
medical images, the protons that are hydrogen nuclei are imaged. (About 2/3 of the atoms in the body are hydrogen.) Their
location and density give a variety of medically useful information, such as organ function, the condition of tissue (as in the
brain), and the shape of structures, such as vertebral disks and knee-joint surfaces. MRI can also be used to follow the
movement of certain ions across membranes, yielding information on active transport, osmosis, dialysis, and other phenomena.
With excellent spatial resolution, MRI can provide information about tumors, strokes, shoulder injuries, infections, etc.

An image requires position information as well as the density of a nuclear type (usually protons). By varying the magnetic field
slightly over the volume to be imaged, the resonant frequency of the protons is made to vary with position. Broadcast radio
frequencies are swept over an appropriate range and nuclei absorb and reemit them only if the nuclei are in a magnetic field with
the correct strength. The imaging receiver gathers information through the body almost point by point, building up a tissue map.
The reception of reemitted radio waves as a function of frequency thus gives position information. These “slices” or cross
sections through the body are only several mm thick. The intensity of the reemitted radio waves is proportional to the
concentration of the nuclear type being flipped, as well as information on the chemical environment in that area of the body.
Various techniques are available for enhancing contrast in images and for obtaining more information. Scans called T1, T2, or
proton density scans rely on different relaxation mechanisms of nuclei. Relaxation refers to the time it takes for the protons to
return to equilibrium after the external field is turned off. This time depends upon tissue type and status (such as inflammation).

While MRI images are superior to x rays for certain types of tissue and have none of the hazards of x rays, they do not
completely supplant x-ray images. MRI is less effective than x rays for detecting breaks in bone, for example, and in imaging
breast tissue, so the two diagnostic tools complement each other. MRI images are also expensive compared to simple x-ray
images and tend to be used most often where they supply information not readily obtained from x rays. Another disadvantage of
MRI is that the patient is totally enclosed with detectors close to the body for about 30 minutes or more, leading to
claustrophobia. It is also difficult for the obese patient to be in the magnet tunnel. New “open-MRI” machines are now available in
which the magnet does not completely surround the patient.

Over the last decade, the development of much faster scans, called “functional MRI” (fMRI), has allowed us to map the
functioning of various regions in the brain responsible for thought and motor control. This technique measures the change in
blood flow for activities (thought, experiences, action) in the brain. The nerve cells increase their consumption of oxygen when
active. Blood hemoglobin releases oxygen to active nerve cells and has somewhat different magnetic properties when
oxygenated than when deoxygenated. With MRI, we can measure this and detect a blood oxygen-dependent signal. Most of the
brain scans today use fMRI.
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Ampere’s law:

B-field:

Biot-Savart law:

Curie temperature:

direction of magnetic field lines:

domains:

electromagnet:

electromagnetism:

ferromagnetic:

gauss:

Hall effect:

Hall emf:

Lorentz force:

Other Medical Uses of Magnetic Fields
Currents in nerve cells and the heart create magnetic fields like any other currents. These can be measured but with some

difficulty since their strengths are about 10−6 to 10−8 less than the Earth’s magnetic field. Recording of the heart’s magnetic
field as it beats is called a magnetocardiogram (MCG), while measurements of the brain’s magnetic field is called a
magnetoencephalogram (MEG). Both give information that differs from that obtained by measuring the electric fields of these
organs (ECGs and EEGs), but they are not yet of sufficient importance to make these difficult measurements common.

In both of these techniques, the sensors do not touch the body. MCG can be used in fetal studies, and is probably more sensitive
than echocardiography. MCG also looks at the heart’s electrical activity whose voltage output is too small to be recorded by
surface electrodes as in EKG. It has the potential of being a rapid scan for early diagnosis of cardiac ischemia (obstruction of
blood flow to the heart) or problems with the fetus.

MEG can be used to identify abnormal electrical discharges in the brain that produce weak magnetic signals. Therefore, it looks
at brain activity, not just brain structure. It has been used for studies of Alzheimer’s disease and epilepsy. Advances in
instrumentation to measure very small magnetic fields have allowed these two techniques to be used more in recent years. What
is used is a sensor called a SQUID, for superconducting quantum interference device. This operates at liquid helium
temperatures and can measure magnetic fields thousands of times smaller than the Earth’s.

Finally, there is a burgeoning market for magnetic cures in which magnets are applied in a variety of ways to the body, from
magnetic bracelets to magnetic mattresses. The best that can be said for such practices is that they are apparently harmless,
unless the magnets get close to the patient’s computer or magnetic storage disks. Claims are made for a broad spectrum of
benefits from cleansing the blood to giving the patient more energy, but clinical studies have not verified these claims, nor is
there an identifiable mechanism by which such benefits might occur.

PhET Explorations: Magnet and Compass

Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar
magnet, and then add the Earth and find the surprising answer! Vary the magnet's strength, and see how things change both
inside and outside. Use the field meter to measure how the magnetic field changes.

