
8 LINEAR MOMENTUM AND COLLISIONS

Figure 8.1 Each rugby player has great momentum, which will affect the outcome of their collisions with each other and the ground. (credit: ozzzie,
Flickr)

Chapter Outline
8.1. Linear Momentum and Force

• Define linear momentum.
• Explain the relationship between momentum and force.
• State Newton’s second law of motion in terms of momentum.
• Calculate momentum given mass and velocity.

8.2. Impulse
• Define impulse.
• Describe effects of impulses in everyday life.
• Determine the average effective force using graphical representation.
• Calculate average force and impulse given mass, velocity, and time.

8.3. Conservation of Momentum
• Describe the principle of conservation of momentum.
• Derive an expression for the conservation of momentum.
• Explain conservation of momentum with examples.
• Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

8.4. Elastic Collisions in One Dimension
• Describe an elastic collision of two objects in one dimension.
• Define internal kinetic energy.
• Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
• Determine the final velocities in an elastic collision given masses and initial velocities.

8.5. Inelastic Collisions in One Dimension
• Define inelastic collision.
• Explain perfectly inelastic collision.
• Apply an understanding of collisions to sports.
• Determine recoil velocity and loss in kinetic energy given mass and initial velocity.

8.6. Collisions of Point Masses in Two Dimensions
• Discuss two dimensional collisions as an extension of one dimensional analysis.
• Define point masses.
• Derive an expression for conservation of momentum along x-axis and y-axis.
• Describe elastic collisions of two objects with equal mass.
• Determine the magnitude and direction of the final velocity given initial velocity, and scattering angle.

8.7. Introduction to Rocket Propulsion
• State Newton’s third law of motion.
• Explain the principle involved in propulsion of rockets and jet engines.
• Derive an expression for the acceleration of the rocket and discuss the factors that affect the acceleration.
• Describe the function of a space shuttle.

Chapter 8 | Linear Momentum and Collisions 283



Introduction to Linear Momentum and Collisions
We use the term momentum in various ways in everyday language, and most of these ways are consistent with its precise
scientific definition. We speak of sports teams or politicians gaining and maintaining the momentum to win. We also recognize
that momentum has something to do with collisions. For example, looking at the rugby players in the photograph colliding and
falling to the ground, we expect their momenta to have great effects in the resulting collisions. Generally, momentum implies a
tendency to continue on course—to move in the same direction—and is associated with great mass and speed.

Momentum, like energy, is important because it is conserved. Only a few physical quantities are conserved in nature, and
studying them yields fundamental insight into how nature works, as we shall see in our study of momentum.

8.1 Linear Momentum and Force

Linear Momentum
The scientific definition of linear momentum is consistent with most people’s intuitive understanding of momentum: a large, fast-
moving object has greater momentum than a smaller, slower object. Linear momentum is defined as the product of a system’s
mass multiplied by its velocity. In symbols, linear momentum is expressed as

(8.1)p = mv.

Momentum is directly proportional to the object’s mass and also its velocity. Thus the greater an object’s mass or the greater its
velocity, the greater its momentum. Momentum p is a vector having the same direction as the velocity v . The SI unit for

momentum is kg · m/s .

Linear Momentum

Linear momentum is defined as the product of a system’s mass multiplied by its velocity:

(8.2)p = mv.

Example 8.1 Calculating Momentum: A Football Player and a Football

(a) Calculate the momentum of a 110-kg football player running at 8.00 m/s. (b) Compare the player’s momentum with the
momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s.

Strategy

No information is given regarding direction, and so we can calculate only the magnitude of the momentum, p . (As usual, a

symbol that is in italics is a magnitude, whereas one that is italicized, boldfaced, and has an arrow is a vector.) In both parts
of this example, the magnitude of momentum can be calculated directly from the definition of momentum given in the
equation, which becomes

(8.3)p = mv

when only magnitudes are considered.

Solution for (a)

To determine the momentum of the player, substitute the known values for the player’s mass and speed into the equation.

(8.4)pplayer = ⎛
⎝110 kg⎞

⎠(8.00 m/s) = 880 kg · m/s

Solution for (b)

To determine the momentum of the ball, substitute the known values for the ball’s mass and speed into the equation.

(8.5)pball = ⎛
⎝0.410 kg⎞

⎠(25.0 m/s) = 10.3 kg · m/s

The ratio of the player’s momentum to that of the ball is

(8.6)pplayer
pball

= 880
10.3 = 85.9.

Discussion

Although the ball has greater velocity, the player has a much greater mass. Thus the momentum of the player is much
greater than the momentum of the football, as you might guess. As a result, the player’s motion is only slightly affected if he
catches the ball. We shall quantify what happens in such collisions in terms of momentum in later sections.
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Momentum and Newton’s Second Law
The importance of momentum, unlike the importance of energy, was recognized early in the development of classical physics.
Momentum was deemed so important that it was called the “quantity of motion.” Newton actually stated his second law of
motion in terms of momentum: The net external force equals the change in momentum of a system divided by the time over
which it changes. Using symbols, this law is

(8.7)Fnet = Δp
Δt ,

where Fnet is the net external force, Δp is the change in momentum, and Δt is the change in time.

Newton’s Second Law of Motion in Terms of Momentum

The net external force equals the change in momentum of a system divided by the time over which it changes.

(8.8)Fnet = Δp
Δt

Making Connections: Force and Momentum

Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of
motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept
in the study of atomic and subatomic particles in quantum mechanics.

This statement of Newton’s second law of motion includes the more familiar Fnet =ma as a special case. We can derive this

form as follows. First, note that the change in momentum Δp is given by

(8.9)Δp = Δ⎛
⎝mv⎞

⎠.

If the mass of the system is constant, then

(8.10)Δ(mv) = mΔv.

So that for constant mass, Newton’s second law of motion becomes

(8.11)Fnet = Δp
Δt = mΔv

Δt .

Because Δv
Δt = a , we get the familiar equation

(8.12)Fnet =ma

when the mass of the system is constant.

Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems
where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying
mass in some detail; however, the relationship between momentum and force remains useful when mass is constant, such as in
the following example.

Example 8.2 Calculating Force: Venus Williams’ Racquet

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed
of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet, assuming
that the ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is
negligible, and that the ball remained in contact with the racquet for 5.0 ms (milliseconds)?

Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before
impact. Newton’s second law stated in terms of momentum is then written as

(8.13)Fnet = Δp
Δt .

As noted above, when mass is constant, the change in momentum is given by

(8.14)Δp = mΔv = m(vf − vi).
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In this example, the velocity just after impact and the change in time are given; thus, once Δp is calculated, Fnet = Δp
Δt

can be used to find the force.

Solution

To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.

(8.15)Δp = m(vf – vi)
= ⎛

⎝0.057 kg⎞
⎠(58 m/s – 0 m/s)

= 3.306 kg · m/s ≈ 3.3 kg · m/s

Now the magnitude of the net external force can determined by using Fnet = Δp
Δt :

(8.16)
Fnet = Δp

Δt = 3.306 kg ⋅ m/s
5.0×10−3 s

= 661 N ≈ 660 N,

where we have retained only two significant figures in the final step.

Discussion

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that
the ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet). This problem could also be
solved by first finding the acceleration and then using Fnet = ma , but one additional step would be required compared with

the strategy used in this example.

8.2 Impulse
The effect of a force on an object depends on how long it acts, as well as how great the force is. In Example 8.1, a very large
force acting for a short time had a great effect on the momentum of the tennis ball. A small force could cause the same change
in momentum, but it would have to act for a much longer time. For example, if the ball were thrown upward, the gravitational
force (which is much smaller than the tennis racquet’s force) would eventually reverse the momentum of the ball. Quantitatively,
the effect we are talking about is the change in momentum Δp .

By rearranging the equation Fnet = Δp
Δt to be

(8.17)Δp = FnetΔt,

we can see how the change in momentum equals the average net external force multiplied by the time this force acts. The
quantity Fnet Δt is given the name impulse. Impulse is the same as the change in momentum.

Impulse: Change in Momentum

Change in momentum equals the average net external force multiplied by the time this force acts.

(8.18)Δp = FnetΔt

The quantity Fnet Δt is given the name impulse.

There are many ways in which an understanding of impulse can save lives, or at least limbs. The dashboard padding in a
car, and certainly the airbags, allow the net force on the occupants in the car to act over a much longer time when there is a
sudden stop. The momentum change is the same for an occupant, whether an air bag is deployed or not, but the force (to
bring the occupant to a stop) will be much less if it acts over a larger time. Cars today have many plastic components. One
advantage of plastics is their lighter weight, which results in better gas mileage. Another advantage is that a car will crumple
in a collision, especially in the event of a head-on collision. A longer collision time means the force on the car will be less.
Deaths during car races decreased dramatically when the rigid frames of racing cars were replaced with parts that could
crumple or collapse in the event of an accident.

