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Electronics is the technology of controlling the flow of electrons whereas photonics is
the technology of controlling the flow of photons. Electronics and photonics have been
joined together in semiconducior optoelectronic devices where photons generate mo-
bile electrons, and electrons generate and control the flow of photons. The compatibil-
ity of semiconductor optoelectronic devices and electronic devices has, in recent years,
led to substantive advances in both techmologies. Semiconductors are used as optical
detectors, sources {light-emitting diodes and lasers}, amplifiers, waveguides, modula-
tors, sensors, and nonlinear optical elements.

Semiconductors absorb and emit photons by undergoing transitions between differ-
ent allowed energy levels, in accordance with the general theory of photon-atom
interactions described in Chap. 12. However, as we indicated briefly there, semiconduc-
tors have properties that are unique in ceriain respects:

= A semiconductor material cannot be viewed as a collection of noninteracting
atoms, each with its own individual energy levéls. The proximity of the atoms in a
solid results in one set of energy levels representing the entire system.

® The energy levels of semiconductors take the form of groups of closely spaced
levels that form bands. In the absence of thermal excitations (at T = 0 K), these
are either completely occupied by electrons or completely empty. The highest
filled band is called the valence band, and the empty band above it is called the
conduction band. The two bands are separated by an energy gap.

= Thermal and optical interactions can impart energy to an electron, causing it to

jump across the gap from the valence band into the conduction band (leaving

behind an empty state called a hole). The inverse process can also occur. An
electron can decay from the conduction band into the valence band to fill an
empty state (provided that one is accessible) by means of a process called
electron—hole recombination. We therefore have two types of particles that carry
electric current and can interact with photons: electrons and holes.

Two processes are fundamental to the operation of almost all semiconductor
optoelectronic devices: -

» The absorption of a photon can create an eleciron—hole pair. The mobile charge
carriers resulting from absorption can alter the electrical properties of the
material. One such effect, photoconductivity, is rcspons1b1e for the operation of
certain semiconductor photodetectors.

® The recombination of an electron and a hole can result in the emission of a photon.
"' This process is respousible for the operation of semiconductor light sources.

Spontaneous radiative electron—hole recombination is the underlying process of

light generation in the light-emitting diode. Stimulated electron-hole recombina-
- - tion is the source of photons in the semiconductor laser. ,
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In Sec. 15.1 we begin with a review of the properties of semiconductors that are
important in semiconductor photonics; the reader is expected to be familiar with the
basic principles of semiconductor physics. Section 15.2 provides an introduction to the
optical properties of semiconductors. A simplified theory of absorption, spontaneous
emission, and stimulated emission is developed using the theory of radiative atomic
transitions developed in Chap. 12.

This, and the following two chapters, are to be regarded as a single unit. Chapter 16
deals with semiconductor optical sources such as the light-emitting diode and the
injection laser diode. Chapter 17 is devoted to semiconductor photon detectors.

15.1 SEMICONDUCTORS

A semiconductor is a crystalline or amorphous solid whose electrical conductivity is
typically intermediate between that of a metal and an insulator and can be changed
significantly by altering the temperature or the impurity content of the material, or by
illumination with light. The unique energy-level structure of semiconductor materials
leads to special electrical and optical properties, as described later in this chapter.
Electronic devices principally make use of silicon (5i) as a semiconductor material, but
compounds such as gallium arsenide (GaAs) are of utmost importance to photonics
(see Sec. 15.1B for a selected tabulation of other semiconductor material_s).

A. Energy Bands and Charge Carriers

Energy Bands in Semiconduciors ,
Atoms of solid-state materials have a sufficiently strong interaction that they cannot be
treated as individual entities. Valence electrons are not attached (bound) to individual
atoms; rather, they belong to the system of atoms as a whole. The solution of the
Schrédinger equation for the electron energy, in the periodic potential created by the
collection of atoms in a crystal attice, results in a splitting of the atomic energy levels
and the formation of energy bands (see Sec. 12.1). Each band contains a large number
of finely separated discrete energy levels that can be approximated as a continuum.
The valence and conduction bands are separated by a “forbidden” energy gap of width
E, (see Fig. 15.1-1), called the bandgap energy, which plays an important role in
determining the electrical and optical properties of the material. Materials with a filled
valence band and a large energy gap (> 3 eV) are electrical insulators; those for which
the gap is small or nonexistent are conductors (see Fig. 12.1-5). Semiconductors have
energy gaps that lie roughly in the range 0.1 to 3 eV.