Figure 22.45 Magnet and Compass (http://cnx.org/content/m42388/1.4/magnet-and-compass_en.jar)

Glossary
the physical law that states that the magnetic field around an electric current is proportional to the current;

each segment of current produces a magnetic field like that of a long straight wire, and the total field of any shape
current is the vector sum of the fields due to each segment

another term for magnetic field

a physical law that describes the magnetic field generated by an electric current in terms of a specific
equation

the temperature above which a ferromagnetic material cannot be magnetized

the direction that the north end of a compass needle points

regions within a material that behave like small bar magnets

an object that is temporarily magnetic when an electrical current is passed through it

the use of electrical currents to induce magnetism

materials, such as iron, cobalt, nickel, and gadolinium, that exhibit strong magnetic effects

G, the unit of the magnetic field strength; 1 G = 10–4 T

the creation of voltage across a current-carrying conductor by a magnetic field

the electromotive force created by a current-carrying conductor by a magnetic field, ε = Blv

the force on a charge moving in a magnetic field
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magnetic field:

magnetic field lines:

magnetic field strength (magnitude) produced by a long straight current-carrying wire:

magnetic field strength at the center of a circular loop:

magnetic field strength inside a solenoid:

magnetic force:

magnetic monopoles:

magnetic resonance imaging (MRI):

magnetized:

magnetocardiogram (MCG):

magnetoencephalogram (MEG):

Maxwell’s equations:

meter:

motor:

north magnetic pole:

nuclear magnetic resonance (NMR):

permeability of free space:

right hand rule 1 (RHR-1):

right hand rule 2 (RHR-2):

solenoid:

south magnetic pole:

tesla:

the representation of magnetic forces

the pictorial representation of the strength and the direction of a magnetic field

defined as B = µ0 I
2πr , where I

is the current, r is the shortest distance to the wire, and µ0 is the permeability of free space

defined as B = µ0 I
2R where R is the radius of the loop

defined as B = µ0nI where n is the number of loops per unit length of the

solenoid (n = N / l , with N being the number of loops and l the length)

the force on a charge produced by its motion through a magnetic field; the Lorentz force

an isolated magnetic pole; a south pole without a north pole, or vice versa (no magnetic monopole has
ever been observed)

a medical imaging technique that uses magnetic fields create detailed images of
internal tissues and organs

to be turned into a magnet; to be induced to be magnetic

a recording of the heart’s magnetic field as it beats

a measurement of the brain’s magnetic field

a set of four equations that describe electromagnetic phenomena

common application of magnetic torque on a current-carrying loop that is very similar in construction to a motor; by
design, the torque is proportional to I and not θ , so the needle deflection is proportional to the current

loop of wire in a magnetic field; when current is passed through the loops, the magnetic field exerts torque on the
loops, which rotates a shaft; electrical energy is converted to mechanical work in the process

the end or the side of a magnet that is attracted toward Earth’s geographic north pole

a phenomenon in which an externally applied magnetic field interacts with the nuclei of
certain atoms

the measure of the ability of a material, in this case free space, to support a magnetic field; the

constant µ0 = 4π×10−7 T ⋅ m/A

the rule to determine the direction of the magnetic force on a positive moving charge: when the
thumb of the right hand points in the direction of the charge’s velocity v and the fingers point in the direction of the

magnetic field B , then the force on the charge is perpendicular and away from the palm; the force on a negative charge
is perpendicular and into the palm

a rule to determine the direction of the magnetic field induced by a current-carrying wire: Point the
thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops

a thin wire wound into a coil that produces a magnetic field when an electric current is passed through it

the end or the side of a magnet that is attracted toward Earth’s geographic south pole

T, the SI unit of the magnetic field strength; 1 T = 1 N
A ⋅ m

Section Summary

22.1 Magnets
• Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and

currents, and the creation of magnetic fields by currents.
• There are two types of magnetic poles, called the north magnetic pole and south magnetic pole.
• North magnetic poles are those that are attracted toward the Earth’s geographic north pole.
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• Like poles repel and unlike poles attract.
• Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.

22.2 Ferromagnets and Electromagnets
• Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
• All magnetism is created by electric current.
• Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
• The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually

in millimeter-sized regions called domains.
• Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced

to be magnetic.
• Above a material’s Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
• Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

22.3 Magnetic Fields and Magnetic Field Lines
• Magnetic fields can be pictorially represented by magnetic field lines, the properties of which are as follows:

1. The field is tangent to the magnetic field line.

2. Field strength is proportional to the line density.

3. Field lines cannot cross.

4. Field lines are continuous loops.

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
• Magnetic fields exert a force on a moving charge q, the magnitude of which is

F = qvB sin θ,
where θ is the angle between the directions of v and B .

• The SI unit for magnetic field strength B is the tesla (T), which is related to other units by

1 T = 1 N
C ⋅ m/s = 1 N

A ⋅ m.

• The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the
direction of v , the fingers in the direction of B , and a perpendicular to the palm points in the direction of F .

• The force is perpendicular to the plane formed by v and B . Since the force is zero if v is parallel to B , charged
particles often follow magnetic field lines rather than cross them.

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
• Magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius

r = mv
qB,

where v is the component of the velocity perpendicular to B for a charged particle with mass m and charge q .

22.6 The Hall Effect
• The Hall effect is the creation of voltage ε , known as the Hall emf, across a current-carrying conductor by a magnetic field.
• The Hall emf is given by

ε = Blv (B, v, and l, mutually perpendicular)
for a conductor of width l through which charges move at a speed v .

22.7 Magnetic Force on a Current-Carrying Conductor
• The magnetic force on current-carrying conductors is given by

F = IlB sin θ,
where I is the current, l is the length of a straight conductor in a uniform magnetic field B , and θ is the angle between

I and B . The force follows RHR-1 with the thumb in the direction of I .