Bones in a body will fracture if the force on them is too large. If you jump onto the floor from a table, the force on your legs
can be immense if you land stiff-legged on a hard surface. Rolling on the ground after jumping from the table, or landing with
a parachute, extends the time over which the force (on you from the ground) acts.
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Example 8.3 Calculating Magnitudes of Impulses: Two Billiard Balls Striking a Rigid Wall

Two identical billiard balls strike a rigid wall with the same speed, and are reflected without any change of speed. The first
ball strikes perpendicular to the wall. The second ball strikes the wall at an angle of 30º from the perpendicular, and

bounces off at an angle of 30º from perpendicular to the wall.

(a) Determine the direction of the force on the wall due to each ball.

(b) Calculate the ratio of the magnitudes of impulses on the two balls by the wall.

Strategy for (a)

In order to determine the force on the wall, consider the force on the ball due to the wall using Newton’s second law and
then apply Newton’s third law to determine the direction. Assume the x -axis to be normal to the wall and to be positive in
the initial direction of motion. Choose the y -axis to be along the wall in the plane of the second ball’s motion. The

momentum direction and the velocity direction are the same.

Solution for (a)

The first ball bounces directly into the wall and exerts a force on it in the +x direction. Therefore the wall exerts a force on
the ball in the −x direction. The second ball continues with the same momentum component in the y direction, but

reverses its x -component of momentum, as seen by sketching a diagram of the angles involved and keeping in mind the
proportionality between velocity and momentum.

These changes mean the change in momentum for both balls is in the −x direction, so the force of the wall on each ball is
along the −x direction.

Strategy for (b)

Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for (b)

Let u be the speed of each ball before and after collision with the wall, and m the mass of each ball. Choose the x -axis
and y -axis as previously described, and consider the change in momentum of the first ball which strikes perpendicular to

the wall.

(8.19)pxi = mu; pyi = 0
(8.20)pxf = −mu; pyf = 0

Impulse is the change in momentum vector. Therefore the x -component of impulse is equal to −2mu and the y -

component of impulse is equal to zero.

Now consider the change in momentum of the second ball.

(8.21)pxi = mu cos 30º; pyi = –mu sin 30º
(8.22)pxf = – mu cos 30º; pyf = −mu sin 30º

It should be noted here that while px changes sign after the collision, py does not. Therefore the x -component of

impulse is equal to −2mu cos 30º and the y -component of impulse is equal to zero.

The ratio of the magnitudes of the impulse imparted to the balls is

(8.23)2mu
2mu cos 30º = 2

3
= 1.155.

Discussion

The direction of impulse and force is the same as in the case of (a); it is normal to the wall and along the negative x
-direction. Making use of Newton’s third law, the force on the wall due to each ball is normal to the wall along the positive x
-direction.

Our definition of impulse includes an assumption that the force is constant over the time interval Δt . Forces are usually not
constant. Forces vary considerably even during the brief time intervals considered. It is, however, possible to find an average
effective force Feff that produces the same result as the corresponding time-varying force. Figure 8.2 shows a graph of what

an actual force looks like as a function of time for a ball bouncing off the floor. The area under the curve has units of momentum
and is equal to the impulse or change in momentum between times t1 and t2 . That area is equal to the area inside the
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rectangle bounded by Feff , t1 , and t2 . Thus the impulses and their effects are the same for both the actual and effective

forces.

Figure 8.2 A graph of force versus time with time along the x -axis and force along the y -axis for an actual force and an equivalent effective force.

The areas under the two curves are equal.

Making Connections: Take-Home Investigation—Hand Movement and Impulse

Try catching a ball while “giving” with the ball, pulling your hands toward your body. Then, try catching a ball while keeping
your hands still. Hit water in a tub with your full palm. After the water has settled, hit the water again by diving your hand with
your fingers first into the water. (Your full palm represents a swimmer doing a belly flop and your diving hand represents a
swimmer doing a dive.) Explain what happens in each case and why. Which orientations would you advise people to avoid
and why?

Making Connections: Constant Force and Constant Acceleration

The assumption of a constant force in the definition of impulse is analogous to the assumption of a constant acceleration in
kinematics. In both cases, nature is adequately described without the use of calculus.
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8.3 Conservation of Momentum
Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear 
Momentum and Force, where large changes in momentum were produced by forces acting on the system of interest. Under 
what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which 
total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost 
in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving 
momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive 
than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and 
Earth—for example, one car bumping into another, as shown in Figure 8.3. Both cars are coasting in the same direction when
the lead car (labeled m2) is bumped by the trailing car (labeled m1). The only unbalanced force on each car is the force of the 

collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some 
momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car 
system remains constant.
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Figure 8.3 A car of mass m1 moving with a velocity of v1 bumps into another car of mass m2 and velocity v2 that it is following. As a result, the

first car slows down to a velocity of v′1 and the second speeds up to a velocity of v′2 . The momentum of each car is changed, but the total

momentum ptot of the two cars is the same before and after the collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of car 1 is given by

(8.24)Δp1 = F1Δt,

where F1 is the force on car 1 due to car 2, and Δt is the time the force acts (the duration of the collision). Intuitively, it seems

obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This
assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is
conserved.

Similarly, the change in momentum of car 2 is

(8.25)Δp2 = F2Δt,

where F2 is the force on car 2 due to car 1, and we assume the duration of the collision Δt is the same for both cars. We know

from Newton’s third law that F2 = – F1 , and so

(8.26)Δp2 = −F1Δt = −Δp1.

Thus, the changes in momentum are equal and opposite, and

(8.27)Δp1 + Δp2 = 0.

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

(8.28)p1 + p2 = constant,
(8.29)p1 + p2 = p′1 + p′2,

where p′1 and p′2 are the momenta of cars 1 and 2 after the collision. (We often use primes to denote the final state.)

This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly
shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the
conservation of momentum principle for an isolated system is written

(8.30)ptot = constant,

or

(8.31)ptot = p′tot,
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where ptot is the total momentum (the sum of the momenta of the individual objects in the system) and p′tot is the total

momentum some time later. (The total momentum can be shown to be the momentum of the center of mass of the system.) An
isolated system is defined to be one for which the net external force is zero ⎛

⎝Fnet = 0⎞
⎠.

Conservation of Momentum Principle
(8.32)ptot = constant

ptot = p′tot (isolated system)

Isolated System

An isolated system is defined to be one for which the net external force is zero ⎛
⎝Fnet = 0⎞

⎠.

Perhaps an easier way to see that momentum is conserved for an isolated system is to consider Newton’s second law in terms of

momentum, Fnet = Δptot
Δt . For an isolated system, ⎛

⎝Fnet = 0⎞
⎠ ; thus, Δptot = 0 , and ptot is constant.

We have noted that the three length dimensions in nature— x , y , and z —are independent, and it is interesting to note that

momentum can be conserved in different ways along each dimension. For example, during projectile motion and where air
resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero and momentum is
unchanged. But along the vertical direction, the net vertical force is not zero and the momentum of the projectile is not
conserved. (See Figure 8.4.) However, if the momentum of the projectile-Earth system is considered in the vertical direction, we
find that the total momentum is conserved.

Figure 8.4 The horizontal component of a projectile’s momentum is conserved if air resistance is negligible, even in this case where a space probe
separates. The forces causing the separation are internal to the system, so that the net external horizontal force Fx – net is still zero. The vertical

component of the momentum is not conserved, because the net vertical force Fy – net is not zero. In the vertical direction, the space probe-Earth

system needs to be considered and we find that the total momentum is conserved. The center of mass of the space probe takes the same path it would
if the separation did not occur.

The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing
huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But
another larger system can always be considered in which momentum is conserved by simply including the source of the external
force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car
system does not.

Making Connections: Take-Home Investigation—Drop of Tennis Ball and a Basketball

Hold a tennis ball side by side and in contact with a basketball. Drop the balls together. (Be careful!) What happens? Explain
your observations. Now hold the tennis ball above and in contact with the basketball. What happened? Explain your
observations. What do you think will happen if the basketball ball is held above and in contact with the tennis ball?
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Making Connections: Take-Home Investigation—Two Tennis Balls in a Ballistic Trajectory

Tie two tennis balls together with a string about a foot long. Hold one ball and let the other hang down and throw it in a
ballistic trajectory. Explain your observations. Now mark the center of the string with bright ink or attach a brightly colored
sticker to it and throw again. What happened? Explain your observations.

Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills its
umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet of
water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in which
they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the
heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the
rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This
measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This
technique can gather information on the strength of the heart beat and the volume of blood passing from the heart. However,
the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses ultrasound to
see an image of the heart) are more widely used in the practice of cardiology.

Making Connections: Conservation of Momentum and Collision

Conservation of momentum is quite useful in describing collisions. Momentum is crucial to our understanding of atomic and
subatomic particles because much of what we know about these particles comes from collision experiments.

Subatomic Collisions and Momentum
The conservation of momentum principle not only applies to the macroscopic objects, it is also essential to our explorations of
atomic and subatomic particles. Giant machines hurl subatomic particles at one another, and researchers evaluate the results by
assuming conservation of momentum (among other things).