Electrons and Holes '
In accordance with the Pauli exclusion principle, no two electrons can occupy the same
quantum state. Lower energy levels are filled first. In elemental semiconductors, such
as Si and Ge, there are four valence electrons per atom; the valence band has 2
number of quantum states such that in the absence of thermal excitations the _\_{?Iencﬁ
band is completely filled and the conduction band is completely empty. Conse_qu"{nﬂyf
the material cannot conduct electricity. Tl

As the temperature increases, however, some electrons will be thermally excited Int
the empty conduction band where there is an abundance of unoccupied states (see Fxg
15.1-2). There, the electrons can act as mobile carriers; they can drift in the 31
lattice under the effect of an applied electric field and thereby contribute to th :E_lc,ctnc
current. Furthermore, the departure of an electron from the vaience band pxo_\f}d"fs
empty quantum state, allowing the remaining electrons in the valence band to exchan
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Figure 15.1-1 Energy bands: {a) in Si, and () in GaAs.

places with each other under the influence of an electric field. A motion of the
“collection” of remaining electrons in the valence band occurs. This can equivalently
be regarded as the motion, in the opposite direction, of the hole left behind by the
departed electron. The hole therefore behaves as if it has a positive charge +e. The
result of each electron excitation is, then, the creation of a free electron in the
conduction band and a free hole in the valence band. The two charge carriers are free
to drift under the effect of the applied electric field and thereby to generate an electric
current. The material behaves as a semiconductor whose conductivity increases sharply
with temperature as an increasing number of mobile carriers are thermally generated.

Energy-Momentum Relations
The energy £ and momentum p of an electron in free space are related by E =
p*/2mg = W*k2/2m, where p is the magnitude of the momentum and k is the
magnitude of the wavevector k = p /b associated with the electron’s wavefunction, and
my 1s the electron mass (9.1 X 10! kg). The E—k relation is a simple parabola.

The motion of electrons in the conduction band, and holes in the valence band, of a
semiconductor are subject to different dynamics. They are governed by the Schrédinger
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Figure 15.1-3 Cross section of the E-k function for 5i and GaAs along the crystal directions
[111] and [100]. ' '

equation and the periodic lattice of the material. The F—k relations are illustrated in
Fig. 15.1-3 for Si and GaAs. The energy E is a periodic function of the components
(k,, k4, k3) of the vector k, with periodicities (7 /ay, 7/a,, 7 /a3), Where @y, Gy, 43 81¢
the crystal lattice constants. Figure 15.1-3 shows cross sections of this relation along
two different directions of k. The energy of an electron in the conduction basfd
depends not only on the magnitude of its momentum, but also on the direction 1n
which it is traveling in the crystal. »

Effective Mass
Near the bottom of the conduction band, the E—k relation may be approxirnated_.b}’ thf-_”
parabola ' :
B2k?
E=E. .+ - )
€ 2m,

where E, is the energy at the bottom of the conduction band and mc-"is"‘fl' COnSt__
representing the effective mass of the electron in the conduction band {see Fig. 15.1-4),
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Figure 15.1-4 Approximating the E-k diagram at the bottom of the conduction band and at
the top of the valence band of Si and GaAs by parabolas.

Similarly, near the top of the valence band,
#2k?

?
2m,

E=E,— (15.1-2)

where E, = E -~ E, is the energy at the top of the valence band and m, is the
effective mass of a hole in the valence band. In general, the effective mass depends on
the crystal orientation and the particular band under consideration. Typical ratios of
the averaged effective masses to the mass of the free electron my are provided in Table
15.1-1 for Si and GaAs.

