
11 FLUID STATICS

Figure 11.1 The fluid essential to all life has a beauty of its own. It also helps support the weight of this swimmer. (credit: Terren, Wikimedia Commons)

Chapter Outline
11.1. What Is a Fluid?

• State the common phases of matter.
• Explain the physical characteristics of solids, liquids, and gases.
• Describe the arrangement of atoms in solids, liquids, and gases.

11.2. Density
• Define density.
• Calculate the mass of a reservoir from its density.
• Compare and contrast the densities of various substances.

11.3. Pressure
• Define pressure.
• Explain the relationship between pressure and force.
• Calculate force given pressure and area.

11.4. Variation of Pressure with Depth in a Fluid
• Define pressure in terms of weight.
• Explain the variation of pressure with depth in a fluid.
• Calculate density given pressure and altitude.

11.5. Pascal’s Principle
• Define pressure.
• State Pascal’s principle.
• Understand applications of Pascal’s principle.
• Derive relationships between forces in a hydraulic system.

11.6. Gauge Pressure, Absolute Pressure, and Pressure Measurement
• Define gauge pressure and absolute pressure.
• Understand the working of aneroid and open-tube barometers.

11.7. Archimedes’ Principle
• Define buoyant force.
• State Archimedes’ principle.
• Understand why objects float or sink.
• Understand the relationship between density and Archimedes’ principle.

11.8. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
• Understand cohesive and adhesive forces.
• Define surface tension.
• Understand capillary action.

11.9. Pressures in the Body
• Explain the concept of pressure the in human body.
• Explain systolic and diastolic blood pressures.
• Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system.
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Introduction to Fluid Statics
Much of what we value in life is fluid: a breath of fresh winter air; the hot blue flame in our gas cooker; the water we drink, swim
in, and bathe in; the blood in our veins. What exactly is a fluid? Can we understand fluids with the laws already presented, or will
new laws emerge from their study? The physical characteristics of static or stationary fluids and some of the laws that govern
their behavior are the topics of this chapter. Fluid Dynamics and Its Biological and Medical Applications explores aspects of
fluid flow.

11.1 What Is a Fluid?
Matter most commonly exists as a solid, liquid, or gas; these states are known as the three common phases of matter. Solids
have a definite shape and a specific volume, liquids have a definite volume but their shape changes depending on the container
in which they are held, and gases have neither a definite shape nor a specific volume as their molecules move to fill the
container in which they are held. (See Figure 11.2.) Liquids and gases are considered to be fluids because they yield to shearing
forces, whereas solids resist them. Note that the extent to which fluids yield to shearing forces (and hence flow easily and
quickly) depends on a quantity called the viscosity which is discussed in detail in Viscosity and Laminar Flow; Poiseuille’s
Law. We can understand the phases of matter and what constitutes a fluid by considering the forces between atoms that make
up matter in the three phases.

Figure 11.2 (a) Atoms in a solid always have the same neighbors, held near home by forces represented here by springs. These atoms are essentially
in contact with one another. A rock is an example of a solid. This rock retains its shape because of the forces holding its atoms together. (b) Atoms in a
liquid are also in close contact but can slide over one another. Forces between them strongly resist attempts to push them closer together and also
hold them in close contact. Water is an example of a liquid. Water can flow, but it also remains in an open container because of the forces between its
atoms. (c) Atoms in a gas are separated by distances that are considerably larger than the size of the atoms themselves, and they move about freely. A
gas must be held in a closed container to prevent it from moving out freely.

Atoms in solids are in close contact, with forces between them that allow the atoms to vibrate but not to change positions with
neighboring atoms. (These forces can be thought of as springs that can be stretched or compressed, but not easily broken.)
Thus a solid resists all types of stress. A solid cannot be easily deformed because the atoms that make up the solid are not able
to move about freely. Solids also resist compression, because their atoms form part of a lattice structure in which the atoms are a
relatively fixed distance apart. Under compression, the atoms would be forced into one another. Most of the examples we have
studied so far have involved solid objects which deform very little when stressed.

Connections: Submicroscopic Explanation of Solids and Liquids

Atomic and molecular characteristics explain and underlie the macroscopic characteristics of solids and fluids. This
submicroscopic explanation is one theme of this text and is highlighted in the Things Great and Small features in
Conservation of Momentum. See, for example, microscopic description of collisions and momentum or microscopic
description of pressure in a gas. This present section is devoted entirely to the submicroscopic explanation of solids and
liquids.

In contrast, liquids deform easily when stressed and do not spring back to their original shape once the force is removed
because the atoms are free to slide about and change neighbors—that is, they flow (so they are a type of fluid), with the
molecules held together by their mutual attraction. When a liquid is placed in a container with no lid on, it remains in the
container (providing the container has no holes below the surface of the liquid!). Because the atoms are closely packed, liquids,
like solids, resist compression.

Atoms in gases are separated by distances that are large compared with the size of the atoms. The forces between gas atoms
are therefore very weak, except when the atoms collide with one another. Gases thus not only flow (and are therefore considered
to be fluids) but they are relatively easy to compress because there is much space and little force between atoms. When placed
in an open container gases, unlike liquids, will escape. The major distinction is that gases are easily compressed, whereas
liquids are not. We shall generally refer to both gases and liquids simply as fluids, and make a distinction between them only
when they behave differently.

PhET Explorations: States of Matter—Basics

Heat, cool, and compress atoms and molecules and watch as they change between solid, liquid, and gas phases.
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Figure 11.3 States of Matter: Basics (http://cnx.org/content/m42186/1.4/states-of-matter-basics_en.jar)

11.2 Density
Which weighs more, a ton of feathers or a ton of bricks? This old riddle plays with the distinction between mass and density. A
ton is a ton, of course; but bricks have much greater density than feathers, and so we are tempted to think of them as heavier.
(See Figure 11.4.)

Density, as you will see, is an important characteristic of substances. It is crucial, for example, in determining whether an object
sinks or floats in a fluid. Density is the mass per unit volume of a substance or object. In equation form, density is defined as

(11.1)ρ = m
V ,

where the Greek letter ρ (rho) is the symbol for density, m is the mass, and V is the volume occupied by the substance.

Density

Density is mass per unit volume.

(11.2)ρ = m
V ,

where ρ is the symbol for density, m is the mass, and V is the volume occupied by the substance.