On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our
instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a
property of all subatomic particles including massless particles such as photons that compose light. Momentum being a property
of particles hints that momentum may have an identity beyond the description of an object’s mass multiplied by the object’s
velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken and how
we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when considering
systems of particles. We use this principle to analyze the masses and other properties of previously undetected particles, such
as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure 8.5 below illustrates how a
particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence that
quarks make up protons (one type of particle that makes up nuclei) scattered high-energy electrons off of protons (nuclei of
hydrogen atoms). Electrons occasionally scattered straight backward in a manner that implied a very small and very dense
particle makes up the proton—this observation is considered nearly direct evidence of quarks. The analysis was based partly on
the same conservation of momentum principle that works so well on the large scale.

Figure 8.5 A subatomic particle scatters straight backward from a target particle. In experiments seeking evidence for quarks, electrons were observed
to occasionally scatter straight backward from a proton.
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8.4 Elastic Collisions in One Dimension
Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the
physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used
whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision is
one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the
system. Figure 8.6 illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions
can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat
transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another
nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly
frictionless, more readily allowing nearly elastic collisions on them.

Elastic Collision

An elastic collision is one that conserves internal kinetic energy.

Internal Kinetic Energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

Figure 8.6 An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for
conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two
objects in a one-dimensional collision is

(8.33)p1 + p2 = p′1+ p′2
⎛
⎝Fnet = 0⎞

⎠

or

(8.34)m1 v1 + m2v2 = m1v′1 + m2v′2
⎛
⎝Fnet = 0⎞

⎠,

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so
the sum of kinetic energies before the collision equals the sum after the collision. Thus,

(8.35)1
2m1 v1

2 + 1
2m2 v2

2 = 1
2m1 v′1

2 + 1
2m2 v′2

2 (two-object elastic collision)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.
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Example 8.4 Calculating Velocities Following an Elastic Collision

Calculate the velocities of two objects following an elastic collision, given that

(8.36)m1 = 0.500 kg, m2 = 3.50 kg, v1 = 4.00 m/s, and v2 = 0.

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is
slightly simpler than the situation shown in Figure 8.6 where both objects are initially moving. We are asked to find two
unknowns (the final velocities v′1 and v′2 ). To find two unknowns, we must use two independent equations. Because this

collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and
thus v2 = 0 . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that v2 = 0 and use conservation of momentum. Thus,

(8.37)p1 = p′1 + p′2

or

(8.38)m1 v1 = m1v′1 + m2v′2.

Using conservation of internal kinetic energy and that v2 = 0 ,

(8.39)1
2m1 v1

2 = 1
2m1 v′1

2 + 1
2m2 v′2

2.

Solving the first equation (momentum equation) for v′2 , we obtain

(8.40)v′2 = m1
m2

⎛
⎝v1 − v′1

⎞
⎠.

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v′2 , leaving

only v′1 as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic

equation; in this example, they are

(8.41)v′1 = 4.00 m/s

and

(8.42)v′1 = −3.00 m/s.

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In
this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the
collision and is discarded. The second solution (v′1 = −3.00 m/s) is negative, meaning that the first object bounces

backward. When this negative value of v′1 is used to find the velocity of the second object after the collision, we get

(8.43)
v′2 = m1

m2
⎛
⎝v1 − v′1

⎞
⎠ = 0.500 kg

3.50 kg
⎡
⎣4.00 − (−3.00)⎤

⎦ m/s

or

(8.44)v′2 = 1.00 m/s.

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The
larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is
initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the
internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it,
too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-
dimensional elastic collision of two objects. These equations can be extended to more objects if needed.
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Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice
cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and
observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating
ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using
momentum.

PhET Explorations: Collision Lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial
conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Figure 8.7 Collision Lab (http://cnx.org/content/m42163/1.3/collision-lab_en.jar)

8.5 Inelastic Collisions in One Dimension
We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal
kinetic energy changes (it is not conserved). This lack of conservation means that the forces between colliding objects may
remove or add internal kinetic energy. Work done by internal forces may change the forms of energy within a system. For
inelastic collisions, such as when colliding objects stick together, this internal work may transform some internal kinetic energy
into heat transfer. Or it may convert stored energy into internal kinetic energy, such as when exploding bolts separate a satellite
from its launch vehicle.

Inelastic Collision

An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

Figure 8.8 shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal

speeds and then stick together. Their total internal kinetic energy is initially 1
2mv2 + 1

2mv2 = mv2 . The two objects come to

rest after sticking together, conserving momentum. But the internal kinetic energy is zero after the collision. A collision in which
the objects stick together is sometimes called a perfectly inelastic collision because it reduces internal kinetic energy more
than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it can have
while still conserving momentum.

Perfectly Inelastic Collision

A collision in which the objects stick together is sometimes called “perfectly inelastic.”

Figure 8.8 An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two objects of
equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic collision), and so their final
velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to zero in this example.
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Example 8.5 Calculating Velocity and Change in Kinetic Energy: Inelastic Collision of a Puck
and a Goalie

(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at
him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and
the puck-goalie system is negligible. (See Figure 8.9 )

Figure 8.9 An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely converted to
thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of
momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that
the final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated
before and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

(8.45)p1 + p2 = p′1 + p′2

or

(8.46)m1 v1 + m2v2 = m1v′1 + m2v′2.

Because the goalie is initially at rest, we know v2 = 0 . Because the goalie catches the puck, the final velocities are equal,

or v′1 = v′2 = v′ . Thus, the conservation of momentum equation simplifies to

(8.47)m1 v1 = (m1 + m2)v′.

Solving for v′ yields

(8.48)v′ = m1
m1 + m2

v1.

Entering known values in this equation, we get

(8.49)
v′ = ⎛

⎝
0.150 kg

70.0 kg + 0.150 kg
⎞
⎠(35.0 m/s) = 7.48×10−2 m/s.

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy KEint of the system is that of the hockey puck, because the goalie is initially

at rest. Therefore, KEint is initially

(8.50)KEint = 1
2mv2 = 1

2
⎛
⎝0.150 kg⎞

⎠(35.0 m/s)2

= 91.9 J.
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After the collision, the internal kinetic energy is

(8.51)
KE′int = 1

2(m + M)v2 = 1
2

⎛
⎝70.15 kg⎞

⎠
⎛
⎝7.48×10−2 m/s⎞

⎠
2

= 0.196 J.
The change in internal kinetic energy is thus

(8.52)KE′int − KEint = 0.196 J − 91.9 J
= − 91.7 J

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. KEint is mostly converted to thermal

energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as
happens in most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a
collision. Figure 8.10 shows a one-dimensional example in which two carts on an air track collide, releasing potential energy
from a compressed spring. Example 8.6 deals with data from such a collision.

Figure 8.10 An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in Example
8.6, the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let
us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet
will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a
softball bat) cannot hit a hardball very far.

The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the
impact occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries
such as tennis elbow. A tennis player tries to hit the ball on the “sweet spot” on the racquet, where the vibration and impact
are minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts
such as momentum and rotational motion and vibrations.

Take-Home Experiment—Bouncing of Tennis Ball
1. Find a racquet (a tennis, badminton, or other racquet will do). Place the racquet on the floor and stand on the handle.

Drop a tennis ball on the strings from a measured height. Measure how high the ball bounces. Now ask a friend to hold
the racquet firmly by the handle and drop a tennis ball from the same measured height above the racquet. Measure
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how high the ball bounces and observe what happens to your friend’s hand during the collision. Explain your
observations and measurements.

2. The coefficient of restitution (c) is a measure of the elasticity of a collision between a ball and an object, and is

defined as the ratio of the speeds after and before the collision. A perfectly elastic collision has a c of 1. For a ball

bouncing off the floor (or a racquet on the floor), c can be shown to be c = (h / H)1 / 2 where h is the height to

which the ball bounces and H is the height from which the ball is dropped. Determine c for the cases in Part 1 and

for the case of a tennis ball bouncing off a concrete or wooden floor ( c = 0.85 for new tennis balls used on a tennis
court).

Example 8.6 Calculating Final Velocity and Energy Release: Two Carts Collide

In the collision pictured in Figure 8.10, two carts collide inelastically. Cart 1 (denoted m1 carries a spring which is initially

compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass
of cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of 2.00 m/s . Cart 2

(denoted m2 in Figure 8.10) has a mass of 0.500 kg and an initial velocity of −0.500 m/s . After the collision, cart 1 is

observed to recoil with a velocity of −4.00 m/s . (a) What is the final velocity of cart 2? (b) How much energy was released
by the spring (assuming all of it was converted into internal kinetic energy)?

Strategy

We can use conservation of momentum to find the final velocity of cart 2, because Fnet = 0 (the track is frictionless and

the force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and
after the collision to see how much energy was released by the spring.

Solution for (a)

As before, the equation for conservation of momentum in a two-object system is

(8.53)m1 v1 + m2v2 = m1v′1 + m2v′2 .