Direct- and Indirect-Gap Semiconductors
Semiconductors for which the valence-band maximum and the conduction-band mini-
mum correspond to the same momentum (same k) are called direct-gap materials.

TABLE 15,1-1 Average Effective Masses of Electrons and Holes
in Si and GaAs

’nc/niﬂ 'nu/&nﬂ

Si .33 0.5
GaAs 0.07 0.5
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TABLE 15.1-2 A Section of the Periodic Table
I I v v VI

Aluminum (AD  Silicon (Siy  Phosphorus (P)  Sulfur  (8)
Zinc (Zn) Gallium (Ga) Germanium (Ge)  Arsenic (As) Selenium (Se)
Cadmium (Cd)  Indium  (Im) Antimony (Sb)  Teilurium (Te)
Mercury (Hg)

Semiconductors for which this is not the case are known as indirect-gap materials. The
distinction is important; a tramsition between the top of the valence band and the
bottom of the conduction band in an indirect-gap semiconductor requires a substantial
change in the electron’s momentum. As is evident in Fig. 15.1-4, Si is an indirect-gap
semiconductor, whereas GaAs is a direct-gap semiconductor. It will be shown subse-
guently that direct-gap semiconductors such as GaAs are efficient photon emitters,
whereas indircct-gap semiconductors such as Si cannot be efficiently used as light
emitters.

B. Semiconducting Materials

Table 15.1-2 reproduces a section of the periodic table of the elements, containing
some of the important elements involved in semiconductor electronics and optoelec-
tronics technology. Both elemental and compound semiconductors are of importance.

Elemental Several elements in group IV of the peri-

Semiconductors odic table are semiconductors. Most impor-
tant are silicen (Si) and germanium (Ge).
At present most commercial electronic in-
tegrated circuits and devices are fabricated
from Si. However, these materials are not
wseful for fabricating photon emitters be
cause of their indirect bandgap. Never::
theless, both are widely used for making
photon detectors.

Binary Compounds formed by combining an ele-
Semiconductors ment in group III, such as aluminum (Al),
galtium (Ga), or indium (In), with an ele-
ment in group V, such as phosphorus (P),
arsenic (As), or antimony (Sb), are impor- .
tant semiconductors. There are nine such. :
11—V compounds. These are listed in Table
15.1-3, along with their bandgap energy E;
bandgap wavelength A, = hc,,/E, (which is
* the free-space wavelength of a photon, of
energy E,), and gap type (direct or. indi-
rect). The bandgap epergies and the lat-
tice constants of these compounds are. als
provided in Fig. 15.1-5. Various of these
compounds are used for making photott
detectors and sources (light-cmitting diodes
and lasers). The most important t.una
semiconductor for optoelectronic devices
gallium arsenide (GaAs). Furthermd!
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GaAs is becoming increasingly important
(rclative to Si) as the basis of fast electronic
devices and circuits.

Compounds formed from two elements of
group ITT with one element of group V (or
one from group Il with two from Group
V) are important ternary semiconductors.
(Al Ga,_,)As, for example, is a ternary
compound with properties intermediate be-
tween those of AlAs and GaAs, depending
on the compositional mixing ratio x (where
x denotes the fraction of Ga atoms in GaAs
replaced by Al atoms). The bandgap energy
E, for this material varies between 1.42 eV
for GaAs and 2.16 eV for AlAs, as x is
varied between 0 and 1. The material is
represented by the line connecting GaAs
and AlAs in Fig. 15.1-5. Because this line is
nearly horizontal, Al ,Ga,  As is lattice
matched to GaAs (i.c., they have the same
lattice constant). This means that a layer of
a given composition can be grown on a
fayer of different composition without in-
troducing strain in the material. The com-
bination Al,Ga,_,As/GaAs is highly im-
portant in current LED and semiconductor
laser technology. Other III-V compound
semiconductors of various compositions and
bandgap types (direct/indirect) are indi-
cated in the lattice-constant versus band-
gap-energy diagram in Fig. 15.1-5.