22.8 Torque on a Current Loop: Motors and Meters
• The torque τ on a current-carrying loop of any shape in a uniform magnetic field. is

τ = NIAB sin θ,
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where N is the number of turns, I is the current, A is the area of the loop, B is the magnetic field strength, and θ is
the angle between the perpendicular to the loop and the magnetic field.

22.9 Magnetic Fields Produced by Currents: Ampere’s Law
• The strength of the magnetic field created by current in a long straight wire is given by

B = µ0 I
2πr (long straight wire),

where I is the current, r is the shortest distance to the wire, and the constant µ0 = 4π × 10−7 T ⋅ m/A is the

permeability of free space.
• The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of

the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it.
• The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the

path (magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as
Ampere’s law.

• The magnetic field strength at the center of a circular loop is given by

B = µ0 I
2R (at center of loop),

where R is the radius of the loop. This equation becomes B = µ0nI / (2R) for a flat coil of N loops. RHR-2 gives the

direction of the field about the loop. A long coil is called a solenoid.
• The magnetic field strength inside a solenoid is

B = µ0nI (inside a solenoid),
where n is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and direction.

22.10 Magnetic Force between Two Parallel Conductors
• The force between two parallel currents I1 and I2 , separated by a distance r , has a magnitude per unit length given by

F
l = µ0 I1 I2

2πr .
• The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.

22.11 More Applications of Magnetism
• Crossed (perpendicular) electric and magnetic fields act as a velocity filter, giving equal and opposite forces on any charge

with velocity perpendicular to the fields and of magnitude

v = E
B.

Conceptual Questions

22.1 Magnets
1. Volcanic and other such activity at the mid-Atlantic ridge extrudes material to fill the gap between separating tectonic plates
associated with continental drift. The magnetization of rocks is found to reverse in a coordinated manner with distance from the
ridge. What does this imply about the Earth’s magnetic field and how could the knowledge of the spreading rate be used to give
its historical record?

22.3 Magnetic Fields and Magnetic Field Lines
2. Explain why the magnetic field would not be unique (that is, not have a single value) at a point in space where magnetic field
lines might cross. (Consider the direction of the field at such a point.)

3. List the ways in which magnetic field lines and electric field lines are similar. For example, the field direction is tangent to the
line at any point in space. Also list the ways in which they differ. For example, electric force is parallel to electric field lines,
whereas magnetic force on moving charges is perpendicular to magnetic field lines.

4. Noting that the magnetic field lines of a bar magnet resemble the electric field lines of a pair of equal and opposite charges, do
you expect the magnetic field to rapidly decrease in strength with distance from the magnet? Is this consistent with your
experience with magnets?

5. Is the Earth’s magnetic field parallel to the ground at all locations? If not, where is it parallel to the surface? Is its strength the
same at all locations? If not, where is it greatest?

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
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6. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is
necessarily zero?

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
7. How can the motion of a charged particle be used to distinguish between a magnetic and an electric field?

8. High-velocity charged particles can damage biological cells and are a component of radiation exposure in a variety of locations
ranging from research facilities to natural background. Describe how you could use a magnetic field to shield yourself.

9. If a cosmic ray proton approaches the Earth from outer space along a line toward the center of the Earth that lies in the plane
of the equator, in what direction will it be deflected by the Earth’s magnetic field? What about an electron? A neutron?

10. What are the signs of the charges on the particles in Figure 22.46?

Figure 22.46

11. Which of the particles in Figure 22.47 has the greatest velocity, assuming they have identical charges and masses?

Figure 22.47

12. Which of the particles in Figure 22.47 has the greatest mass, assuming all have identical charges and velocities?

13. While operating, a high-precision TV monitor is placed on its side during maintenance. The image on the monitor changes
color and blurs slightly. Discuss the possible relation of these effects to the Earth’s magnetic field.

22.6 The Hall Effect
14. Discuss how the Hall effect could be used to obtain information on free charge density in a conductor. (Hint: Consider how
drift velocity and current are related.)

22.7 Magnetic Force on a Current-Carrying Conductor
15. Draw a sketch of the situation in Figure 22.30 showing the direction of electrons carrying the current, and use RHR-1 to
verify the direction of the force on the wire.

16. Verify that the direction of the force in an MHD drive, such as that in Figure 22.32, does not depend on the sign of the
charges carrying the current across the fluid.

17. Why would a magnetohydrodynamic drive work better in ocean water than in fresh water? Also, why would superconducting
magnets be desirable?

18. Which is more likely to interfere with compass readings, AC current in your refrigerator or DC current when you start your
car? Explain.

22.8 Torque on a Current Loop: Motors and Meters
19. Draw a diagram and use RHR-1 to show that the forces on the top and bottom segments of the motor’s current loop in
Figure 22.34 are vertical and produce no torque about the axis of rotation.

22.9 Magnetic Fields Produced by Currents: Ampere’s Law
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20. Make a drawing and use RHR-2 to find the direction of the magnetic field of a current loop in a motor (such as in Figure
22.34). Then show that the direction of the torque on the loop is the same as produced by like poles repelling and unlike poles
attracting.

22.10 Magnetic Force between Two Parallel Conductors
21. Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?

22. If you have three parallel wires in the same plane, as in Figure 22.48, with currents in the outer two running in opposite
directions, is it possible for the middle wire to be repelled by both? Attracted by both? Explain.