The only unknown in this equation is v′2 . Solving for v′2 and substituting known values into the previous equation yields

(8.54)
v′2 = m1 v1 + m2v2 − m1 v′1

m2

=
⎛
⎝0.350 kg⎞

⎠(2.00 m/s) + ⎛
⎝0.500 kg⎞

⎠(−0.500 m/s)
0.500 kg −

⎛
⎝0.350 kg⎞

⎠(−4.00 m/s)
0.500 kg

= 3.70 m/s.
Solution for (b)

The internal kinetic energy before the collision is

(8.55)KEint = 1
2m1 v1

2 + 1
2m2 v2

2

= 1
2

⎛
⎝0.350 kg⎞

⎠(2.00 m/s)2 + 1
2

⎛
⎝0.500 kg⎞

⎠( – 0.500 m/s)2

= 0.763 J.
After the collision, the internal kinetic energy is

(8.56)KE′int = 1
2m1 v′1

2 + 1
2m2 v′2

2

= 1
2

⎛
⎝0.350 kg⎞

⎠(-4.00 m/s)2 + 1
2

⎛
⎝0.500 kg⎞

⎠(3.70 m/s)2

= 6.22 J.
The change in internal kinetic energy is thus

(8.57)KE′int − KEint = 6.22 J − 0.763 J
= 5.46 J.

Discussion

The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic
energy in this collision increases by 5.46 J. That energy was released by the spring.
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8.6 Collisions of Point Masses in Two Dimensions
In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing
velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to
the side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis
already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to
choose a convenient coordinate system and resolve the motion into components along perpendicular axes. Resolving the motion
yields a pair of one-dimensional problems to be solved simultaneously.

One complication arising in two-dimensional collisions is that the objects might rotate before or after their collision. For example,
if two ice skaters hook arms as they pass by one another, they will spin in circles. We will not consider such rotation until later,
and so for now we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of point
masses—that is, structureless particles that cannot rotate or spin.

We start by assuming that Fnet = 0 , so that momentum p is conserved. The simplest collision is one in which one of the

particles is initially at rest. (See Figure 8.11.) The best choice for a coordinate system is one with an axis parallel to the velocity
of the incoming particle, as shown in Figure 8.11. Because momentum is conserved, the components of momentum along the
x - and y -axes (px and py) will also be conserved, but with the chosen coordinate system, py is initially zero and px is the

momentum of the incoming particle. Both facts simplify the analysis. (Even with the simplifying assumptions of point masses, one
particle initially at rest, and a convenient coordinate system, we still gain new insights into nature from the analysis of two-
dimensional collisions.)

Figure 8.11 A two-dimensional collision with the coordinate system chosen so that m2 is initially at rest and v1 is parallel to the x -axis. This

coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a target that is stationary in the
laboratory, while particles are scattered from it to determine the particles that make-up the target and how they are bound together. The particles may
not be observed directly, but their initial and final velocities are.

Along the x -axis, the equation for conservation of momentum is

(8.58)p1x + p2x = p′1x + p′2x.

Where the subscripts denote the particles and axes and the primes denote the situation after the collision. In terms of masses
and velocities, this equation is

(8.59)m1 v1x + m2v2x = m1v′1x + m2v′2x.

But because particle 2 is initially at rest, this equation becomes

(8.60)m1 v1x = m1v′1x + m2v′2x.

The components of the velocities along the x -axis have the form v cos θ . Because particle 1 initially moves along the x -axis,
we find v1x = v1 .

Conservation of momentum along the x -axis gives the following equation:

(8.61)m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2,

where θ1 and θ2 are as shown in Figure 8.11.
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Conservation of Momentum along the x -axis

(8.62)m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2

Along the y -axis, the equation for conservation of momentum is

(8.63)p1y + p2y = p′1y + p′2y

or

(8.64)m1 v1y + m2v2y = m1v′1y + m2v′2y.

But v1y is zero, because particle 1 initially moves along the x -axis. Because particle 2 is initially at rest, v2y is also zero. The

equation for conservation of momentum along the y -axis becomes

(8.65)0 = m1v′1y + m2v′2y.

The components of the velocities along the y -axis have the form v sin θ .

Thus, conservation of momentum along the y -axis gives the following equation:

(8.66)0 = m1v′1 sin θ1 + m2v′2 sin θ2.

Conservation of Momentum along the y -axis

(8.67)0 = m1v′1 sin θ1 + m2v′2 sin θ2

The equations of conservation of momentum along the x -axis and y -axis are very useful in analyzing two-dimensional

collisions of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to
find two unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic
level.

Example 8.7 Determining the Final Velocity of an Unseen Object from the Scattering of Another
Object

Suppose the following experiment is performed. A 0.250-kg object (m1) is slid on a frictionless surface into a dark room,

where it strikes an initially stationary object with mass of 0.400 kg (m2) . The 0.250-kg object emerges from the room at an

angle of 45.0º with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and
direction of the velocity (v′2 and θ2) of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in Figure 8.12 is one in which
m2 is originally at rest and the initial velocity is parallel to the x -axis, so that conservation of momentum along the x - and

y -axes is applicable.

Everything is known in these equations except v′2 and θ2 , which are precisely the quantities we wish to find. We can find

two unknowns because we have two independent equations: the equations describing the conservation of momentum in the
x - and y -directions.

Solution

Solving m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2 for v2′ cos θ2 and 0 = m1v′1 sin θ1 + m2v′2 sin θ2 for

v′2 sin θ2 and taking the ratio yields an equation (in which θ2 is the only unknown quantity. Applying the identity

⎛
⎝tan θ = sin θ

cos θ
⎞
⎠ , we obtain:

(8.68)
tan θ2 =

v′1 sin θ1
v′1 cos θ1 − v1

.
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Entering known values into the previous equation gives

(8.69)tan θ2 = (1.50 m/s)(0.7071)
(1.50 m/s)(0.7071) − 2.00 m/s = −1.129.

Thus,

(8.70)θ2 = tan−1(−1.129) = 311.5º ≈ 312º.

Angles are defined as positive in the counter clockwise direction, so this angle indicates that m2 is scattered to the right in

Figure 8.12, as expected (this angle is in the fourth quadrant). Either equation for the x - or y -axis can now be used to

solve for v′2 , but the latter equation is easiest because it has fewer terms.

(8.71)
v′2 = −m1

m2
v′1

sin θ1
sin θ2

Entering known values into this equation gives

(8.72)
v′2 = −⎛

⎝
0.250 kg
0.400 kg

⎞
⎠(1.50 m/s)⎛⎝

0.7071
−0.7485

⎞
⎠.

Thus,

(8.73)v′2 = 0.886 m/s.

Discussion

It is instructive to calculate the internal kinetic energy of this two-object system before and after the collision. (This
calculation is left as an end-of-chapter problem.) If you do this calculation, you will find that the internal kinetic energy is less
after the collision, and so the collision is inelastic. This type of result makes a physicist want to explore the system further.
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Figure 8.12 A collision taking place in a dark room is explored in Example 8.7. The incoming object m1 is scattered by an initially stationary object.

Only the stationary object’s mass m2 is known. By measuring the angle and speed at which m1 emerges from the room, it is possible to calculate 

the magnitude and direction of the initially stationary object’s velocity after the collision.

Elastic Collisions of Two Objects with Equal Mass
Some interesting situations arise when the two colliding objects have equal mass and the collision is elastic. This situation is 
nearly the case with colliding billiard balls, and precisely the case with some subatomic particle collisions. We can thus get a 
mental image of a collision of subatomic particles by thinking about billiards (or pool). (Refer to Figure 8.11 for masses and

angles.) First, an elastic collision conserves internal kinetic energy. Again, let us assume object 2 (m2) is initially at rest. Then, 

the internal kinetic energy before aer the collision of two objects that have equal masses is
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(8.74)1
2mv1

2 = 1
2mv′1

2 + 1
2mv′2

2.

Because the masses are equal, m1 = m2 = m . Algebraic manipulation (left to the reader) of conservation of momentum in the

x - and y -directions can show that

(8.75)1
2mv1

2 = 1
2mv′1

2 + 1
2mv′2

2 + mv′1v′2 cos⎛
⎝θ1 − θ2

⎞
⎠.

(Remember that θ2 is negative here.) The two preceding equations can both be true only if

(8.76)mv′1 v′2 cos⎛
⎝θ1 − θ2

⎞
⎠ = 0.

There are three ways that this term can be zero. They are

• v′1 = 0 : head-on collision; incoming ball stops

• v′2 = 0 : no collision; incoming ball continues unaffected

• cos(θ1 − θ2) = 0 : angle of separation (θ1 − θ2) is 90º after the collision

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play
enough pool, you will notice that the angle between the balls is very close to 90º after the collision, although it will vary from this
value if a great deal of spin is placed on the ball. (Large spin carries in extra energy and a quantity called angular momentum,
which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the
correctness of the three results it produces. This assumption also implies that, to a good approximation, momentum is conserved
for the two-ball system in billiards and pool. The problems below explore these and other characteristics of two-dimensional
collisions.

Connections to Nuclear and Particle Physics

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in
Medical Applications of Nuclear Physics and Particle Physics. Ernest Rutherford, for example, discovered the nature of
the atomic nucleus from such experiments.

8.7 Introduction to Rocket Propulsion
Rockets range in size from fireworks so small that ordinary people use them to immense Saturn Vs that once propelled massive
payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses is
explained by the same physical principle—Newton’s third law of motion. Matter is forcefully ejected from a system, producing an
equal and opposite reaction on what remains. Another common example is the recoil of a gun. The gun exerts a force on a bullet
to accelerate it and consequently experiences an equal and opposite force, causing the gun’s recoil or kick.