In the riddle regarding the feathers and bricks, the masses are the same, but the volume occupied by the feathers is much

greater, since their density is much lower. The SI unit of density is kg/m3 , representative values are given in Table 11.1. The

metric system was originally devised so that water would have a density of 1 g/cm3 , equivalent to 103 kg/m3 . Thus the basic

mass unit, the kilogram, was first devised to be the mass of 1000 mL of water, which has a volume of 1000 cm3.
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Table 11.1 Densities of Various Substances

Substance ρ(103 kg/m3 or g/mL) Substance ρ(103 kg/m3 or g/mL) Substance ρ(103 kg/m3 or g/mL)

Solids Liquids Gases

Aluminum 2.7 Water (4ºC) 1.000 Air 1.29×10−3

Brass 8.44 Blood 1.05 Carbon
dioxide 1.98×10−3

Copper
(average) 8.8 Sea water 1.025 Carbon

monoxide 1.25×10−3

Gold 19.32 Mercury 13.6 Hydrogen 0.090×10−3

Iron or steel 7.8 Ethyl alcohol 0.79 Helium 0.18×10−3

Lead 11.3 Petrol 0.68 Methane 0.72×10−3

Polystyrene 0.10 Glycerin 1.26 Nitrogen 1.25×10−3

Tungsten 19.30 Olive oil 0.92 Nitrous oxide 1.98×10−3

Uranium 18.70 Oxygen 1.43×10−3

Concrete 2.30–3.0
Steam
(100º C) 0.60×10−3

Cork 0.24

Glass,
common
(average)

2.6

Granite 2.7

Earth’s crust 3.3

Wood 0.3–0.9

Ice (0°C) 0.917

Bone 1.7–2.0

Figure 11.4 A ton of feathers and a ton of bricks have the same mass, but the feathers make a much bigger pile because they have a much lower
density.

As you can see by examining Table 11.1, the density of an object may help identify its composition. The density of gold, for
example, is about 2.5 times the density of iron, which is about 2.5 times the density of aluminum. Density also reveals something
about the phase of the matter and its substructure. Notice that the densities of liquids and solids are roughly comparable,
consistent with the fact that their atoms are in close contact. The densities of gases are much less than those of liquids and
solids, because the atoms in gases are separated by large amounts of empty space.

Take-Home Experiment Sugar and Salt

A pile of sugar and a pile of salt look pretty similar, but which weighs more? If the volumes of both piles are the same, any
difference in mass is due to their different densities (including the air space between crystals). Which do you think has the
greater density? What values did you find? What method did you use to determine these values?
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Example 11.1 Calculating the Mass of a Reservoir From Its Volume

A reservoir has a surface area of 50.0 km2 and an average depth of 40.0 m. What mass of water is held behind the dam?
(See Figure 11.5 for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China.)

Strategy

We can calculate the volume V of the reservoir from its dimensions, and find the density of water ρ in Table 11.1. Then

the mass m can be found from the definition of density

(11.3)ρ = m
V .

Solution

Solving equation ρ = m / V for m gives m = ρV .

The volume V of the reservoir is its surface area A times its average depth h :

(11.4)V = Ah = ⎛
⎝50.0 km2⎞

⎠(40.0 m)

=
⎡

⎣
⎢⎛

⎝50.0 km2⎞
⎠
⎛
⎝
103 m
1 km

⎞
⎠

2⎤

⎦
⎥(40.0 m) = 2.00×109 m3

The density of water ρ from Table 11.1 is 1.000×103 kg/m3 . Substituting V and ρ into the expression for mass gives

(11.5)m = ⎛
⎝1.00×103 kg/m3⎞

⎠
⎛
⎝2.00×109 m3⎞

⎠

= 2.00×1012 kg.

Discussion

A large reservoir contains a very large mass of water. In this example, the weight of the water in the reservoir is

mg = 1.96×1013 N , where g is the acceleration due to the Earth’s gravity (about 9.80 m/s2 ). It is reasonable to ask

whether the dam must supply a force equal to this tremendous weight. The answer is no. As we shall see in the following
sections, the force the dam must supply can be much smaller than the weight of the water it holds back.

Figure 11.5 Three Gorges Dam in central China. When completed in 2008, this became the world’s largest hydroelectric plant, generating power
equivalent to that generated by 22 average-sized nuclear power plants. The concrete dam is 181 m high and 2.3 km across. The reservoir made by
this dam is 660 km long. Over 1 million people were displaced by the creation of the reservoir. (credit: Le Grand Portage)

11.3 Pressure
You have no doubt heard the word pressure being used in relation to blood (high or low blood pressure) and in relation to the
weather (high- and low-pressure weather systems). These are only two of many examples of pressures in fluids. Pressure P is
defined as

(11.6)P = F
A

where F is a force applied to an area A that is perpendicular to the force.
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Pressure

Pressure is defined as the force divided by the area perpendicular to the force over which the force is applied, or

(11.7)P = F
A.

A given force can have a significantly different effect depending on the area over which the force is exerted, as shown in Figure
11.6. The SI unit for pressure is the pascal, where

(11.8)1 Pa = 1 N/m2.
In addition to the pascal, there are many other units for pressure that are in common use. In meteorology, atmospheric pressure
is often described in units of millibar (mb), where

(11.9)100 mb = 1×105 Pa .

Pounds per square inch ⎛
⎝lb/in2 or psi⎞⎠ is still sometimes used as a measure of tire pressure, and millimeters of mercury (mm

Hg) is still often used in the measurement of blood pressure. Pressure is defined for all states of matter but is particularly
important when discussing fluids.

Figure 11.6 (a) While the person being poked with the finger might be irritated, the force has little lasting effect. (b) In contrast, the same force applied
to an area the size of the sharp end of a needle is great enough to break the skin.

Example 11.2 Calculating Force Exerted by the Air: What Force Does a Pressure Exert?

An astronaut is working outside the International Space Station where the atmospheric pressure is essentially zero. The

pressure gauge on her air tank reads 6.90×106 Pa . What force does the air inside the tank exert on the flat end of the
cylindrical tank, a disk 0.150 m in diameter?

Strategy

We can find the force exerted from the definition of pressure given in P = F
A , provided we can find the area A acted upon.

Solution

By rearranging the definition of pressure to solve for force, we see that

(11.10)F = PA.

Here, the pressure P is given, as is the area of the end of the cylinder A , given by A = πr2 . Thus,

(11.11)F = ⎛
⎝6.90×106 N/m2⎞

⎠(3.14)(0.0750 m)2

= 1.22×105 N.
Discussion

Wow! No wonder the tank must be strong. Since we found F = PA , we see that the force exerted by a pressure is directly
proportional to the area acted upon as well as the pressure itself.
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The force exerted on the end of the tank is perpendicular to its inside surface. This direction is because the force is exerted by a 
static or stationary fluid. We have already seen that fluids cannot withstand shearing (sideways) forces; they cannot exert 
shearing forces, either. Fluid pressure has no direction, being a scalar quantity. The forces due to pressure have well-defined 
directions: they are always exerted perpendicular to any surface. (See the tire in Figure 11.7, for example.) Finally, note that 
pressure is exerted on all surfaces. Swimmers, as well as the tire, feel pressure on all sides. (See Figure 11.8.)
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Figure 11.7 Pressure inside this tire exerts forces perpendicular to all surfaces it contacts. The arrows give representative directions and magnitudes
of the forces exerted at various points. Note that static fluids do not exert shearing forces.