Figure 22.48 Three parallel coplanar wires with currents in the outer two in opposite directions.

23. Suppose two long straight wires run perpendicular to one another without touching. Does one exert a net force on the other?
If so, what is its direction? Does one exert a net torque on the other? If so, what is its direction? Justify your responses by using
the right hand rules.

24. Use the right hand rules to show that the force between the two loops in Figure 22.49 is attractive if the currents are in the
same direction and repulsive if they are in opposite directions. Is this consistent with like poles of the loops repelling and unlike
poles of the loops attracting? Draw sketches to justify your answers.

Figure 22.49 Two loops of wire carrying currents can exert forces and torques on one another.

25. If one of the loops in Figure 22.49 is tilted slightly relative to the other and their currents are in the same direction, what are
the directions of the torques they exert on each other? Does this imply that the poles of the bar magnet-like fields they create will
line up with each other if the loops are allowed to rotate?

26. Electric field lines can be shielded by the Faraday cage effect. Can we have magnetic shielding? Can we have gravitational
shielding?

22.11 More Applications of Magnetism
27. Measurements of the weak and fluctuating magnetic fields associated with brain activity are called magnetoencephalograms
(MEGs). Do the brain’s magnetic fields imply coordinated or uncoordinated nerve impulses? Explain.

28. Discuss the possibility that a Hall voltage would be generated on the moving heart of a patient during MRI imaging. Also
discuss the same effect on the wires of a pacemaker. (The fact that patients with pacemakers are not given MRIs is significant.)
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29. A patient in an MRI unit turns his head quickly to one side and experiences momentary dizziness and a strange taste in his
mouth. Discuss the possible causes.

30. You are told that in a certain region there is either a uniform electric or magnetic field. What measurement or observation
could you make to determine the type? (Ignore the Earth’s magnetic field.)

31. An example of magnetohydrodynamics (MHD) comes from the flow of a river (salty water). This fluid interacts with the Earth’s
magnetic field to produce a potential difference between the two river banks. How would you go about calculating the potential
difference?

32. Draw gravitational field lines between 2 masses, electric field lines between a positive and a negative charge, electric field
lines between 2 positive charges and magnetic field lines around a magnet. Qualitatively describe the differences between the
fields and the entities responsible for the field lines.
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Problems & Exercises

22.4 Magnetic Field Strength: Force on a
Moving Charge in a Magnetic Field
1. What is the direction of the magnetic force on a positive
charge that moves as shown in each of the six cases shown
in Figure 22.50?

Figure 22.50

2. Repeat Exercise 22.1 for a negative charge.

3. What is the direction of the velocity of a negative charge
that experiences the magnetic force shown in each of the
three cases in Figure 22.51, assuming it moves
perpendicular to B?

Figure 22.51

4. Repeat Exercise 22.3 for a positive charge.

5. What is the direction of the magnetic field that produces the
magnetic force on a positive charge as shown in each of the
three cases in the figure below, assuming B is perpendicular
to v ?

Figure 22.52

6. Repeat Exercise 22.5 for a negative charge.

7. What is the maximum force on an aluminum rod with a
0.100-μC charge that you pass between the poles of a

1.50-T permanent magnet at a speed of 5.00 m/s? In what
direction is the force?

8. (a) Aircraft sometimes acquire small static charges.
Suppose a supersonic jet has a 0.500-μC charge and flies

due west at a speed of 660 m/s over the Earth’s south

magnetic pole, where the 8.00×10−5-T magnetic field
points straight up. What are the direction and the magnitude
of the magnetic force on the plane? (b) Discuss whether the
value obtained in part (a) implies this is a significant or
negligible effect.

9. (a) A cosmic ray proton moving toward the Earth at

5.00×107 m/s experiences a magnetic force of

1.70×10−16 N . What is the strength of the magnetic field if

there is a 45º angle between it and the proton’s velocity? (b)
Is the value obtained in part (a) consistent with the known
strength of the Earth’s magnetic field on its surface? Discuss.

10. An electron moving at 4.00×103 m/s in a 1.25-T
magnetic field experiences a magnetic force of

1.40×10−16 N . What angle does the velocity of the
electron make with the magnetic field? There are two
answers.

11. (a) A physicist performing a sensitive measurement wants
to limit the magnetic force on a moving charge in her

equipment to less than 1.00×10−12 N . What is the
greatest the charge can be if it moves at a maximum speed of
30.0 m/s in the Earth’s field? (b) Discuss whether it would be
difficult to limit the charge to less than the value found in (a)
by comparing it with typical static electricity and noting that
static is often absent.

22.5 Force on a Moving Charge in a Magnetic
Field: Examples and Applications
If you need additional support for these problems, see More
Applications of Magnetism.

12. A cosmic ray electron moves at 7.50×106 m/s
perpendicular to the Earth’s magnetic field at an altitude

where field strength is 1.00×10−5 T . What is the radius of
the circular path the electron follows?
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13. A proton moves at 7.50×107 m/s perpendicular to a
magnetic field. The field causes the proton to travel in a
circular path of radius 0.800 m. What is the field strength?