Making Connections: Take-Home Experiment—Propulsion of a Balloon

Hold a balloon and fill it with air. Then, let the balloon go. In which direction does the air come out of the balloon and in which
direction does the balloon get propelled? If you fill the balloon with water and then let the balloon go, does the balloon’s
direction change? Explain your answer.

Figure 8.13 shows a rocket accelerating straight up. In part (a), the rocket has a mass m and a velocity v relative to Earth, and

hence a momentum mv . In part (b), a time Δt has elapsed in which the rocket has ejected a mass Δm of hot gas at a

velocity ve relative to the rocket. The remainder of the mass (m − Δm) now has a greater velocity (v + Δv) . The momentum

of the entire system (rocket plus expelled gas) has actually decreased because the force of gravity has acted for a time Δt ,

producing a negative impulse Δp = −mgΔt . (Remember that impulse is the net external force on a system multiplied by the

time it acts, and it equals the change in momentum of the system.) So, the center of mass of the system is in free fall but, by
rapidly expelling mass, part of the system can accelerate upward. It is a commonly held misconception that the rocket exhaust
pushes on the ground. If we consider thrust; that is, the force exerted on the rocket by the exhaust gases, then a rocket’s thrust is
greater in outer space than in the atmosphere or on the launch pad. In fact, gases are easier to expel into a vacuum.

By calculating the change in momentum for the entire system over Δt , and equating this change to the impulse, the following
expression can be shown to be a good approximation for the acceleration of the rocket.

(8.77)a = ve
m

Δm
Δt − g

“The rocket” is that part of the system remaining after the gas is ejected, and g is the acceleration due to gravity.
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Acceleration of a Rocket

Acceleration of a rocket is

(8.78)a = ve
m

Δm
Δt − g,

where a is the acceleration of the rocket, ve is the escape velocity, m is the mass of the rocket, Δm is the mass of the

ejected gas, and Δt is the time in which the gas is ejected.

Figure 8.13 (a) This rocket has a mass m and an upward velocity v . The net external force on the system is −mg , if air resistance is neglected.

(b) A time Δt later the system has two main parts, the ejected gas and the remainder of the rocket. The reaction force on the rocket is what
overcomes the gravitational force and accelerates it upward.

A rocket’s acceleration depends on three major factors, consistent with the equation for acceleration of a rocket . First, the
greater the exhaust velocity of the gases relative to the rocket, ve , the greater the acceleration is. The practical limit for ve is

about 2.5×103 m/s for conventional (non-nuclear) hot-gas propulsion systems. The second factor is the rate at which mass is

ejected from the rocket. This is the factor Δm / Δt in the equation. The quantity (Δm / Δt)ve , with units of newtons, is called

"thrust.” The faster the rocket burns its fuel, the greater its thrust, and the greater its acceleration. The third factor is the mass m
of the rocket. The smaller the mass is (all other factors being the same), the greater the acceleration. The rocket mass m
decreases dramatically during flight because most of the rocket is fuel to begin with, so that acceleration increases continuously,
reaching a maximum just before the fuel is exhausted.

Factors Affecting a Rocket’s Acceleration
• The greater the exhaust velocity ve of the gases relative to the rocket, the greater the acceleration.

• The faster the rocket burns its fuel, the greater its acceleration.
• The smaller the rocket’s mass (all other factors being the same), the greater the acceleration.
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Example 8.8 Calculating Acceleration: Initial Acceleration of a Moon Launch

A Saturn V’s mass at liftoff was 2.80×106 kg , its fuel-burn rate was 1.40×104 kg/s , and the exhaust velocity was

2.40×103 m/s . Calculate its initial acceleration.

Strategy

This problem is a straightforward application of the expression for acceleration because a is the unknown and all of the
terms on the right side of the equation are given.

Solution

Substituting the given values into the equation for acceleration yields

(8.79)a = ve
m

Δm
Δt − g

= 2.40×103 m/s
2.80×106 kg

⎛
⎝1.40×104 kg/s⎞

⎠ − 9.80 m/s2

= 2.20 m/s2 .
Discussion

This value is fairly small, even for an initial acceleration. The acceleration does increase steadily as the rocket burns fuel,

because m decreases while ve and Δm
Δt remain constant. Knowing this acceleration and the mass of the rocket, you can

show that the thrust of the engines was 3.36×107 N .

To achieve the high speeds needed to hop continents, obtain orbit, or escape Earth’s gravity altogether, the mass of the rocket
other than fuel must be as small as possible. It can be shown that, in the absence of air resistance and neglecting gravity, the
final velocity of a one-stage rocket initially at rest is

(8.80)v = ve ln m0
mr

,

where ln⎛
⎝m0 / mr

⎞
⎠ is the natural logarithm of the ratio of the initial mass of the rocket (m0) to what is left (mr) after all of the

fuel is exhausted. (Note that v is actually the change in velocity, so the equation can be used for any segment of the flight. If we
start from rest, the change in velocity equals the final velocity.) For example, let us calculate the mass ratio needed to escape

Earth’s gravity starting from rest, given that the escape velocity from Earth is about 11.2×103 m/s , and assuming an exhaust

velocity ve = 2.5×103 m/s .

(8.81)
ln m0

mr
= v

ve
= 11.2×103 m/s

2.5×103 m/s
= 4.48

Solving for m0 / mr gives

(8.82)m0
mr

= e4.48 = 88.

Thus, the mass of the rocket is

(8.83)mr = m0
88 .

This result means that only 1 / 88 of the mass is left when the fuel is burnt, and 87 / 88 of the initial mass was fuel. Expressed
as percentages, 98.9% of the rocket is fuel, while payload, engines, fuel tanks, and other components make up only 1.10%.
Taking air resistance and gravitational force into account, the mass mr remaining can only be about m0 / 180 . It is difficult to

build a rocket in which the fuel has a mass 180 times everything else. The solution is multistage rockets. Each stage only needs
to achieve part of the final velocity and is discarded after it burns its fuel. The result is that each successive stage can have
smaller engines and more payload relative to its fuel. Once out of the atmosphere, the ratio of payload to fuel becomes more
favorable, too.

The space shuttle was an attempt at an economical vehicle with some reusable parts, such as the solid fuel boosters and the
craft itself. (See Figure 8.14) The shuttle’s need to be operated by humans, however, made it at least as costly for launching
satellites as expendable, unmanned rockets. Ideally, the shuttle would only have been used when human activities were required
for the success of a mission, such as the repair of the Hubble space telescope. Rockets with satellites can also be launched from
airplanes. Using airplanes has the double advantage that the initial velocity is significantly above zero and a rocket can avoid
most of the atmosphere’s resistance.
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change in momentum:

conservation of momentum principle:

elastic collision:

impulse:

inelastic collision:

internal kinetic energy:

isolated system:

linear momentum:

perfectly inelastic collision:

point masses:

quark:

Figure 8.14 The space shuttle had a number of reusable parts. Solid fuel boosters on either side were recovered and refueled after each flight, and the
entire orbiter returned to Earth for use in subsequent flights. The large liquid fuel tank was expended. The space shuttle was a complex assemblage of
technologies, employing both solid and liquid fuel and pioneering ceramic tiles as reentry heat shields. As a result, it permitted multiple launches as
opposed to single-use rockets. (credit: NASA)

PhET Explorations: Lunar Lander

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of
this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel
consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Figure 8.15 Lunar Lander (http://cnx.org/content/m42166/1.6/lunar-lander_en.jar) 

Glossary
the difference between the final and initial momentum; the mass times the change in velocity

when the net external force is zero, the total momentum of the system is conserved
or constant

a collision that also conserves internal kinetic energy

the average net external force times the time it acts; equal to the change in momentum

a collision in which internal kinetic energy is not conserved

the sum of the kinetic energies of the objects in a system

a system in which the net external force is zero

the product of mass and velocity

a collision in which the colliding objects stick together

structureless particles with no rotation or spin

fundamental constituent of matter and an elementary particle
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second law of motion: physical law that states that the net external force equals the change in momentum of a system
divided by the time over which it changes

Section Summary

8.1 Linear Momentum and Force
• Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity.
• In symbols, linear momentum p is defined to be

p = mv,
where m is the mass of the system and v is its velocity.

• The SI unit for momentum is kg · m/s .

• Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of
a system divided by the time over which it changes.

• In symbols, Newton’s second law of motion is defined to be

Fnet = Δp
Δt ,

Fnet is the net external force, Δp is the change in momentum, and Δt is the change time.

8.2 Impulse
• Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:

Δp = FnetΔt.
• Forces are usually not constant over a period of time.

8.3 Conservation of Momentum
• The conservation of momentum principle is written

ptot = constant
or

ptot = p′tot (isolated system),
ptot is the initial total momentum and p′tot is the total momentum some time later.

• An isolated system is defined to be one for which the net external force is zero ⎛
⎝Fnet = 0⎞

⎠.
• During projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because

horizontal forces are zero.
• Conservation of momentum applies only when the net external force is zero.
• The conservation of momentum principle is valid when considering systems of particles.