These compounds are formed from a mix-
ture of two elements from Group III with
two elements from group V. Quaternary
semiconductors offer more flexibility for the
synthesis of materials with desired proper-
ties than do ternary semiconductors, since
they provide an extra degree of freedomw
An example is provided by the quaternary
(Ia,_,Ga XAs,_,P,), whose bandgap en-
ergy £, varies between 0.36 ¢V (InAs) and
2.26 eV (GaP) as the compositional mixing
ratios x and y vary between 0 and 1. The
shaded area in Fig. 15.1-5 indicates the
range of energy gaps and lattice constants
spanned by this compound. For mixing ra-
tios x and y that satisfy y = 2.16(1 — x),
(In,. ,Ga, )As,_,P,) can be very well lat-
tice matched to InP and therefore conve-
niently grown on it. These compounds are
used in making semiconductor lasers and
detectors.
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TABLE 15.1-3 Selected Elemental and [il-V Binary Semiconductors
and Their Bandgap Energies E_ at T =300 K, Bandgap Wavelengths
Ay =he, / Eg4, and Type of Gap (I = indirect, D = Direct)

Bandgap Bandgap

Energy Wavelength
Material E (eV) Ay (pm) Type
Ge 0.66 1.88 ¥
Si 1.1t 1.15 I
AlP 2.45 0.52 I
AlAs 2.16 0.57 I
AlSb 1.58 0.75 I
GaP 2.26 055 I
GaAs 1.42 0.87 D
GaSb 0.73 1.70 D
InP 1.35 0.92 D
InAs 0.36 35 D
InSb 0.17 7.3 D

Bandgap wavelength ig (m)
10 § 2 15 1 09 08 07 06 05

Illi T illlllil 1 T

Lattice constant (A)

0 05 10 15

Bandgap energy Eg (8V)

Figure 15.1-5 Lattice constants, bandgap energies, and bandgap wavelengths for Si, Ge, and
nine III-V binary compounds. Ternary compounds can be formed from binaty materials. by
motion along the line joining the two points that represent the binary materials. For example,
Al Ga,_,As is represented by points on the line connecting GGaAs and AlAs. As x vaﬁes_ﬁq.m 0
to 1, the point moves along the line from GaAs to AlAs. Since this Jine is nearly hon_zgnta!.
Al,Ga, ,As is lattice matched to GaAs. Solid and dashed curves represent direct-gap, and
indirect-gap compositions, respectively. A material may have direct bandgap for one mixing ratio
x and an indirect bandgap for a different x. A quaternary compound is represented by a-point ]
the area formed by its four binary components. For example, (In, _,Ga, XAs; _,P,) is represen:
by the shaded area with vertices at InAs, InP, GaP, and GaAs; the upper hpnzox'ltal Ii
represents compounds that are fattice matched to InP. :
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Figure 15.1-6 Lattice constants, bandgap energies, and bandgap wavelengths for some impor-
tant II-VI binary compounds.

‘ Compounds using elements from group II (e.g., Zn, Cd, Hg) and group VI (e.g., S,

" se, Te} of the periodic table also form useful semiconductors, particularly ar wave-
lengths shorter than 0.5 wm and longer than 5.0 pm, as shown in Fig, 15.1-6. HgTe and
CdTe, for example, are nearly lattice matched, so that the ternary semiconductor
Hg Cd;_Te is a useful material for fabricating photon detectors in the middle-
infrared region of the spectrum. Also used in this range are IV-VI compounds such as
Pb,Sn;_,Te and Pb,Sn, _Se. Applications include night vision, thermal imaging, and
long-wavelength lightwave communications.