Figure 11.8 Pressure is exerted on all sides of this swimmer, since the water would flow into the space he occupies if he were not there. The arrows
represent the directions and magnitudes of the forces exerted at various points on the swimmer. Note that the forces are larger underneath, due to
greater depth, giving a net upward or buoyant force that is balanced by the weight of the swimmer.

PhET Explorations: Gas Properties

Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and
more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.

Figure 11.9 Gas Properties (http://cnx.org/content/m42189/1.4/gas-properties_en.jar)

11.4 Variation of Pressure with Depth in a Fluid
If your ears have ever popped on a plane flight or ached during a deep dive in a swimming pool, you have experienced the effect
of depth on pressure in a fluid. At the Earth’s surface, the air pressure exerted on you is a result of the weight of air above you.
This pressure is reduced as you climb up in altitude and the weight of air above you decreases. Under water, the pressure
exerted on you increases with increasing depth. In this case, the pressure being exerted upon you is a result of both the weight
of water above you and that of the atmosphere above you. You may notice an air pressure change on an elevator ride that
transports you many stories, but you need only dive a meter or so below the surface of a pool to feel a pressure increase. The
difference is that water is much denser than air, about 775 times as dense.

Consider the container in Figure 11.10. Its bottom supports the weight of the fluid in it. Let us calculate the pressure exerted on
the bottom by the weight of the fluid. That pressure is the weight of the fluid mg divided by the area A supporting it (the area

of the bottom of the container):

(11.12)P = mg
A .
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We can find the mass of the fluid from its volume and density:

(11.13)m = ρV.

The volume of the fluid V is related to the dimensions of the container. It is

(11.14)V = Ah,

where A is the cross-sectional area and h is the depth. Combining the last two equations gives

(11.15)m = ρAh.

If we enter this into the expression for pressure, we obtain

(11.16)
P =

⎛
⎝ρAh⎞

⎠g
A .

The area cancels, and rearranging the variables yields

(11.17)P = hρg.

This value is the pressure due to the weight of a fluid. The equation has general validity beyond the special conditions under
which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the
fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any

depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which
are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.
Example 11.4 illustrates this situation.

Figure 11.10 The bottom of this container supports the entire weight of the fluid in it. The vertical sides cannot exert an upward force on the fluid (since
it cannot withstand a shearing force), and so the bottom must support it all.

Example 11.3 Calculating the Average Pressure and Force Exerted: What Force Must a Dam
Withstand?

In Example 11.1, we calculated the mass of water in a large reservoir. We will now consider the pressure and force acting
on the dam retaining water. (See Figure 11.11.) The dam is 500 m wide, and the water is 80.0 m deep at the dam. (a) What
is the average pressure on the dam due to the water? (b) Calculate the force exerted against the dam and compare it with

the weight of water in the dam (previously found to be 1.96×1013 N ).

Strategy for (a)

The average pressure P
¯

due to the weight of the water is the pressure at the average depth h
¯

of 40.0 m, since pressure
increases linearly with depth.

Solution for (a)

The average pressure due to the weight of a fluid is

(11.18)
P
¯

= h
¯
ρg.

Entering the density of water from Table 11.1 and taking h
¯

to be the average depth of 40.0 m, we obtain
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(11.19)
P̄ = (40.0 m)⎛⎝103 kg

m3
⎞
⎠
⎛
⎝9.80 m

s2
⎞
⎠

= 3.92×105 N
m2 = 392 kPa.

Strategy for (b)

The force exerted on the dam by the water is the average pressure times the area of contact:

(11.20)
F = P̄ A.

Solution for (b)

We have already found the value for P̄ . The area of the dam is A = 80.0 m×500 m = 4.00×104 m2 , so that

(11.21)F = (3.92×105 N/m2)(4.00×104 m2)
= 1.57×1010 N.

Discussion

Although this force seems large, it is small compared with the 1.96×1013 N weight of the water in the reservoir—in fact, it

is only 0.0800% of the weight. Note that the pressure found in part (a) is completely independent of the width and length of
the lake—it depends only on its average depth at the dam. Thus the force depends only on the water’s average depth and
the dimensions of the dam, not on the horizontal extent of the reservoir. In the diagram, the thickness of the dam increases
with depth to balance the increasing force due to the increasing pressure.epth to balance the increasing force due to the
increasing pressure.

Figure 11.11 The dam must withstand the force exerted against it by the water it retains. This force is small compared with the weight of the water
behind the dam.

Atmospheric pressure is another example of pressure due to the weight of a fluid, in this case due to the weight of air above a
given height. The atmospheric pressure at the Earth’s surface varies a little due to the large-scale flow of the atmosphere
induced by the Earth’s rotation (this creates weather “highs” and “lows”). However, the average pressure at sea level is given by
the standard atmospheric pressure Patm , measured to be

(11.22)1 atmosphere (atm) = Patm = 1.01×105 N/m2 = 101 kPa.

This relationship means that, on average, at sea level, a column of air above 1.00 m2 of the Earth’s surface has a weight of

1.01×105 N , equivalent to 1 atm . (See Figure 11.12.)
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Figure 11.12 Atmospheric pressure at sea level averages 1.01×105 Pa (equivalent to 1 atm), since the column of air over this 1 m2 , extending

to the top of the atmosphere, weighs 1.01×105 N .

Example 11.4 Calculating Average Density: How Dense Is the Air?

Calculate the average density of the atmosphere, given that it extends to an altitude of 120 km. Compare this density with
that of air listed in Table 11.1.

Strategy

If we solve P = hρg for density, we see that

(11.23)ρ̄ = P
hg.

We then take P to be atmospheric pressure, h is given, and g is known, and so we can use this to calculate ρ̄ .

Solution

Entering known values into the expression for ρ̄ yields

(11.24)
ρ̄ = 1.01×105 N/m2

(120×103 m)(9.80 m/s2)
= 8.59×10−2 kg/m3.

Discussion

This result is the average density of air between the Earth’s surface and the top of the Earth’s atmosphere, which essentially

ends at 120 km. The density of air at sea level is given in Table 11.1 as 1.29 kg/m3 —about 15 times its average value.

Because air is so compressible, its density has its highest value near the Earth’s surface and declines rapidly with altitude.

Example 11.5 Calculating Depth Below the Surface of Water: What Depth of Water Creates the
Same Pressure as the Entire Atmosphere?

Calculate the depth below the surface of water at which the pressure due to the weight of the water equals 1.00 atm.

Strategy

We begin by solving the equation P = hρg for depth h :

(11.25)h = P
ρg.

Then we take P to be 1.00 atm and ρ to be the density of the water that creates the pressure.

Solution

Entering the known values into the expression for h gives
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(11.26)
h = 1.01×105 N/m2

(1.00×103 kg/m3)(9.80 m/s2)
= 10.3 m.