8.4 Elastic Collisions in One Dimension
• An elastic collision is one that conserves internal kinetic energy.
• Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities

and masses in one dimensional two-body collisions.

8.5 Inelastic Collisions in One Dimension
• An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).
• A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic

energy more than does any other type of inelastic collision.
• Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

8.6 Collisions of Point Masses in Two Dimensions
• The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into

components along perpendicular axes. Choose a coordinate system with the x -axis parallel to the velocity of the incoming
particle.

• Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction
of mass 1 (the x -axis), stated by m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2 and along the direction perpendicular to the

initial direction (the y -axis) stated by 0 = m1v′1y +m2v′2y .

• The internal kinetic before and after the collision of two objects that have equal masses is

1
2mv1

2 = 1
2mv′1

2 + 1
2mv′2

2 + mv′1v′2 cos⎛
⎝θ1 − θ2

⎞
⎠.
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• Point masses are structureless particles that cannot spin.

8.7 Introduction to Rocket Propulsion
• Newton’s third law of motion states that to every action, there is an equal and opposite reaction.

• Acceleration of a rocket is a = ve
m

Δm
Δt − g .

• A rocket’s acceleration depends on three main factors. They are

1. The greater the exhaust velocity of the gases, the greater the acceleration.
2. The faster the rocket burns its fuel, the greater its acceleration.
3. The smaller the rocket's mass, the greater the acceleration.

Conceptual Questions

8.1 Linear Momentum and Force
1. An object that has a small mass and an object that has a large mass have the same momentum. Which object has the largest
kinetic energy?

2. An object that has a small mass and an object that has a large mass have the same kinetic energy. Which mass has the
largest momentum?

3. Professional Application

Football coaches advise players to block, hit, and tackle with their feet on the ground rather than by leaping through the air.
Using the concepts of momentum, work, and energy, explain how a football player can be more effective with his feet on the
ground.

4. How can a small force impart the same momentum to an object as a large force?

8.2 Impulse
5. Professional Application

Explain in terms of impulse how padding reduces forces in a collision. State this in terms of a real example, such as the
advantages of a carpeted vs. tile floor for a day care center.

6. While jumping on a trampoline, sometimes you land on your back and other times on your feet. In which case can you reach a
greater height and why?

7. Professional Application

Tennis racquets have “sweet spots.” If the ball hits a sweet spot then the player's arm is not jarred as much as it would be
otherwise. Explain why this is the case.

8.3 Conservation of Momentum
8. Professional Application

If you dive into water, you reach greater depths than if you do a belly flop. Explain this difference in depth using the concept of
conservation of energy. Explain this difference in depth using what you have learned in this chapter.

9. Under what circumstances is momentum conserved?

10. Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions? If
not, why not?

11. Momentum for a system can be conserved in one direction while not being conserved in another. What is the angle between
the directions? Give an example.

12. Professional Application

Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in its
direction of motion.

13. Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.

14. Must the total energy of a system be conserved whenever its momentum is conserved? Explain why or why not.

8.4 Elastic Collisions in One Dimension
15. What is an elastic collision?

8.5 Inelastic Collisions in One Dimension
16. What is an inelastic collision? What is a perfectly inelastic collision?

17. Mixed-pair ice skaters performing in a show are standing motionless at arms length just before starting a routine. They reach
out, clasp hands, and pull themselves together by only using their arms. Assuming there is no friction between the blades of their
skates and the ice, what is their velocity after their bodies meet?
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18. A small pickup truck that has a camper shell slowly coasts toward a red light with negligible friction. Two dogs in the back of
the truck are moving and making various inelastic collisions with each other and the walls. What is the effect of the dogs on the
motion of the center of mass of the system (truck plus entire load)? What is their effect on the motion of the truck?

8.6 Collisions of Point Masses in Two Dimensions
19. Figure 8.16 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle θ1 ) at which the

small object can emerge after colliding elastically with the cube. How does θ1 depend on b , the so-called impact parameter?

Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the
small object. (b) Answer the same questions if the small object instead collides with a massive sphere.

Figure 8.16 A small object approaches a collision with a much more massive cube, after which its velocity has the direction θ1 . The angles at which

the small object can be scattered are determined by the shape of the object it strikes and the impact parameter b .

8.7 Introduction to Rocket Propulsion
20. Professional Application

Suppose a fireworks shell explodes, breaking into three large pieces for which air resistance is negligible. How is the motion of
the center of mass affected by the explosion? How would it be affected if the pieces experienced significantly more air resistance
than the intact shell?

21. Professional Application

During a visit to the International Space Station, an astronaut was positioned motionless in the center of the station, out of reach
of any solid object on which he could exert a force. Suggest a method by which he could move himself away from this position,
and explain the physics involved.

22. Professional Application

It is possible for the velocity of a rocket to be greater than the exhaust velocity of the gases it ejects. When that is the case, the
gas velocity and gas momentum are in the same direction as that of the rocket. How is the rocket still able to obtain thrust by
ejecting the gases?

Chapter 8 | Linear Momentum and Collisions 307



Problems & Exercises

8.1 Linear Momentum and Force
1. (a) Calculate the momentum of a 2000-kg elephant
charging a hunter at a speed of 7.50 m/s . (b) Compare the
elephant’s momentum with the momentum of a 0.0400-kg
tranquilizer dart fired at a speed of 600 m/s . (c) What is the

momentum of the 90.0-kg hunter running at 7.40 m/s after
missing the elephant?

2. (a) What is the mass of a large ship that has a momentum

of 1.60×109 kg · m/s , when the ship is moving at a speed

of 48.0 km/h? (b) Compare the ship’s momentum to the
momentum of a 1100-kg artillery shell fired at a speed of
1200 m/s .

3. (a) At what speed would a 2.00×104-kg airplane have to

fly to have a momentum of 1.60×109 kg · m/s (the same as

the ship’s momentum in the problem above)? (b) What is the
plane’s momentum when it is taking off at a speed of
60.0 m/s ? (c) If the ship is an aircraft carrier that launches
these airplanes with a catapult, discuss the implications of
your answer to (b) as it relates to recoil effects of the catapult
on the ship.

4. (a) What is the momentum of a garbage truck that is

1.20×104 kg and is moving at 10.0 m/s ? (b) At what

speed would an 8.00-kg trash can have the same momentum
as the truck?

5. A runaway train car that has a mass of 15,000 kg travels at
a speed of 5.4 m/s down a track. Compute the time required
for a force of 1500 N to bring the car to rest.

6. The mass of Earth is 5.972×1024 kg and its orbital

radius is an average of 1.496×1011 m . Calculate its linear
momentum.

8.2 Impulse
7. A bullet is accelerated down the barrel of a gun by hot
gases produced in the combustion of gun powder. What is the
average force exerted on a 0.0300-kg bullet to accelerate it to
a speed of 600 m/s in a time of 2.00 ms (milliseconds)?

8. Professional Application

A car moving at 10 m/s crashes into a tree and stops in 0.26
s. Calculate the force the seat belt exerts on a passenger in
the car to bring him to a halt. The mass of the passenger is
70 kg.

9. A person slaps her leg with her hand, bringing her hand to
rest in 2.50 milliseconds from an initial speed of 4.00 m/s. (a)
What is the average force exerted on the leg, taking the
effective mass of the hand and forearm to be 1.50 kg? (b)
Would the force be any different if the woman clapped her
hands together at the same speed and brought them to rest in
the same time? Explain why or why not.

10. Professional Application

velocity of the opponent’s 10.0-kg head if hit in this manner,
assuming the head does not initially transfer significant
momentum to the boxer’s body. (d) Discuss the implications
of your answers for parts (b) and (c).

11. Professional Application

Suppose a child drives a bumper car head on into the side
rail, which exerts a force of 4000 N on the car for 0.200 s. (a)
What impulse is imparted by this force? (b) Find the final
velocity of the bumper car if its initial velocity was 2.80 m/s
and the car plus driver have a mass of 200 kg. You may
neglect friction between the car and floor.

12. Professional Application

One hazard of space travel is debris left by previous
missions. There are several thousand objects orbiting Earth
that are large enough to be detected by radar, but there are
far greater numbers of very small objects, such as flakes of
paint. Calculate the force exerted by a 0.100-mg chip of paint
that strikes a spacecraft window at a relative speed of

4.00×103 m/s , given the collision lasts 6.00×10 – 8 s .

13. Professional Application

A 75.0-kg person is riding in a car moving at 20.0 m/s when
the car runs into a bridge abutment. (a) Calculate the average
force on the person if he is stopped by a padded dashboard
that compresses an average of 1.00 cm. (b) Calculate the
average force on the person if he is stopped by an air bag
that compresses an average of 15.0 cm.

14. Professional Application

Military rifles have a mechanism for reducing the recoil forces
of the gun on the person firing it. An internal part recoils over
a relatively large distance and is stopped by damping
mechanisms in the gun. The larger distance reduces the
average force needed to stop the internal part. (a) Calculate
the recoil velocity of a 1.00-kg plunger that directly interacts
with a 0.0200-kg bullet fired at 600 m/s from the gun. (b) If
this part is stopped over a distance of 20.0 cm, what average
force is exerted upon it by the gun? (c) Compare this to the
force exerted on the gun if the bullet is accelerated to its
velocity in 10.0 ms (milliseconds).