Doped Semiconductors
The electrical and optical properties of semiconductors can be substantially altered by
adding smalt controlled amounts of specially chosen impurities, or dopants, which alter
the concentration of mobile charge carriers by many orders of magnitude. Dopants
with excess valence electrons (called denors) can be used to replace a small proportion
of the normal atoms in the crystal lattice .and thereby to create a predominance of
mobile electrons; the material is then said to be an n-type semiconductor. Thus atoms -
from group V (e.g., P or As) replacing some of the group IV atoms in an elemenial
semiconductor, or atoms from group VI (e.g., Se or Te) replacing some of the group V
atoms in a IV binary semiconductor, produce an n-type material. Similarly, a p-type
material can be made by using dopants with a deficiency of valence electrons, called
acceptors, The result is a predominance of holes. Group-1V atoms in an elemental
semiconductor replaced with some group-I1l atoms (e.g., B or In), or group-III atoms
In a III--V binary semiconductor replaced with some group-IT atoms (e.g., Zn or Cd),
produce a p-type material. Group IV atoms act as donors in group IIT and ag acceptors
IR group V, and therefore can be used to produce an excess of both electrons and holes
I I~V materials.

FUHdODCd' semiconductors {(i.e., semiconductors with no intentional doping) are

erred to as intrinsic materials, whereas doped semiconductors are called extrinsic
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materials. The concentrations of mobile electrons and holes are equal in an intrinsic
semiconductor, n = p = n,;, Where n; increases with temperature at an exponential rate.
The concentration of mobile electrons in an n-type semiconductor (called majority
carriers) is far greater than the concentration of holes (called minority carriers), i.e.,
w > p. The opposite is true in p-type semiconductors, for which holes are majority
carriers and p » ». Doped semiconductors at room temperature typically have a
majority carrier concentration that is approximately equal to the impurity concentra-
tion.

C. Electron and Hole Concentrations

Determining the concentration of carriers (electrons and holes) as a function of energy
requires knowledge of:

m The density of allowed energy levels (density of states).
& The probability that each of these levels is occupied.

Density of States
The quantum state of an electron in a semiconductor material is characterized by its
energy E, its wavevector k [the magnitude of which is approximately related to E by
(15.1-1) or (15.1-2)], and its spin. The state is described by a wavefunction satisfying
certain boundary conditions.

An electron near the conduction band edge may be approximately described as a
particle of mass m_ confined to a threc-dimensional cubic box (of dimension d) with
perfectly refiecting walls, i.e., a three-dimensional infinite rectangular potential well.
The standing-wave solutions require that the components of the wavevector k =
(k,, k,, k) assume the discrete values k = (gm/d, g,7/d, g3m/d), where the respec-:
tive mode numbers, ¢, ,, 43, are positive integers. This result is a three-dimensional:
generalization of the one-dimensional case discussed in Exercise 12.1-1. The tip of the
vector k must lie on the points of a lattice whose cubic unit cell has dimension w/d.:
There are therefore (d/7)® points per unit volume in k-space. The number of states.
whose wavevectors k have magnitudes between 0 and k is determined by counting the:
number of points lying within the positive octant of a sphere of radius k [with volume.
= (1Mmk?/3 = wk? /6] Because of the two possible values of the electron spin, each
point in k-space corresponds to two states. There are therefore approximatel_y
Wwk?/6) (/) = (k3 /3w2d> such points in the volume d and (k*/3w?) points
per unit volume. It follows that the number of states with electron wavenumbers
between k and k + Ak, per unit volume, is (k) Ak = [(d/dkXk?/3w?)] Ak =
(k%/m*) Ak, so that the density of states is e

2 R
o(k) = =. (15.1-3)
& Density of States,

This derivation is identical to that used for counting the number of modes that cal
be supported in a three-dimensional electromagnetic resonator (see Sec. 9.1C). In th
case of electromagnetic modes there are two degrees of freedom associated with th:
field polarization (i.e., two photon spin values), whereas in the semiconductor: Cas
there are two spin values associated with the electron state. In resonator 0Pti°§ th
allowed electromagnetic solutions for k were converted into allowed “frequentie:
through the linear frequency-wavenumber relation v = ck/27. In semiconducto

physics, on the other hand, the allowed solutions for k are converted into allowel




e SEMICONDUCTORS 553

energies through the quadratic energy-wavenumber relations given in (15.1-1) and
(15.1-2).