Discussion

Just 10.3 m of water creates the same pressure as 120 km of air. Since water is nearly incompressible, we can neglect any
change in its density over this depth.

What do you suppose is the total pressure at a depth of 10.3 m in a swimming pool? Does the atmospheric pressure on the
water’s surface affect the pressure below? The answer is yes. This seems only logical, since both the water’s weight and the
atmosphere’s weight must be supported. So the total pressure at a depth of 10.3 m is 2 atm—half from the water above and half
from the air above. We shall see in Pascal’s Principle that fluid pressures always add in this way.

11.5 Pascal’s Principle
Pressure is defined as force per unit area. Can pressure be increased in a fluid by pushing directly on the fluid? Yes, but it is
much easier if the fluid is enclosed. The heart, for example, increases blood pressure by pushing directly on the blood in an
enclosed system (valves closed in a chamber). If you try to push on a fluid in an open system, such as a river, the fluid flows
away. An enclosed fluid cannot flow away, and so pressure is more easily increased by an applied force.

What happens to a pressure in an enclosed fluid? Since atoms in a fluid are free to move about, they transmit the pressure to all
parts of the fluid and to the walls of the container. Remarkably, the pressure is transmitted undiminished. This phenomenon is
called Pascal’s principle, because it was first clearly stated by the French philosopher and scientist Blaise Pascal (1623–1662):
A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its
container.

Pascal’s Principle

A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its
container.

Pascal’s principle, an experimentally verified fact, is what makes pressure so important in fluids. Since a change in pressure is
transmitted undiminished in an enclosed fluid, we often know more about pressure than other physical quantities in fluids.
Moreover, Pascal’s principle implies that the total pressure in a fluid is the sum of the pressures from different sources. We shall
find this fact—that pressures add—very useful.

Blaise Pascal had an interesting life in that he was home-schooled by his father who removed all of the mathematics textbooks
from his house and forbade him to study mathematics until the age of 15. This, of course, raised the boy’s curiosity, and by the
age of 12, he started to teach himself geometry. Despite this early deprivation, Pascal went on to make major contributions in the
mathematical fields of probability theory, number theory, and geometry. He is also well known for being the inventor of the first
mechanical digital calculator, in addition to his contributions in the field of fluid statics.

Application of Pascal’s Principle
One of the most important technological applications of Pascal’s principle is found in a hydraulic system, which is an enclosed
fluid system used to exert forces. The most common hydraulic systems are those that operate car brakes. Let us first consider
the simple hydraulic system shown in Figure 11.13.
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Figure 11.13 A typical hydraulic system with two fluid-filled cylinders, capped with pistons and connected by a tube called a hydraulic line. A downward
force F1 on the left piston creates a pressure that is transmitted undiminished to all parts of the enclosed fluid. This results in an upward force F2
on the right piston that is larger than F1 because the right piston has a larger area.

Relationship Between Forces in a Hydraulic System
We can derive a relationship between the forces in the simple hydraulic system shown in Figure 11.13 by applying Pascal’s
principle. Note first that the two pistons in the system are at the same height, and so there will be no difference in pressure due to

a difference in depth. Now the pressure due to F1 acting on area A1 is simply P1 = F1
A1

, as defined by P = F
A . According

to Pascal’s principle, this pressure is transmitted undiminished throughout the fluid and to all walls of the container. Thus, a
pressure P2 is felt at the other piston that is equal to P1 . That is P1 = P2 .

But since P2 = F2
A2

, we see that
F1
A1

= F2
A2

.

This equation relates the ratios of force to area in any hydraulic system, providing the pistons are at the same vertical height and
that friction in the system is negligible. Hydraulic systems can increase or decrease the force applied to them. To make the force
larger, the pressure is applied to a larger area. For example, if a 100-N force is applied to the left cylinder in Figure 11.13 and
the right one has an area five times greater, then the force out is 500 N. Hydraulic systems are analogous to simple levers, but
they have the advantage that pressure can be sent through tortuously curved lines to several places at once.

Example 11.6 Calculating Force of Slave Cylinders: Pascal Puts on the Brakes

Consider the automobile hydraulic system shown in Figure 11.14.
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Figure 11.14 Hydraulic brakes use Pascal’s principle. The driver exerts a force of 100 N on the brake pedal. This force is increased by the simple
lever and again by the hydraulic system. Each of the identical slave cylinders receives the same pressure and, therefore, creates the same force
output F2 . The circular cross-sectional areas of the master and slave cylinders are represented by A1 and A2 , respectively

A force of 100 N is applied to the brake pedal, which acts on the cylinder—called the master—through a lever. A force of 500
N is exerted on the master cylinder. (The reader can verify that the force is 500 N using techniques of statics from
Applications of Statics, Including Problem-Solving Strategies.) Pressure created in the master cylinder is transmitted to
four so-called slave cylinders. The master cylinder has a diameter of 0.500 cm, and each slave cylinder has a diameter of
2.50 cm. Calculate the force F2 created at each of the slave cylinders.

Strategy

We are given the force F1 that is applied to the master cylinder. The cross-sectional areas A1 and A2 can be calculated

from their given diameters. Then
F1
A1

= F2
A2

can be used to find the force F2 . Manipulate this algebraically to get F2 on

one side and substitute known values:

Solution

Pascal’s principle applied to hydraulic systems is given by
F1
A1

= F2
A2

:

(11.27)
F2 = A2

A1
F1 =

πr2
2

πr1
2F1 = (1.25 cm)2

(0.250 cm)2×500 N = 1.25×104 N.

Discussion

This value is the force exerted by each of the four slave cylinders. Note that we can add as many slave cylinders as we

wish. If each has a 2.50-cm diameter, each will exert 1.25×104 N.

A simple hydraulic system, such as a simple machine, can increase force but cannot do more work than done on it. Work is force
times distance moved, and the slave cylinder moves through a smaller distance than the master cylinder. Furthermore, the more
slaves added, the smaller the distance each moves. Many hydraulic systems—such as power brakes and those in
bulldozers—have a motorized pump that actually does most of the work in the system. The movement of the legs of a spider is
achieved partly by hydraulics. Using hydraulics, a jumping spider can create a force that makes it capable of jumping 25 times its
length!
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Making Connections: Conservation of Energy

Conservation of energy applied to a hydraulic system tells us that the system cannot do more work than is done on it. Work
transfers energy, and so the work output cannot exceed the work input. Power brakes and other similar hydraulic systems
use pumps to supply extra energy when needed.

11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
If you limp into a gas station with a nearly flat tire, you will notice the tire gauge on the airline reads nearly zero when you begin
to fill it. In fact, if there were a gaping hole in your tire, the gauge would read zero, even though atmospheric pressure exists in
the tire. Why does the gauge read zero? There is no mystery here. Tire gauges are simply designed to read zero at atmospheric
pressure and positive when pressure is greater than atmospheric.