15. A cruise ship with a mass of 1.00×107 kg strikes a pier

at a speed of 0.750 m/s. It comes to rest 6.00 m later,
damaging the ship, the pier, and the tugboat captain’s
finances. Calculate the average force exerted on the pier
using the concept of impulse. (Hint: First calculate the time it
took to bring the ship to rest.)

16. Calculate the final speed of a 110-kg rugby player who is
initially running at 8.00 m/s but collides head-on with a
padded goalpost and experiences a backward force of

1.76×104 N for 5.50×10–2 s .

17. Water from a fire hose is directed horizontally against a
wall at a rate of 50.0 kg/s and a speed of 42.0 m/s. Calculate
the magnitude of the force exerted on the wall, assuming the
water’s horizontal momentum is reduced to zero.

18. A 0.450-kg hammer is moving horizontally at 7.00 m/s
when it strikes a nail and comes to rest after driving the nail
1.00 cm into a board. (a) Calculate the duration of the impact.
(b) What was the average force exerted on the nail?

19. Starting with the definitions of momentum and kinetic
energy, derive an equation for the kinetic energy of a particle
expressed as a function of its momentum.
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A professional boxer hits his opponent with a 1000-N
horizontal blow that lasts for 0.150 s. (a) Calculate the
impulse imparted by this blow. (b) What is the opponent’s final 
velocity, if his mass is 105 kg and he is motionless in midair 
when struck near his center of mass? (c) Calculate the recoil
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20. A ball with an initial velocity of 10 m/s moves at an angle
60º above the +x -direction. The ball hits a vertical wall and

bounces off so that it is moving 60º above the −x -direction
with the same speed. What is the impulse delivered by the
wall?

21. When serving a tennis ball, a player hits the ball when its
velocity is zero (at the highest point of a vertical toss). The
racquet exerts a force of 540 N on the ball for 5.00 ms, giving
it a final velocity of 45.0 m/s. Using these data, find the mass
of the ball.

22. A punter drops a ball from rest vertically 1 meter down
onto his foot. The ball leaves the foot with a speed of 18 m/s
at an angle 55º above the horizontal. What is the impulse
delivered by the foot (magnitude and direction)?

8.3 Conservation of Momentum
23. Professional Application

Train cars are coupled together by being bumped into one
another. Suppose two loaded train cars are moving toward
one another, the first having a mass of 150,000 kg and a
velocity of 0.300 m/s, and the second having a mass of
110,000 kg and a velocity of −0.120 m/s . (The minus
indicates direction of motion.) What is their final velocity?

24. Suppose a clay model of a koala bear has a mass of
0.200 kg and slides on ice at a speed of 0.750 m/s. It runs
into another clay model, which is initially motionless and has
a mass of 0.350 kg. Both being soft clay, they naturally stick
together. What is their final velocity?

25. Professional Application

Consider the following question: A car moving at 10 m/s
crashes into a tree and stops in 0.26 s. Calculate the force
the seatbelt exerts on a passenger in the car to bring him to a
halt. The mass of the passenger is 70 kg. Would the answer
to this question be different if the car with the 70-kg
passenger had collided with a car that has a mass equal to
and is traveling in the opposite direction and at the same
speed? Explain your answer.

26. What is the velocity of a 900-kg car initially moving at 30.0
m/s, just after it hits a 150-kg deer initially running at 12.0 m/s
in the same direction? Assume the deer remains on the car.

27. A 1.80-kg falcon catches a 0.650-kg dove from behind in
midair. What is their velocity after impact if the falcon’s
velocity is initially 28.0 m/s and the dove’s velocity is 7.00 m/s
in the same direction?

8.4 Elastic Collisions in One Dimension
28. Two identical objects (such as billiard balls) have a one-
dimensional collision in which one is initially motionless. After
the collision, the moving object is stationary and the other
moves with the same speed as the other originally had. Show
that both momentum and kinetic energy are conserved.

29. Professional Application

Two manned satellites approach one another at a relative
speed of 0.250 m/s, intending to dock. The first has a mass of

4.00×103 kg , and the second a mass of 7.50×103 kg . If

the two satellites collide elastically rather than dock, what is
their final relative velocity?

30. A 70.0-kg ice hockey goalie, originally at rest, catches a
0.150-kg hockey puck slapped at him at a velocity of 35.0 m/
s. Suppose the goalie and the ice puck have an elastic
collision and the puck is reflected back in the direction from

which it came. What would their final velocities be in this
case?

8.5 Inelastic Collisions in One Dimension
31. A 0.240-kg billiard ball that is moving at 3.00 m/s strikes
the bumper of a pool table and bounces straight back at 2.40
m/s (80% of its original speed). The collision lasts 0.0150 s.
(a) Calculate the average force exerted on the ball by the
bumper. (b) How much kinetic energy in joules is lost during
the collision? (c) What percent of the original energy is left?

32. During an ice show, a 60.0-kg skater leaps into the air and
is caught by an initially stationary 75.0-kg skater. (a) What is
their final velocity assuming negligible friction and that the
60.0-kg skater’s original horizontal velocity is 4.00 m/s? (b)
How much kinetic energy is lost?

33. Professional Application

Using mass and speed data from Example 8.1 and assuming
that the football player catches the ball with his feet off the
ground with both of them moving horizontally, calculate: (a)
the final velocity if the ball and player are going in the same
direction and (b) the loss of kinetic energy in this case. (c)
Repeat parts (a) and (b) for the situation in which the ball and
the player are going in opposite directions. Might the loss of
kinetic energy be related to how much it hurts to catch the
pass?

34. A battleship that is 6.00×107 kg and is originally at rest

fires a 1100-kg artillery shell horizontally with a velocity of 575
m/s. (a) If the shell is fired straight aft (toward the rear of the
ship), there will be negligible friction opposing the ship’s
recoil. Calculate its recoil velocity. (b) Calculate the increase
in internal kinetic energy (that is, for the ship and the shell).
This energy is less than the energy released by the gun
powder—significant heat transfer occurs.

35. Professional Application

Two manned satellites approaching one another, at a relative
speed of 0.250 m/s, intending to dock. The first has a mass of

4.00×103 kg , and the second a mass of 7.50×103 kg .

(a) Calculate the final velocity (after docking) by using the
frame of reference in which the first satellite was originally at
rest. (b) What is the loss of kinetic energy in this inelastic
collision? (c) Repeat both parts by using the frame of
reference in which the second satellite was originally at rest.
Explain why the change in velocity is different in the two
frames, whereas the change in kinetic energy is the same in
both.

36. Professional Application

A 30,000-kg freight car is coasting at 0.850 m/s with
negligible friction under a hopper that dumps 110,000 kg of
scrap metal into it. (a) What is the final velocity of the loaded
freight car? (b) How much kinetic energy is lost?

37. Professional Application

Space probes may be separated from their launchers by
exploding bolts. (They bolt away from one another.) Suppose
a 4800-kg satellite uses this method to separate from the
1500-kg remains of its launcher, and that 5000 J of kinetic
energy is supplied to the two parts. What are their
subsequent velocities using the frame of reference in which
they were at rest before separation?

38. A 0.0250-kg bullet is accelerated from rest to a speed of
550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much
worse if you hold the gun loosely a few centimeters from your
shoulder rather than holding it tightly against your shoulder.
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44. (a) During an ice skating performance, an initially
motionless 80.0-kg clown throws a fake barbell away. The
clown’s ice skates allow her to recoil frictionlessly. If the clown
recoils with a velocity of 0.500 m/s and the barbell is thrown
with a velocity of 10.0 m/s, what is the mass of the barbell?
(b) How much kinetic energy is gained by this maneuver? (c)
Where does the kinetic energy come from?

8.6 Collisions of Point Masses in Two
Dimensions
45. Two identical pucks collide on an air hockey table. One
puck was originally at rest. (a) If the incoming puck has a
speed of 6.00 m/s and scatters to an angle of 30.0º ,what is
the velocity (magnitude and direction) of the second puck?
(You may use the result that θ1 − θ2 = 90º for elastic

collisions of objects that have identical masses.) (b) Confirm
that the collision is elastic.

46. Confirm that the results of the example Example 8.7 do
conserve momentum in both the x - and y -directions.

47. A 3000-kg cannon is mounted so that it can recoil only in
the horizontal direction. (a) Calculate its recoil velocity when it
fires a 15.0-kg shell at 480 m/s at an angle of 20.0º above
the horizontal. (b) What is the kinetic energy of the cannon?
This energy is dissipated as heat transfer in shock absorbers
that stop its recoil. (c) What happens to the vertical
component of momentum that is imparted to the cannon
when it is fired?

48. Professional Application

A 5.50-kg bowling ball moving at 9.00 m/s collides with a
0.850-kg bowling pin, which is scattered at an angle of 85.0º
to the initial direction of the bowling ball and with a speed of
15.0 m/s. (a) Calculate the final velocity (magnitude and
direction) of the bowling ball. (b) Is the collision elastic? (c)
Linear kinetic energy is greater after the collision. Discuss
how spin on the ball might be converted to linear kinetic
energy in the collision.