14. (a) Viewers of Star Trek hear of an antimatter drive on the
Starship Enterprise. One possibility for such a futuristic
energy source is to store antimatter charged particles in a
vacuum chamber, circulating in a magnetic field, and then
extract them as needed. Antimatter annihilates with normal
matter, producing pure energy. What strength magnetic field

is needed to hold antiprotons, moving at 5.00×107 m/s in a
circular path 2.00 m in radius? Antiprotons have the same
mass as protons but the opposite (negative) charge. (b) Is
this field strength obtainable with today’s technology or is it a
futuristic possibility?

15. (a) An oxygen-16 ion with a mass of 2.66×10−26 kg

travels at 5.00×106 m/s perpendicular to a 1.20-T
magnetic field, which makes it move in a circular arc with a
0.231-m radius. What positive charge is on the ion? (b) What
is the ratio of this charge to the charge of an electron? (c)
Discuss why the ratio found in (b) should be an integer.

16. What radius circular path does an electron travel if it
moves at the same speed and in the same magnetic field as
the proton in Exercise 22.13?

17. A velocity selector in a mass spectrometer uses a 0.100-T
magnetic field. (a) What electric field strength is needed to

select a speed of 4.00×106 m/s ? (b) What is the voltage
between the plates if they are separated by 1.00 cm?

18. An electron in a TV CRT moves with a speed of

6.00×107 m/s , in a direction perpendicular to the Earth’s

field, which has a strength of 5.00×10−5 T . (a) What
strength electric field must be applied perpendicular to the
Earth’s field to make the electron moves in a straight line? (b)
If this is done between plates separated by 1.00 cm, what is
the voltage applied? (Note that TVs are usually surrounded
by a ferromagnetic material to shield against external
magnetic fields and avoid the need for such a correction.)

19. (a) At what speed will a proton move in a circular path of
the same radius as the electron in Exercise 22.12? (b) What
would the radius of the path be if the proton had the same
speed as the electron? (c) What would the radius be if the
proton had the same kinetic energy as the electron? (d) The
same momentum?

20. A mass spectrometer is being used to separate common
oxygen-16 from the much rarer oxygen-18, taken from a
sample of old glacial ice. (The relative abundance of these
oxygen isotopes is related to climatic temperature at the time
the ice was deposited.) The ratio of the masses of these two

ions is 16 to 18, the mass of oxygen-16 is 2.66×10−26 kg,

and they are singly charged and travel at 5.00×106 m/s in
a 1.20-T magnetic field. What is the separation between their
paths when they hit a target after traversing a semicircle?

21. (a) Triply charged uranium-235 and uranium-238 ions are
being separated in a mass spectrometer. (The much rarer
uranium-235 is used as reactor fuel.) The masses of the ions

are 3.90×10−25 kg and 3.95×10−25 kg , respectively,

and they travel at 3.00×105 m/s in a 0.250-T field. What is
the separation between their paths when they hit a target

after traversing a semicircle? (b) Discuss whether this
distance between their paths seems to be big enough to be
practical in the separation of uranium-235 from uranium-238.

22.6 The Hall Effect
22. A large water main is 2.50 m in diameter and the average
water velocity is 6.00 m/s. Find the Hall voltage produced if

the pipe runs perpendicular to the Earth’s 5.00×10−5-T
field.

23. What Hall voltage is produced by a 0.200-T field applied
across a 2.60-cm-diameter aorta when blood velocity is 60.0
cm/s?

24. (a) What is the speed of a supersonic aircraft with a
17.0-m wingspan, if it experiences a 1.60-V Hall voltage
between its wing tips when in level flight over the north
magnetic pole, where the Earth’s field strength is

8.00×10−5 T? (b) Explain why very little current flows as a
result of this Hall voltage.

25. A nonmechanical water meter could utilize the Hall effect
by applying a magnetic field across a metal pipe and
measuring the Hall voltage produced. What is the average
fluid velocity in a 3.00-cm-diameter pipe, if a 0.500-T field
across it creates a 60.0-mV Hall voltage?

26. Calculate the Hall voltage induced on a patient’s heart
while being scanned by an MRI unit. Approximate the
conducting path on the heart wall by a wire 7.50 cm long that
moves at 10.0 cm/s perpendicular to a 1.50-T magnetic field.

27. A Hall probe calibrated to read 1.00 μV when placed in

a 2.00-T field is placed in a 0.150-T field. What is its output
voltage?

28. Using information in Example 20.6, what would the Hall
voltage be if a 2.00-T field is applied across a 10-gauge
copper wire (2.588 mm in diameter) carrying a 20.0-A
current?

29. Show that the Hall voltage across wires made of the same
material, carrying identical currents, and subjected to the
same magnetic field is inversely proportional to their
diameters. (Hint: Consider how drift velocity depends on wire
diameter.)

30. A patient with a pacemaker is mistakenly being scanned
for an MRI image. A 10.0-cm-long section of pacemaker wire
moves at a speed of 10.0 cm/s perpendicular to the MRI
unit’s magnetic field and a 20.0-mV Hall voltage is induced.
What is the magnetic field strength?

22.7 Magnetic Force on a Current-Carrying
Conductor
31. What is the direction of the magnetic force on the current
in each of the six cases in Figure 22.53?
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Figure 22.53

32. What is the direction of a current that experiences the
magnetic force shown in each of the three cases in Figure
22.54, assuming the current runs perpendicular to B ?

Figure 22.54

33. What is the direction of the magnetic field that produces
the magnetic force shown on the currents in each of the three
cases in Figure 22.55, assuming B is perpendicular to I ?