Similarly, atmospheric pressure adds to blood pressure in every part of the circulatory system. (As noted in Pascal’s Principle,
the total pressure in a fluid is the sum of the pressures from different sources—here, the heart and the atmosphere.) But
atmospheric pressure has no net effect on blood flow since it adds to the pressure coming out of the heart and going back into it,
too. What is important is how much greater blood pressure is than atmospheric pressure. Blood pressure measurements, like tire
pressures, are thus made relative to atmospheric pressure.

In brief, it is very common for pressure gauges to ignore atmospheric pressure—that is, to read zero at atmospheric pressure.
We therefore define gauge pressure to be the pressure relative to atmospheric pressure. Gauge pressure is positive for
pressures above atmospheric pressure, and negative for pressures below it.

Gauge Pressure

Gauge pressure is the pressure relative to atmospheric pressure. Gauge pressure is positive for pressures above
atmospheric pressure, and negative for pressures below it.

In fact, atmospheric pressure does add to the pressure in any fluid not enclosed in a rigid container. This happens because of
Pascal’s principle. The total pressure, or absolute pressure, is thus the sum of gauge pressure and atmospheric pressure:
Pabs = Pg + Patm where Pabs is absolute pressure, Pg is gauge pressure, and Patm is atmospheric pressure. For

example, if your tire gauge reads 34 psi (pounds per square inch), then the absolute pressure is 34 psi plus 14.7 psi ( Patm in

psi), or 48.7 psi (equivalent to 336 kPa).

Absolute Pressure

Absolute pressure is the sum of gauge pressure and atmospheric pressure.

For reasons we will explore later, in most cases the absolute pressure in fluids cannot be negative. Fluids push rather than pull,
so the smallest absolute pressure is zero. (A negative absolute pressure is a pull.) Thus the smallest possible gauge pressure is
Pg = −Patm (this makes Pabs zero). There is no theoretical limit to how large a gauge pressure can be.

There are a host of devices for measuring pressure, ranging from tire gauges to blood pressure cuffs. Pascal’s principle is of
major importance in these devices. The undiminished transmission of pressure through a fluid allows precise remote sensing of
pressures. Remote sensing is often more convenient than putting a measuring device into a system, such as a person’s artery.

Figure 11.15 shows one of the many types of mechanical pressure gauges in use today. In all mechanical pressure gauges,
pressure results in a force that is converted (or transduced) into some type of readout.

Figure 11.15 This aneroid gauge utilizes flexible bellows connected to a mechanical indicator to measure pressure.
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An entire class of gauges uses the property that pressure due to the weight of a fluid is given by P = hρg. Consider the U-

shaped tube shown in Figure 11.16, for example. This simple tube is called a manometer. In Figure 11.16(a), both sides of the
tube are open to the atmosphere. Atmospheric pressure therefore pushes down on each side equally so its effect cancels. If the
fluid is deeper on one side, there is a greater pressure on the deeper side, and the fluid flows away from that side until the
depths are equal.

Let us examine how a manometer is used to measure pressure. Suppose one side of the U-tube is connected to some source of
pressure Pabs such as the toy balloon in Figure 11.16(b) or the vacuum-packed peanut jar shown in Figure 11.16(c). Pressure

is transmitted undiminished to the manometer, and the fluid levels are no longer equal. In Figure 11.16(b), Pabs is greater than

atmospheric pressure, whereas in Figure 11.16(c), Pabs is less than atmospheric pressure. In both cases, Pabs differs from

atmospheric pressure by an amount hρg , where ρ is the density of the fluid in the manometer. In Figure 11.16(b), Pabs can

support a column of fluid of height h , and so it must exert a pressure hρg greater than atmospheric pressure (the gauge

pressure Pg is positive). In Figure 11.16(c), atmospheric pressure can support a column of fluid of height h , and so Pabs is

less than atmospheric pressure by an amount hρg (the gauge pressure Pg is negative). A manometer with one side open to

the atmosphere is an ideal device for measuring gauge pressures. The gauge pressure is Pg = hρg and is found by measuring

h .

Figure 11.16 An open-tube manometer has one side open to the atmosphere. (a) Fluid depth must be the same on both sides, or the pressure each
side exerts at the bottom will be unequal and there will be flow from the deeper side. (b) A positive gauge pressure Pg = hρg transmitted to one

side of the manometer can support a column of fluid of height h . (c) Similarly, atmospheric pressure is greater than a negative gauge pressure Pg

by an amount hρg . The jar’s rigidity prevents atmospheric pressure from being transmitted to the peanuts.

Mercury manometers are often used to measure arterial blood pressure. An inflatable cuff is placed on the upper arm as shown
in Figure 11.17. By squeezing the bulb, the person making the measurement exerts pressure, which is transmitted undiminished
to both the main artery in the arm and the manometer. When this applied pressure exceeds blood pressure, blood flow below the
cuff is cut off. The person making the measurement then slowly lowers the applied pressure and listens for blood flow to resume.
Blood pressure pulsates because of the pumping action of the heart, reaching a maximum, called systolic pressure, and a
minimum, called diastolic pressure, with each heartbeat. Systolic pressure is measured by noting the value of h when blood

flow first begins as cuff pressure is lowered. Diastolic pressure is measured by noting h when blood flows without interruption.
The typical blood pressure of a young adult raises the mercury to a height of 120 mm at systolic and 80 mm at diastolic. This is
commonly quoted as 120 over 80, or 120/80. The first pressure is representative of the maximum output of the heart; the second
is due to the elasticity of the arteries in maintaining the pressure between beats. The density of the mercury fluid in the
manometer is 13.6 times greater than water, so the height of the fluid will be 1/13.6 of that in a water manometer. This reduced
height can make measurements difficult, so mercury manometers are used to measure larger pressures, such as blood pressure.
The density of mercury is such that 1.0 mm Hg = 133 Pa .

Systolic Pressure

Systolic pressure is the maximum blood pressure.

Diastolic Pressure

Diastolic pressure is the minimum blood pressure.
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Figure 11.17 In routine blood pressure measurements, an inflatable cuff is placed on the upper arm at the same level as the heart. Blood flow is
detected just below the cuff, and corresponding pressures are transmitted to a mercury-filled manometer. (credit: U.S. Army photo by Spc. Micah E.
Clare\4TH BCT)

Example 11.7 Calculating Height of IV Bag: Blood Pressure and Intravenous Infusions

Intravenous infusions are usually made with the help of the gravitational force. Assuming that the density of the fluid being
administered is 1.00 g/ml, at what height should the IV bag be placed above the entry point so that the fluid just enters the
vein if the blood pressure in the vein is 18 mm Hg above atmospheric pressure? Assume that the IV bag is collapsible.