49. Professional Application

Ernest Rutherford (the first New Zealander to be awarded the
Nobel Prize in Chemistry) demonstrated that nuclei were very

small and dense by scattering helium-4 nuclei ⎛
⎝
4 He⎞

⎠ from

gold-197 nuclei ⎛
⎝
197 Au⎞

⎠ . The energy of the incoming helium

nucleus was 8.00×10−13 J , and the masses of the helium

and gold nuclei were 6.68×10−27 kg and

3.29×10−25 kg , respectively (note that their mass ratio is 4

to 197). (a) If a helium nucleus scatters to an angle of 120º
during an elastic collision with a gold nucleus, calculate the
helium nucleus’s final speed and the final velocity (magnitude
and direction) of the gold nucleus. (b) What is the final kinetic
energy of the helium nucleus?

50. Professional Application

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1200 kg and is
approaching at 8.00 m/s due south. The second car has a

mass of 850 kg and is approaching at 17.0 m/s due west.
(a) Calculate the final velocity (magnitude and direction) of
the cars. (b) How much kinetic energy is lost in the collision?
(This energy goes into deformation of the cars.) Note that
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(a) Calculate the recoil velocity of the rifle if it is held loosely 
away from the shoulder. (b) How much kinetic energy does
the rifle gain? (c) What is the recoil velocity if the rifle is held 
tightly against the shoulder, making the effective mass 28.0
kg? (d) How much kinetic energy is transferred to the rifle-
shoulder combination? The pain is related to the amount of 
kinetic energy, which is significantly less in this latter situation.
(e) Calculate the momentum of a 110-kg football player
running at 8.00 m/s. Compare the player’s momentum with
the momentum of a hard-thrown 0.410-kg football that has a 
speed of 25.0 m/s. Discuss its relationship to this problem.

39. Professional Application

One of the waste products of a nuclear reactor is

plutonium-239 239 Pu⎞
⎠ . This nucleus is radioactive and

decays by splitting into a helium-4 nucleus and a uranium-235

nucleus ⎝
4 He + 235 U⎞

⎠ , the latter of which is also

radioactive and will itself decay some time later. The energy

emitted in the plutonium decay is 8.40×10 – 13 J and is 
entirely converted to kinetic energy of the helium and uranium

nuclei. The mass of the helium nucleus is 6.68×10 – 27 kg ,

while that of the uranium is 3.92×10 – 25 kg (note that the
ratio of the masses is 4 to 235). (a) Calculate the velocities of 
the two nuclei, assuming the plutonium nucleus is originally at 
rest. (b) How much kinetic energy does each nucleus carry 
away? Note that the data given here are accurate to three
digits only.

40. Professional Application

The Moon’s craters are remnants of meteorite collisions. 
Suppose a fairly large asteroid that has a mass of

5.00×1012 kg (about a kilometer across) strikes the Moon
at a speed of 15.0 km/s. (a) At what speed does the Moon 
recoil after the perfectly inelastic collision (the mass of the

Moon is 7.36×1022 kg ) ? (b) How much kinetic energy is
lost in the collision? Such an event may have been observed
by medieval English monks who reported observing a red
glow and subsequent haze about the Moon. (c) In October 
2009, NASA crashed a rocket into the Moon, and analyzed
the plume produced by the impact. (Significant amounts of 
water were detected.) Answer part (a) and (b) for this real-life 
experiment. The mass of the rocket was 2000 kg and its
speed upon impact was 9000 km/h. How does the plume 
produced alter these results?

41. Professional Application

Two football players collide head-on in midair while trying to 
catch a thrown football. The first player is 95.0 kg and has an 
initial velocity of 6.00 m/s, while the second player is 115 kg 
and has an initial velocity of –3.50 m/s. What is their velocity 
just after impact if they cling together?

42. What is the speed of a garbage truck that is

1.20×104 kg and is initially moving at 25.0 m/s just after it
hits and adheres to a trash can that is 80.0 kg and is initially
at rest?

43. During a circus act, an elderly performer thrills the crowd
by catching a cannon ball shot at him. The cannon ball has a 
mass of 10.0 kg and the horizontal component of its velocity
is 8.00 m/s when the 65.0-kg performer catches it. If the 
performer is on nearly frictionless roller skates, what is his
recoil velocity?
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because both cars have an initial velocity, you cannot use the
equations for conservation of momentum along the x -axis
and y -axis; instead, you must look for other simplifying

aspects.

51. Starting with equations
m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2 and

0 = m1v′1 sin θ1 + m2v′2 sin θ2 for conservation of

momentum in the x - and y -directions and assuming that

one object is originally stationary, prove that for an elastic
collision of two objects of equal masses,
1
2mv1

2 = 1
2mv′1

2+1
2mv′2

2+mv′1v′2 cos ⎛
⎝θ1 − θ2

⎞
⎠

as discussed in the text.

52. Integrated Concepts

A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the
puck a velocity of 45.0 m/s. If both are initially at rest and if
the ice is frictionless, how far does the player recoil in the
time it takes the puck to reach the goal 15.0 m away?

8.7 Introduction to Rocket Propulsion
53. Professional Application

Antiballistic missiles (ABMs) are designed to have very large
accelerations so that they may intercept fast-moving incoming
missiles in the short time available. What is the takeoff
acceleration of a 10,000-kg ABM that expels 196 kg of gas

per second at an exhaust velocity of 2.50×103 m/s?
54. Professional Application

What is the acceleration of a 5000-kg rocket taking off from
the Moon, where the acceleration due to gravity is only

1.6 m/s2 , if the rocket expels 8.00 kg of gas per second at

an exhaust velocity of 2.20×103 m/s?
55. Professional Application

Calculate the increase in velocity of a 4000-kg space probe
that expels 3500 kg of its mass at an exhaust velocity of

2.00×103 m/s . You may assume the gravitational force is
negligible at the probe’s location.

56. Professional Application

Ion-propulsion rockets have been proposed for use in space.
They employ atomic ionization techniques and nuclear energy
sources to produce extremely high exhaust velocities,

perhaps as great as 8.00×106 m/s . These techniques
allow a much more favorable payload-to-fuel ratio. To
illustrate this fact: (a) Calculate the increase in velocity of a
20,000-kg space probe that expels only 40.0-kg of its mass at
the given exhaust velocity. (b) These engines are usually
designed to produce a very small thrust for a very long
time—the type of engine that might be useful on a trip to the
outer planets, for example. Calculate the acceleration of such

an engine if it expels 4.50×10−6 kg/s at the given velocity,

assuming the acceleration due to gravity is negligible.

57. Derive the equation for the vertical acceleration of a
rocket.

58. Professional Application

(a) Calculate the maximum rate at which a rocket can expel
gases if its acceleration cannot exceed seven times that of

gravity. The mass of the rocket just as it runs out of fuel is

75,000-kg, and its exhaust velocity is 2.40×103 m/s .
Assume that the acceleration of gravity is the same as on

Earth’s surface ⎛
⎝9.80 m/s2⎞

⎠ . (b) Why might it be necessary

to limit the acceleration of a rocket?

59. Given the following data for a fire extinguisher-toy wagon
rocket experiment, calculate the average exhaust velocity of
the gases expelled from the extinguisher. Starting from rest,
the final velocity is 10.0 m/s. The total mass is initially 75.0 kg
and is 70.0 kg after the extinguisher is fired.

60. How much of a single-stage rocket that is 100,000 kg can
be anything but fuel if the rocket is to have a final speed of
8.00 km/s , given that it expels gases at an exhaust velocity

of 2.20×103 m/s?
61. Professional Application

(a) A 5.00-kg squid initially at rest ejects 0.250-kg of fluid with
a velocity of 10.0 m/s. What is the recoil velocity of the squid
if the ejection is done in 0.100 s and there is a 5.00-N
frictional force opposing the squid’s movement. (b) How much
energy is lost to work done against friction?

62. Unreasonable Results

Squids have been reported to jump from the ocean and travel
30.0 m (measured horizontally) before re-entering the
water. (a) Calculate the initial speed of the squid if it leaves
the water at an angle of 20.0º , assuming negligible lift from
the air and negligible air resistance. (b) The squid propels
itself by squirting water. What fraction of its mass would it
have to eject in order to achieve the speed found in the
previous part? The water is ejected at 12.0 m/s ;
gravitational force and friction are neglected. (c) What is
unreasonable about the results? (d) Which premise is
unreasonable, or which premises are inconsistent?

63. Construct Your Own Problem

Consider an astronaut in deep space cut free from her space
ship and needing to get back to it. The astronaut has a few
packages that she can throw away to move herself toward the
ship. Construct a problem in which you calculate the time it
takes her to get back by throwing all the packages at one time
compared to throwing them one at a time. Among the things
to be considered are the masses involved, the force she can
exert on the packages through some distance, and the
distance to the ship.

64. Construct Your Own Problem

Consider an artillery projectile striking armor plating.
Construct a problem in which you find the force exerted by
the projectile on the plate. Among the things to be considered
are the mass and speed of the projectile and the distance
over which its speed is reduced. Your instructor may also
wish for you to consider the relative merits of depleted
uranium versus lead projectiles based on the greater density
of uranium.
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