Figure 22.55

34. (a) What is the force per meter on a lightning bolt at the
equator that carries 20,000 A perpendicular to the Earth’s

3.00×10−5-T field? (b) What is the direction of the force if
the current is straight up and the Earth’s field direction is due
north, parallel to the ground?

35. (a) A DC power line for a light-rail system carries 1000 A

at an angle of 30.0º to the Earth’s 5.00×10−5 -T field.
What is the force on a 100-m section of this line? (b) Discuss
practical concerns this presents, if any.

36. What force is exerted on the water in an MHD drive
utilizing a 25.0-cm-diameter tube, if 100-A current is passed
across the tube that is perpendicular to a 2.00-T magnetic
field? (The relatively small size of this force indicates the
need for very large currents and magnetic fields to make
practical MHD drives.)

37. A wire carrying a 30.0-A current passes between the
poles of a strong magnet that is perpendicular to its field and
experiences a 2.16-N force on the 4.00 cm of wire in the field.
What is the average field strength?

38. (a) A 0.750-m-long section of cable carrying current to a
car starter motor makes an angle of 60º with the Earth’s

5.50×10−5 T field. What is the current when the wire

experiences a force of 7.00×10−3 N ? (b) If you run the
wire between the poles of a strong horseshoe magnet,
subjecting 5.00 cm of it to a 1.75-T field, what force is exerted
on this segment of wire?

39. (a) What is the angle between a wire carrying an 8.00-A
current and the 1.20-T field it is in if 50.0 cm of the wire
experiences a magnetic force of 2.40 N? (b) What is the force
on the wire if it is rotated to make an angle of 90º with the
field?

40. The force on the rectangular loop of wire in the magnetic
field in Figure 22.56 can be used to measure field strength.
The field is uniform, and the plane of the loop is perpendicular
to the field. (a) What is the direction of the magnetic force on
the loop? Justify the claim that the forces on the sides of the
loop are equal and opposite, independent of how much of the
loop is in the field and do not affect the net force on the loop.
(b) If a current of 5.00 A is used, what is the force per tesla on
the 20.0-cm-wide loop?

Figure 22.56 A rectangular loop of wire carrying a current is
perpendicular to a magnetic field. The field is uniform in the region
shown and is zero outside that region.

22.8 Torque on a Current Loop: Motors and
Meters
41. (a) By how many percent is the torque of a motor
decreased if its permanent magnets lose 5.0% of their
strength? (b) How many percent would the current need to be
increased to return the torque to original values?
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42. (a) What is the maximum torque on a 150-turn square
loop of wire 18.0 cm on a side that carries a 50.0-A current in
a 1.60-T field? (b) What is the torque when θ is 10.9º?
43. Find the current through a loop needed to create a
maximum torque of 9.00 N ⋅ m. The loop has 50 square
turns that are 15.0 cm on a side and is in a uniform 0.800-T
magnetic field.

44. Calculate the magnetic field strength needed on a
200-turn square loop 20.0 cm on a side to create a maximum
torque of 300 N ⋅ m if the loop is carrying 25.0 A.

45. Since the equation for torque on a current-carrying loop is
τ = NIAB sin θ , the units of N ⋅ m must equal units of

A ⋅ m2 T . Verify this.

46. (a) At what angle θ is the torque on a current loop 90.0%
of maximum? (b) 50.0% of maximum? (c) 10.0% of
maximum?

47. A proton has a magnetic field due to its spin on its axis.
The field is similar to that created by a circular current loop

0.650×10−15 m in radius with a current of 1.05×104 A
(no kidding). Find the maximum torque on a proton in a
2.50-T field. (This is a significant torque on a small particle.)

48. (a) A 200-turn circular loop of radius 50.0 cm is vertical,
with its axis on an east-west line. A current of 100 A circulates
clockwise in the loop when viewed from the east. The Earth’s
field here is due north, parallel to the ground, with a strength

of 3.00×10−5 T . What are the direction and magnitude of
the torque on the loop? (b) Does this device have any
practical applications as a motor?

49. Repeat Exercise 22.41, but with the loop lying flat on the
ground with its current circulating counterclockwise (when
viewed from above) in a location where the Earth’s field is
north, but at an angle 45.0º below the horizontal and with a

strength of 6.00×10−5 T .

22.10 Magnetic Force between Two Parallel
Conductors
50. (a) The hot and neutral wires supplying DC power to a
light-rail commuter train carry 800 A and are separated by
75.0 cm. What is the magnitude and direction of the force
between 50.0 m of these wires? (b) Discuss the practical
consequences of this force, if any.

51. The force per meter between the two wires of a jumper
cable being used to start a stalled car is 0.225 N/m. (a) What
is the current in the wires, given they are separated by 2.00
cm? (b) Is the force attractive or repulsive?

52. A 2.50-m segment of wire supplying current to the motor
of a submerged submarine carries 1000 A and feels a 4.00-N
repulsive force from a parallel wire 5.00 cm away. What is the
direction and magnitude of the current in the other wire?

53. The wire carrying 400 A to the motor of a commuter train

feels an attractive force of 4.00×10−3 N/m due to a
parallel wire carrying 5.00 A to a headlight. (a) How far apart
are the wires? (b) Are the currents in the same direction?

54. An AC appliance cord has its hot and neutral wires
separated by 3.00 mm and carries a 5.00-A current. (a) What
is the average force per meter between the wires in the cord?
(b) What is the maximum force per meter between the wires?