Strategy for (a)

For the fluid to just enter the vein, its pressure at entry must exceed the blood pressure in the vein (18 mm Hg above
atmospheric pressure). We therefore need to find the height of fluid that corresponds to this gauge pressure.

Solution

We first need to convert the pressure into SI units. Since 1.0 mm Hg = 133 Pa ,

(11.28)P = 18 mm Hg× 133 Pa
1.0 mm Hg = 2400 Pa.

Rearranging Pg = hρg for h gives h =
Pg
ρg . Substituting known values into this equation gives

(11.29)
h = 2400 N/m2

⎛
⎝1.0×103 kg/m3⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠

= 0.24 m.
Discussion

The IV bag must be placed at 0.24 m above the entry point into the arm for the fluid to just enter the arm. Generally, IV bags
are placed higher than this. You may have noticed that the bags used for blood collection are placed below the donor to
allow blood to flow easily from the arm to the bag, which is the opposite direction of flow than required in the example
presented here.
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A barometer is a device that measures atmospheric pressure. A mercury barometer is shown in Figure 11.18. This device
measures atmospheric pressure, rather than gauge pressure, because there is a nearly pure vacuum above the mercury in the
tube. The height of the mercury is such that hρg = Patm . When atmospheric pressure varies, the mercury rises or falls, giving

important clues to weather forecasters. The barometer can also be used as an altimeter, since average atmospheric pressure
varies with altitude. Mercury barometers and manometers are so common that units of mm Hg are often quoted for atmospheric
pressure and blood pressures. Table 11.2 gives conversion factors for some of the more commonly used units of pressure.

Figure 11.18 A mercury barometer measures atmospheric pressure. The pressure due to the mercury’s weight, hρg , equals atmospheric pressure.

The atmosphere is able to force mercury in the tube to a height h because the pressure above the mercury is zero.

Table 11.2 Conversion Factors for Various Pressure Units

Conversion to N/m2 (Pa) Conversion from atm

1.0 atm = 1.013×105 N/m2 1.0 atm = 1.013×105 N/m2

1.0 dyne/cm2 = 0.10 N/m2 1.0 atm = 1.013×106 dyne/cm2

1.0 kg/cm2 = 9.8×104 N/m2 1.0 atm = 1.013 kg/cm2

1.0 lb/in.2 = 6.90×103 N/m2 1.0 atm = 14.7 lb/in.2

1.0 mm Hg = 133 N/m2 1.0 atm = 760 mm Hg

1.0 cm Hg = 1.33×103 N/m2 1.0 atm = 76.0 cm Hg

1.0 cm water = 98.1 N/m2 1.0 atm = 1.03×103 cm water

1.0 bar = 1.000×105 N/m2 1.0 atm = 1.013 bar

1.0 millibar = 1.000×102 N/m2 1.0 atm = 1013 millibar

11.7 Archimedes’ Principle
When you rise from lounging in a warm bath, your arms feel strangely heavy. This is because you no longer have the buoyant
support of the water. Where does this buoyant force come from? Why is it that some things float and others do not? Do objects
that sink get any support at all from the fluid? Is your body buoyed by the atmosphere, or are only helium balloons affected? (See
Figure 11.19.)
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Figure 11.19 (a) Even objects that sink, like this anchor, are partly supported by water when submerged. (b) Submarines have adjustable density
(ballast tanks) so that they may float or sink as desired. (credit: Allied Navy) (c) Helium-filled balloons tug upward on their strings, demonstrating air’s
buoyant effect. (credit: Crystl)

Answers to all these questions, and many others, are based on the fact that pressure increases with depth in a fluid. This means
that the upward force on the bottom of an object in a fluid is greater than the downward force on the top of the object. There is a
net upward, or buoyant force on any object in any fluid. (See Figure 11.20.) If the buoyant force is greater than the object’s
weight, the object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object will sink. If the
buoyant force equals the object’s weight, the object will remain suspended at that depth. The buoyant force is always present
whether the object floats, sinks, or is suspended in a fluid.

Buoyant Force

The buoyant force is the net upward force on any object in any fluid.

Figure 11.20 Pressure due to the weight of a fluid increases with depth since P = hρg . This pressure and associated upward force on the bottom

of the cylinder are greater than the downward force on the top of the cylinder. Their difference is the buoyant force FB . (Horizontal forces cancel.)

Just how great is this buoyant force? To answer this question, think about what happens when a submerged object is removed
from a fluid, as in Figure 11.21.
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Figure 11.21 (a) An object submerged in a fluid experiences a buoyant force FB . If FB is greater than the weight of the object, the object will rise.

If FB is less than the weight of the object, the object will sink. (b) If the object is removed, it is replaced by fluid having weight wfl . Since this weight

is supported by surrounding fluid, the buoyant force must equal the weight of the fluid displaced. That is, FB = wfl ,a statement of Archimedes’

principle.

The space it occupied is filled by fluid having a weight wfl . This weight is supported by the surrounding fluid, and so the buoyant

force must equal wfl , the weight of the fluid displaced by the object. It is a tribute to the genius of the Greek mathematician and

inventor Archimedes (ca. 287–212 B.C.) that he stated this principle long before concepts of force were well established. Stated
in words, Archimedes’ principle is as follows: The buoyant force on an object equals the weight of the fluid it displaces. In
equation form, Archimedes’ principle is

(11.30)FB = wfl,

where FB is the buoyant force and wfl is the weight of the fluid displaced by the object. Archimedes’ principle is valid in

general, for any object in any fluid, whether partially or totally submerged.

Archimedes’ Principle

According to this principle the buoyant force on an object equals the weight of the fluid it displaces. In equation form,
Archimedes’ principle is

(11.31)FB = wfl,

where FB is the buoyant force and wfl is the weight of the fluid displaced by the object.

Humm … High-tech body swimsuits were introduced in 2008 in preparation for the Beijing Olympics. One concern (and
international rule) was that these suits should not provide any buoyancy advantage. How do you think that this rule could be
verified?

Making Connections: Take-Home Investigation

The density of aluminum foil is 2.7 times the density of water. Take a piece of foil, roll it up into a ball and drop it into water.
Does it sink? Why or why not? Can you make it sink?

Floating and Sinking
Drop a lump of clay in water. It will sink. Then mold the lump of clay into the shape of a boat, and it will float. Because of its
shape, the boat displaces more water than the lump and experiences a greater buoyant force. The same is true of steel ships.
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Example 11.8 Calculating buoyant force: dependency on shape

(a) Calculate the buoyant force on 10,000 metric tons (1.00×107 kg) of solid steel completely submerged in water, and

compare this with the steel’s weight. (b) What is the maximum buoyant force that water could exert on this same steel if it

were shaped into a boat that could displace 1.00×105 m3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and
steel given in Table 11.1. We note that, since the steel is completely submerged, its volume and the water’s volume are the
same. Once we know the volume of water, we can find its mass and weight.