If p(E}AE represents the number of conduction-band energy levels (per unit
volume) lying between £ and E + AE, then, because of the one-to-one correspon-
dence between E and k ‘governed by (15.1-1), the densities o.(E) and p(k) must be
related by ¢ (E) dE = o(k) dk. Thus the density of allowed energies in the conduction
band is o (E) = o(k)/(dE/dk). Similarly, the density of allowed energies in the
valence band is o (E) = p(k) /(dE /dk), where E is given by (15.1-2). The approximate
quadratic E-k relations (15.1-1) and (15.1-2), which are valid near the edges of the
conduction band and valence band, respectively, are used to evaluate the derivative
dE /dk for each band. The result that obtains is

(2"’-’:)3/2 1/2
QC(E) = W(E“‘* Ec) N E > Ec (151'4)
2m, )2
o,(E) = ~(2—';%3—(E,, - EY?, E<E,. (15.1-5)
™ Density of States
Near Band Edges

The square-root relation is a result of the quadratic energy-wavenumber formulas for

electrons and holes near the band edges. The dependence of the density of states on

energy is illustrated in Fig. 15.1-7. It is zero at the band edge, increasing away from it

at a rate that depends on the effective masses of the electrons and holes. The values of

m, and m, for Si and GaAs that were provided in Table 15.1-1 are actually averaged
~~  values suitable for calculating the density of states.

~ Probability of Occupancy
In the absence of thermal excitation (at 7 = 0} K), all electrons occupy the lowest
possible energy levels, subject to the Pauli exclusion principle. The valence band is then
completely filled (there are no holes) and the conduction band is completely empty (it

E |

™ ¢y(E)

-.LLLLIIIIIIII!!IIIII

-k

Density of states

b} {e}

,.Fl‘gure 15.1-7  (a) Cross section of the F—k diagram (e.g., in the direction of the k, component
Wwith k, aﬂd' k; fixed). (b) Allowed energy levels (at all k). (¢) Density of states near the edges of
© conduction and valence bands. g (E) 4E is the number of quantum states of energy between

d-E + dF, per unit volume, in the conduction band. 0,{E) has an analogous interpretation
I the valence band. '
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contains no electrons). When the temperature is raised, thermal excitations raise some
electrons from the valence band to the conduction band, leaving behind empty states in
the valence band (holes). The laws of statistical mechanics dictate that under condi-
tions of thermal equilibrium at temperature T, the probability that a given state of
energy E is occupied by an electron is determined by the Fermi function

1
, (15.1-6)
CXP[(E - Ef)/kBT] +1 Fermi Function

f(E) =

where kg is Boltzmann’s constant (at 7 =300 K, kp? = 0.026 eV) and E; is a
constant known as the Fermi energy or Fermi level. This function is also known as the
Fermi—Dirac distribution. The energy level E is either occupied [with probability
F(E), or it is empty [with probability 1 — f(E)]. The probabilities f(E) and 1 — f(E)
depend on the energy E in accordance with (15.1-6). The function F(E) is not itself a
probability distribution, and it does not integrate to unity; rather, it is a sequence of
accupation probabilities of successive energy levels.

Because f(E) = 5 whatever the temperature T, the Fermi level is that energy level
for which the probability of occupancy (if there were an allowed state there) would be 3.
The Fermi function is a monotonically decreasing function of E (Fig. 15.1-8). At T =
0K, f(E)isOfor £ > Eyand 1 for £ < Ey. This establishes the significance of E; it is
the division between the occupied and unoccupied energy levels at 7= 0 K. Since’
f(E) is the probability that the energy level E is occupied, 1 - f(E) is the probability’
that it is empty, i.e., that it is occupied by a hole (if E lies in the valence band). Thus
for energy level E: o

f(E) = probability of occupancy by an electron
1 — f(E) = probability of occupancy by a hole (valence band).