(c) Are the forces attractive or repulsive? (d) Do appliance
cords need any special design features to compensate for
these forces?

55. Figure 22.57 shows a long straight wire near a
rectangular current loop. What is the direction and magnitude
of the total force on the loop?

Figure 22.57

56. Find the direction and magnitude of the force that each
wire experiences in Figure 22.58(a) by, using vector addition.

Figure 22.58

57. Find the direction and magnitude of the force that each
wire experiences in Figure 22.58(b), using vector addition.

22.11 More Applications of Magnetism
58. Indicate whether the magnetic field created in each of the
three situations shown in Figure 22.59 is into or out of the
page on the left and right of the current.

Figure 22.59

59. What are the directions of the fields in the center of the
loop and coils shown in Figure 22.60?
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Figure 22.60

60. What are the directions of the currents in the loop and
coils shown in Figure 22.61?

Figure 22.61

61. To see why an MRI utilizes iron to increase the magnetic
field created by a coil, calculate the current needed in a
400-loop-per-meter circular coil 0.660 m in radius to create a
1.20-T field (typical of an MRI instrument) at its center with no
iron present. The magnetic field of a proton is approximately

like that of a circular current loop 0.650×10−15 m in radius

carrying 1.05×104 A . What is the field at the center of such
a loop?

62. Inside a motor, 30.0 A passes through a 250-turn circular
loop that is 10.0 cm in radius. What is the magnetic field
strength created at its center?

63. Nonnuclear submarines use batteries for power when
submerged. (a) Find the magnetic field 50.0 cm from a
straight wire carrying 1200 A from the batteries to the drive
mechanism of a submarine. (b) What is the field if the wires to
and from the drive mechanism are side by side? (c) Discuss
the effects this could have for a compass on the submarine
that is not shielded.

64. How strong is the magnetic field inside a solenoid with
10,000 turns per meter that carries 20.0 A?

65. What current is needed in the solenoid described in

Exercise 22.58 to produce a magnetic field 104 times the

Earth’s magnetic field of 5.00×10−5 T ?

66. How far from the starter cable of a car, carrying 150 A,
must you be to experience a field less than the Earth’s

(5.00×10−5 T)? Assume a long straight wire carries the

current. (In practice, the body of your car shields the
dashboard compass.)

67. Measurements affect the system being measured, such
as the current loop in Figure 22.56. (a) Estimate the field the
loop creates by calculating the field at the center of a circular
loop 20.0 cm in diameter carrying 5.00 A. (b) What is the
smallest field strength this loop can be used to measure, if its
field must alter the measured field by less than 0.0100%?

68. Figure 22.62 shows a long straight wire just touching a
loop carrying a current I1 . Both lie in the same plane. (a)

What direction must the current I2 in the straight wire have

to create a field at the center of the loop in the direction
opposite to that created by the loop? (b) What is the ratio of
I1 / I2 that gives zero field strength at the center of the loop?

(c) What is the direction of the field directly above the loop
under this circumstance?

Figure 22.62

69. Find the magnitude and direction of the magnetic field at
the point equidistant from the wires in Figure 22.58(a), using
the rules of vector addition to sum the contributions from each
wire.

70. Find the magnitude and direction of the magnetic field at
the point equidistant from the wires in Figure 22.58(b), using
the rules of vector addition to sum the contributions from each
wire.

71. What current is needed in the top wire in Figure 22.58(a)
to produce a field of zero at the point equidistant from the
wires, if the currents in the bottom two wires are both 10.0 A
into the page?

72. Calculate the size of the magnetic field 20 m below a high
voltage power line. The line carries 450 MW at a voltage of
300,000 V.

73. Integrated Concepts

(a) A pendulum is set up so that its bob (a thin copper disk)
swings between the poles of a permanent magnet as shown
in Figure 22.63. What is the magnitude and direction of the
magnetic force on the bob at the lowest point in its path, if it
has a positive 0.250 μC charge and is released from a

height of 30.0 cm above its lowest point? The magnetic field
strength is 1.50 T. (b) What is the acceleration of the bob at
the bottom of its swing if its mass is 30.0 grams and it is hung
from a flexible string? Be certain to include a free-body
diagram as part of your analysis.

Figure 22.63

74. Integrated Concepts
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(a) What voltage will accelerate electrons to a speed of

6.00×10−7 m/s ? (b) Find the radius of curvature of the
path of a proton accelerated through this potential in a
0.500-T field and compare this with the radius of curvature of
an electron accelerated through the same potential.

75. Integrated Concepts

Find the radius of curvature of the path of a 25.0-MeV proton
moving perpendicularly to the 1.20-T field of a cyclotron.

76. Integrated Concepts

To construct a nonmechanical water meter, a 0.500-T
magnetic field is placed across the supply water pipe to a
home and the Hall voltage is recorded. (a) Find the flow rate
in liters per second through a 3.00-cm-diameter pipe if the
Hall voltage is 60.0 mV. (b) What would the Hall voltage be for
the same flow rate through a 10.0-cm-diameter pipe with the
same field applied?

77. Integrated Concepts

(a) Using the values given for an MHD drive in Exercise
22.59, and assuming the force is uniformly applied to the

fluid, calculate the pressure created in N/m2 . (b) Is this a
significant fraction of an atmosphere?