Solution for (a)

First, we use the definition of density ρ = m
V to find the steel’s volume, and then we substitute values for mass and density.

This gives

(11.32)
Vst = mst

ρst
= 1.00×107 kg

7.8×103 kg/m3 = 1.28×103 m3.

Because the steel is completely submerged, this is also the volume of water displaced, Vw . We can now find the mass of

water displaced from the relationship between its volume and density, both of which are known. This gives

(11.33)mw = ρwVw = (1.000×103 kg/m3)(1.28×103 m3)

= 1.28×106 kg.

By Archimedes’ principle, the weight of water displaced is mw g , so the buoyant force is

(11.34)FB = ww = mwg = ⎛
⎝1.28×106 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠

= 1.3×107 N.

The steel’s weight is mw g = 9.80×107 N , which is much greater than the buoyant force, so the steel will remain

submerged. Note that the buoyant force is rounded to two digits because the density of steel is given to only two digits.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume
of water.

Solution for (b)

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is,

(11.35)mw = ρwVw = ⎛
⎝1.000×103 kg/m3⎞

⎠
⎛
⎝1.00×105 m3⎞

⎠

= 1.00×108 kg.

The maximum buoyant force is the weight of this much water, or

(11.36)FB = ww = mwg = ⎛
⎝1.00×108 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠

= 9.80×108 N.
Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight
without sinking.

Making Connections: Take-Home Investigation

A piece of household aluminum foil is 0.016 mm thick. Use a piece of foil that measures 10 cm by 15 cm. (a) What is the
mass of this amount of foil? (b) If the foil is folded to give it four sides, and paper clips or washers are added to this “boat,”
what shape of the boat would allow it to hold the most “cargo” when placed in water? Test your prediction.
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Density and Archimedes’ Principle
Density plays a crucial role in Archimedes’ principle. The average density of an object is what ultimately determines whether it 
floats. If its average density is less than that of the surrounding fluid, it will float. This is because the fluid, having a higher 
density,
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contains more mass and hence more weight in the same volume. The buoyant force, which equals the weight of the fluid
displaced, is thus greater than the weight of the object. Likewise, an object denser than the fluid will sink.

The extent to which a floating object is submerged depends on how the object’s density is related to that of the fluid. In Figure
11.22, for example, the unloaded ship has a lower density and less of it is submerged compared with the same ship loaded. We
can derive a quantitative expression for the fraction submerged by considering density. The fraction submerged is the ratio of the
volume submerged to the volume of the object, or

(11.37)
fraction submerged =Vsub

Vobj
= Vfl

Vobj
.

The volume submerged equals the volume of fluid displaced, which we call Vfl . Now we can obtain the relationship between the

densities by substituting ρ = m
V into the expression. This gives

(11.38)Vfl
Vobj

= mfl / ρfl
mobj / ρ̄ obj

,

where ρ̄ obj is the average density of the object and ρfl is the density of the fluid. Since the object floats, its mass and that of

the displaced fluid are equal, and so they cancel from the equation, leaving

(11.39)

fraction submerged =
ρ̄ obj
ρfl

.

Figure 11.22 An unloaded ship (a) floats higher in the water than a loaded ship (b).

We use this last relationship to measure densities. This is done by measuring the fraction of a floating object that is
submerged—for example, with a hydrometer. It is useful to define the ratio of the density of an object to a fluid (usually water) as
specific gravity:

(11.40)
specific gravity = ρ¯

ρw,

where ρ¯ is the average density of the object or substance and ρw is the density of water at 4.00°C. Specific gravity is

dimensionless, independent of whatever units are used for ρ . If an object floats, its specific gravity is less than one. If it sinks, its

specific gravity is greater than one. Moreover, the fraction of a floating object that is submerged equals its specific gravity. If an
object’s specific gravity is exactly 1, then it will remain suspended in the fluid, neither sinking nor floating. Scuba divers try to
obtain this state so that they can hover in the water. We measure the specific gravity of fluids, such as battery acid, radiator fluid,
and urine, as an indicator of their condition. One device for measuring specific gravity is shown in Figure 11.23.

Specific Gravity

Specific gravity is the ratio of the density of an object to a fluid (usually water).
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Figure 11.23 This hydrometer is floating in a fluid of specific gravity 0.87. The glass hydrometer is filled with air and weighted with lead at the bottom. It
floats highest in the densest fluids and has been calibrated and labeled so that specific gravity can be read from it directly.

Example 11.9 Calculating Average Density: Floating Woman

Suppose a 60.0-kg woman floats in freshwater with 97.0% of her volume submerged when her lungs are full of air. What is
her average density?

Strategy

We can find the woman’s density by solving the equation

(11.41)

fraction submerged =
ρ̄ obj
ρfl

for the density of the object. This yields

(11.42)ρ̄ obj = ρ̄ person = (fraction submerged) ⋅ ρfl.

We know both the fraction submerged and the density of water, and so we can calculate the woman’s density.

Solution

Entering the known values into the expression for her density, we obtain

(11.43)
ρ̄ person = 0.970 ⋅ ⎛

⎝103 kg
m3

⎞
⎠ = 970 kg

m3.

Discussion

Her density is less than the fluid density. We expect this because she floats. Body density is one indicator of a person’s
percent body fat, of interest in medical diagnostics and athletic training. (See Figure 11.24.)
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Figure 11.24 Subject in a “fat tank,” where he is weighed while completely submerged as part of a body density determination. The subject must
completely empty his lungs and hold a metal weight in order to sink. Corrections are made for the residual air in his lungs (measured separately) and
the metal weight. His corrected submerged weight, his weight in air, and pinch tests of strategic fatty areas are used to calculate his percent body fat.

There are many obvious examples of lower-density objects or substances floating in higher-density fluids—oil on water, a hot-air
balloon, a bit of cork in wine, an iceberg, and hot wax in a “lava lamp,” to name a few. Less obvious examples include lava rising
in a volcano and mountain ranges floating on the higher-density crust and mantle beneath them. Even seemingly solid Earth has
fluid characteristics.

More Density Measurements
One of the most common techniques for determining density is shown in Figure 11.25.

Figure 11.25 (a) A coin is weighed in air. (b) The apparent weight of the coin is determined while it is completely submerged in a fluid of known density.
These two measurements are used to calculate the density of the coin.

An object, here a coin, is weighed in air and then weighed again while submerged in a liquid. The density of the coin, an
indication of its authenticity, can be calculated if the fluid density is known. This same technique can also be used to determine
the density of the fluid if the density of the coin is known. All of these calculations are based on Archimedes’ principle.