These functions are symmetric about the Fermi level.
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Figure 15.1-8 The Fermi function f(E) is the probability that an energy level E is ﬁlleq with
an electron; 1 — f(E) is the probability that it is empty. In the valence band, 1 - f(E)} s the
probability that energy level £ is occupied by a hole. At T=0K, f(E)y=1for E <E p*aﬂd
f(E) =0 for E > Ej; i.e., there are no electrons in the conduction band and no -hol_es in
valence band. Sl
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When E — E;= kpT, f(E) = exp[ —(E — Ef)/kgT], so that the high-energy tail
of the Fermi function in the conduction band decreases exponentially with increasing
energy. The Fermi function is then proportional to the Boltzmann distribution, which
describes the exponential energy dependence of the fraction of a population of atoms
excited to a given energy level (see Sec. 12.1B). By symmetry, when £ < £ ¢ and
E;—E = kgl, 1 - f(E) = exp[k(Ef — E)/kgT] ie., the probability of occupancy
by holes in the valence band decreases exponentially as the energy decreases well
below the Fermi level.

Thermal-Equilibrium Carrier Concentrations

Let w{E)AE and H{E)YAE be the number of electrons and holes per unit volume,
respectively, with energy lying between £ and £ + AE. The densities n(£) and p(E)
can be obtained by multiplying the densities of states at energy level E by the
probabilities of occupancy of the level by electrons or holes, so that

(E) = e E)f(E),  p(E) = (E)[1 - f(E)]. (15.1-7) .

The concentrations (populations per unit volume) of electrons and holes n and p are
then obtained from the integrals

n=f:n(E) dE, P=f_i‘;p(E) dE. (15.1-8)

In an intrinsic (pure) semiconductor at any temperature, n = p because thermal
excitations always create electrons and haoles in pairs. The Fermi level must therefore
be placed at an energy level such that « = p- If m, =m_, the functions «(F) and p(E)
are symmetric, so that £ r must lie precisely in the middle of the bandgap (Fig. 15.1-9).
In most intrinsic semiconductors the Fermi level does indeed lie near the middle of the
bandgap.

The energy-band - diagrams, Fermi functions, and equilibrium concentrations of
electrons and holes for n-type and p-type doped semiconductors are illustrated in Figs.
15.1-10 and 15.1-11, respectively. Donor electrons occupy an energy £, slightly below
the conduction-band edge so that they are easily raised to it, If E, =001 eV, for
example, at room temperature (kgT = 0.026 eV) most donor electrons will be ther-
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Figure 1519 The concentrations of electrons and holes, s{E) and p(E), as a function of

nergy £ in an intrinsic semiconductor. The total concentrations of electrons and holes are n and
s Tespectively, ’ .
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Figure 15.1-10 Energy-band diagram, Fermi function f(E), and concentrations of mobile
electrons and holes n{£) and p(£) in an a-type semiconductor.
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Figure 15.1-11 Energy-band diagram, Fermi function f(£), and concentrations of mobile
electrons and holes n(E£) and p(£) in a p-type semiconductor.

mally excited into the conduction band. As a result, the Fermi level [where f(Ef) = 1]
lies above the middle of the bandgap. For a p-type semiconductor, the acceptor energy
level lies at an energy £, just above the valence-band edge so that the Fermi level is
below the middie of the bandgap. Qur attention has been directed to the mobile
carriers in doped semiconductors. These materials are, of course, electrically neutral as
assured by the fixed donor and acceptor ions, so that » + Ny = p + N, where N, and
N, are, respectively, the number of ionized acceptors and donors per unit volume.

EXERCISE 15.1-1

Exponential Approximation of the Fermi Function. When E — E; 3 kgT, the Fermi
function f(E) may be approximated by an exponential function. Similarly, when Ef - E
= kT, 1 — f(F) may be approximated by an exponential function. These conditions
apply when the Fermi level lics within the bandgap, but away from its edges by an energy
of at least several times k57 (at room temperature kg7 = 0.026 eV whereas E, = 1-.11 eV
in Si and 1.42 eV in GaAs). Using these approximations, which apply for both ntrinsic and



SEMICONDUCTORS 557

doped semiconductors, show that (15.1-8) gives

E, - E;
n=Ncexp —W (15.1“93)
B ‘ .
E;—E,
p= Nu exp| — W i (151-9b)
B
EE.'
np = NN, exp| — A , (15.1-10a)
B

where N, = 2Q7m kgT/h*)*/? and N, = 2Qwm kT /h2)/2. Verify that if Ey is closer
‘to the conduction band and m, =m, then n > p whereas if it is closer to the valence
band, then p>n