78. Integrated Concepts

(a) Calculate the maximum torque on a 50-turn, 1.50 cm
radius circular current loop carrying 50 μA in a 0.500-T field.

(b) If this coil is to be used in a galvanometer that reads
50 μA full scale, what force constant spring must be used, if

it is attached 1.00 cm from the axis of rotation and is
stretched by the 60º arc moved?

79. Integrated Concepts

A current balance used to define the ampere is designed so
that the current through it is constant, as is the distance
between wires. Even so, if the wires change length with
temperature, the force between them will change. What
percent change in force per degree will occur if the wires are
copper?

80. Integrated Concepts

(a) Show that the period of the circular orbit of a charged
particle moving perpendicularly to a uniform magnetic field is
T = 2πm / (qB) . (b) What is the frequency f ? (c) What is

the angular velocity ω ? Note that these results are
independent of the velocity and radius of the orbit and, hence,
of the energy of the particle. (Figure 22.64.)

Figure 22.64 Cyclotrons accelerate charged particles orbiting in a
magnetic field by placing an AC voltage on the metal Dees, between
which the particles move, so that energy is added twice each orbit. The
frequency is constant, since it is independent of the particle energy—the
radius of the orbit simply increases with energy until the particles
approach the edge and are extracted for various experiments and
applications.

81. Integrated Concepts

A cyclotron accelerates charged particles as shown in Figure
22.64. Using the results of the previous problem, calculate the
frequency of the accelerating voltage needed for a proton in a
1.20-T field.

82. Integrated Concepts

(a) A 0.140-kg baseball, pitched at 40.0 m/s horizontally and

perpendicular to the Earth’s horizontal 5.00×10−5 T field,
has a 100-nC charge on it. What distance is it deflected from
its path by the magnetic force, after traveling 30.0 m
horizontally? (b) Would you suggest this as a secret
technique for a pitcher to throw curve balls?

83. Integrated Concepts

(a) What is the direction of the force on a wire carrying a
current due east in a location where the Earth’s field is due
north? Both are parallel to the ground. (b) Calculate the force
per meter if the wire carries 20.0 A and the field strength is

3.00×10−5 T . (c) What diameter copper wire would have
its weight supported by this force? (d) Calculate the
resistance per meter and the voltage per meter needed.

84. Integrated Concepts

One long straight wire is to be held directly above another by
repulsion between their currents. The lower wire carries 100
A and the wire 7.50 cm above it is 10-gauge (2.588 mm
diameter) copper wire. (a) What current must flow in the
upper wire, neglecting the Earth’s field? (b) What is the

smallest current if the Earth’s 3.00×10−5 T field is parallel
to the ground and is not neglected? (c) Is the supported wire
in a stable or unstable equilibrium if displaced vertically? If
displaced horizontally?

85. Unreasonable Results

(a) Find the charge on a baseball, thrown at 35.0 m/s

perpendicular to the Earth’s 5.00×10−5 T field, that
experiences a 1.00-N magnetic force. (b) What is
unreasonable about this result? (c) Which assumption or
premise is responsible?
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86. Unreasonable Results

A charged particle having mass 6.64×10−27 kg (that of a

helium atom) moving at 8.70×105 m/s perpendicular to a
1.50-T magnetic field travels in a circular path of radius 16.0
mm. (a) What is the charge of the particle? (b) What is
unreasonable about this result? (c) Which assumptions are
responsible?

87. Unreasonable Results

An inventor wants to generate 120-V power by moving a

1.00-m-long wire perpendicular to the Earth’s 5.00×10−5 T
field. (a) Find the speed with which the wire must move. (b)
What is unreasonable about this result? (c) Which
assumption is responsible?

88. Unreasonable Results

Frustrated by the small Hall voltage obtained in blood flow
measurements, a medical physicist decides to increase the
applied magnetic field strength to get a 0.500-V output for
blood moving at 30.0 cm/s in a 1.50-cm-diameter vessel. (a)
What magnetic field strength is needed? (b) What is
unreasonable about this result? (c) Which premise is
responsible?

89. Unreasonable Results

A surveyor 100 m from a long straight 200-kV DC power line
suspects that its magnetic field may equal that of the Earth
and affect compass readings. (a) Calculate the current in the

wire needed to create a 5.00×10−5 T field at this distance.
(b) What is unreasonable about this result? (c) Which
assumption or premise is responsible?

90. Construct Your Own Problem

Consider a mass separator that applies a magnetic field
perpendicular to the velocity of ions and separates the ions
based on the radius of curvature of their paths in the field.
Construct a problem in which you calculate the magnetic field
strength needed to separate two ions that differ in mass, but
not charge, and have the same initial velocity. Among the
things to consider are the types of ions, the velocities they
can be given before entering the magnetic field, and a
reasonable value for the radius of curvature of the paths they
follow. In addition, calculate the separation distance between
the ions at the point where they are detected.

91. Construct Your Own Problem

Consider using the torque on a current-carrying coil in a
magnetic field to detect relatively small magnetic fields (less
than the field of the Earth, for example). Construct a problem
in which you calculate the maximum torque on a current-
carrying loop in a magnetic field. Among the things to be
considered are the size of the coil, the number of loops it has,
the current you pass through the coil, and the size of the field
you wish to detect. Discuss whether the torque produced is
large enough to be effectively measured. Your instructor may
also wish for you to consider the effects, if any, of the field
produced by the coil on the surroundings that could affect
detection of the small field.
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