ﬁ

Law of Mass Action
Equation (15.1-10a) reveals that the product

2k T\ 2/ E,
ﬂp=4(uzy—)(mgm3/ |~ (15.1-10b)
is independent of the location of the Fermi level E; within the bandgap and the
semiconductor doping level, provided that the exponential approximation to the Fermi
function is valid. The constancy of the concentration product is called the law of mass

action. For an intrinsic semiconductor, » = p = n,. Combining this relation with
(15.1-10a) then leads to

E
n; = (NCNU)1/2 CXp| — £ » (151_11)
2kgT L .
intrinsic Carrier
Concentration

revealing that the intrinsic concentration of electrons and holes increases with temper-

ature T at an exponential rate. The law of mass action may therefore be written in the
form

np = o (15.1-12)

Law of Mass Action

The values of « ; for different materials vary because of differences in the bandgap
encrgies and effective masses. For Si and GaAs, the room temperature values of
intrinsic carrier concentrations are provided in Table 15.1-4.
The law of mass action is useful for determining the concentrations of electrons and
holes in doped semiconductors. A moderately doped n-type material, for example, has N

TABLE 15.1-4
at T =300 K?

Inttinsic Concentrations in Si and GaAs

n; (cm™7)

Si 1.5 x 1010
GaAs 1.8 x 10

“Substitution of the values of m, and m, given in Table 15.1-1,
and E, given in Table 15.1-3, into (15.1-11) will not vicld the
precise values of »; given here because of the sensifivity of the
formula to the precise values of the parameters.
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a concentration of electrons « that is essentially equal to the donor concentration N,
Using the law of mass action, the hole concentration can be determined from p = n.:i- /N
Knowledge of n and p allows the Fermi level to be determined by the use of (15.1-8). As
long as the Fermi level lies within the bandgap, at an energy greater than several times
kgT from its edges, the approximate relations in (15.1-9) can be used to determine it
directly.

If the Fermi level lies inside the conduction (or valence) band, the material is
referred to as a degenerate semiconductor. In that case, the exponential approximation
to the Fermi function cannot be used, so that np # nzl-. The carrier concentrations must
then be obtained by numerical solution. Under conditions of very heavy doping, the
donor (acceptor) impurity band actually merges with the conduction (valence) band to
become what is called the band tail. This results in an effective decrease of the
bandgap.

Quasi-Equilibrium Carrfer Concentrations
The occupancy probabilities and carrier concentrations provided above are applicable
only for a semiconductor in thermal equilibrium. They are not valid when thermal
equilibrium is disturbed. There are, nevertheless, situations in which the conduction-
band electrons are in thermal equilibrium among themselves, as are the valence-band
holes, but the electrons and holes are not in mutual thermal equilibrium. This can
occur, for example, when an external electric current or photon flux induces band-to-
band transitions at too high a rate for interband equilibrium to be achieved. This
situation, which is known as quasi-equilibrium, arises when the relaxation (decay) times
for transitions within each of the bands are much shorter than the relaxation time
between the two bands. Typically, the intraband relaxation time < 10" s, wherea
the radiative electron—hole recombination time = 10~%s. :
Under these circumstances, it is appropriate to use a separate Fermi function for
each band; the two Fermi levels are then denoted £, and £, and are known as
quasi-Fermi levels (Fig. 15.1-12). When E o and E, lie well inside the conduction and

valence bands, respectively, the concentrations of both electrons and holes can be quite
large.
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Figure 15.1-12 A semiconductor in quasi-equilibrium. The probability that a particular CQ.ﬂﬂ
tion-band energy level £ is occupied by an electron is fAE), the Fermi function with Fen":q{
£, The probability that a valence-band energy level E is occupied by a hole is 1 — fn(E)_,_ wher
f.(E) is the Fermi function with Fermi level £ #»- The concentrations of electrons and hol c
«(E) and p(E), respectively. Both can be large. ST