Archimedes’ principle states that the buoyant force on the object equals the weight of the fluid displaced. This, in turn, means
that the object appears to weigh less when submerged; we call this measurement the object’s apparent weight. The object
suffers an apparent weight loss equal to the weight of the fluid displaced. Alternatively, on balances that measure mass, the
object suffers an apparent mass loss equal to the mass of fluid displaced. That is

(11.44)apparent weight loss = weight of fluid displaced

or

(11.45)apparent mass loss = mass of fluid displaced.

The next example illustrates the use of this technique.
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Example 11.10 Calculating Density: Is the Coin Authentic?

The mass of an ancient Greek coin is determined in air to be 8.630 g. When the coin is submerged in water as shown in

Figure 11.25, its apparent mass is 7.800 g. Calculate its density, given that water has a density of 1.000 g/cm3 and that

effects caused by the wire suspending the coin are negligible.

Strategy

To calculate the coin’s density, we need its mass (which is given) and its volume. The volume of the coin equals the volume
of water displaced. The volume of water displaced Vw can be found by solving the equation for density ρ = m

V for V .

Solution

The volume of water is Vw = mw
ρw where mw is the mass of water displaced. As noted, the mass of the water displaced

equals the apparent mass loss, which is mw = 8.630 g−7.800 g = 0.830 g . Thus the volume of water is

Vw = 0.830 g
1.000 g/cm3 = 0.830 cm3 . This is also the volume of the coin, since it is completely submerged. We can now find

the density of the coin using the definition of density:

(11.46)
ρc = mc

Vc
= 8.630 g

0.830 cm3 = 10.4 g/cm3.

Discussion

You can see from Table 11.1 that this density is very close to that of pure silver, appropriate for this type of ancient coin.
Most modern counterfeits are not pure silver.

This brings us back to Archimedes’ principle and how it came into being. As the story goes, the king of Syracuse gave
Archimedes the task of determining whether the royal crown maker was supplying a crown of pure gold. The purity of gold is
difficult to determine by color (it can be diluted with other metals and still look as yellow as pure gold), and other analytical
techniques had not yet been conceived. Even ancient peoples, however, realized that the density of gold was greater than that of
any other then-known substance. Archimedes purportedly agonized over his task and had his inspiration one day while at the
public baths, pondering the support the water gave his body. He came up with his now-famous principle, saw how to apply it to
determine density, and ran naked down the streets of Syracuse crying “Eureka!” (Greek for “I have found it”). Similar behavior
can be observed in contemporary physicists from time to time!

PhET Explorations: Buoyancy

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces,
and you can modify the properties of the blocks and the fluid.

Figure 11.26 Buoyancy (http://cnx.org/content/m42196/1.8/buoyancy_en.jar)
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11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action

Cohesion and Adhesion in Liquids
Children blow soap bubbles and play in the spray of a sprinkler on a hot summer day. (See Figure 11.27.) An underwater spider 
keeps his air supply in a shiny bubble he carries wrapped around him. A technician draws blood into a small-diameter tube just 
by touching it to a drop on a pricked finger. A premature infant struggles to inflate her lungs. What is the common thread? All 
these activities are dominated by the attractive forces between atoms and molecules in liquids—both within a liquid and between 
the liquid and its surroundings.

Attractive forces between molecules of the same type are called cohesive forces. Liquids can, for example, be held in open 
containers because cohesive forces hold the molecules together. Attractive forces between molecules of different types are 
called adhesive forces. Such forces cause liquid drops to cling to window panes, for example. In this section we examine effects 
directly attributable to cohesive and adhesive forces in liquids.
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Cohesive Forces

Attractive forces between molecules of the same type are called cohesive forces.

Adhesive Forces

Attractive forces between molecules of different types are called adhesive forces.

Figure 11.27 The soap bubbles in this photograph are caused by cohesive forces among molecules in liquids. (credit: Steve Ford Elliott)

Surface Tension
Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible surface area. This general
effect is called surface tension. Molecules on the surface are pulled inward by cohesive forces, reducing the surface area.
Molecules inside the liquid experience zero net force, since they have neighbors on all sides.

Surface Tension

Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible surface area. This
general effect is called surface tension.

Making Connections: Surface Tension

Forces between atoms and molecules underlie the macroscopic effect called surface tension. These attractive forces pull the
molecules closer together and tend to minimize the surface area. This is another example of a submicroscopic explanation
for a macroscopic phenomenon.

The model of a liquid surface acting like a stretched elastic sheet can effectively explain surface tension effects. For example,
some insects can walk on water (as opposed to floating in it) as we would walk on a trampoline—they dent the surface as shown
in Figure 11.28(a). Figure 11.28(b) shows another example, where a needle rests on a water surface. The iron needle cannot,
and does not, float, because its density is greater than that of water. Rather, its weight is supported by forces in the stretched
surface that try to make the surface smaller or flatter. If the needle were placed point down on the surface, its weight acting on a
smaller area would break the surface, and it would sink.
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Figure 11.28 Surface tension supporting the weight of an insect and an iron needle, both of which rest on the surface without penetrating it. They are
not floating; rather, they are supported by the surface of the liquid. (a) An insect leg dents the water surface. FST is a restoring force (surface

tension) parallel to the surface. (b) An iron needle similarly dents a water surface until the restoring force (surface tension) grows to equal its weight.

Surface tension is proportional to the strength of the cohesive force, which varies with the type of liquid. Surface tension γ is

defined to be the force F per unit length L exerted by a stretched liquid membrane:

(11.47)γ = F
L .

Table 11.3 lists values of γ for some liquids. For the insect of Figure 11.28(a), its weight w is supported by the upward

components of the surface tension force: w = γL sin θ , where L is the circumference of the insect’s foot in contact with the

water. Figure 11.29 shows one way to measure surface tension. The liquid film exerts a force on the movable wire in an attempt
to reduce its surface area. The magnitude of this force depends on the surface tension of the liquid and can be measured
accurately.

Surface tension is the reason why liquids form bubbles and droplets. The inward surface tension force causes bubbles to be
approximately spherical and raises the pressure of the gas trapped inside relative to atmospheric pressure outside. It can be
shown that the gauge pressure P inside a spherical bubble is given by

(11.48)
P = 4γ

r ,

where r is the radius of the bubble. Thus the pressure inside a bubble is greatest when the bubble is the smallest. Another bit of
evidence for this is illustrated in Figure 11.30. When air is allowed to flow between two balloons of unequal size, the smaller
balloon tends to collapse, filling the larger balloon.
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Figure 11.29 Sliding wire device used for measuring surface tension; the device exerts a force to reduce the film’s surface area. The force needed to
hold the wire in place is F = γL = γ(2l) , since there are two liquid surfaces attached to the wire. This force remains nearly constant as the film is

stretched, until the film approaches its breaking point.

Figure 11.30 With the valve closed, two balloons of different sizes are attached to each end of a tube. Upon opening the valve, the smaller balloon
decreases in size with the air moving to fill the larger balloon. The pressure in a spherical balloon is inversely proportional to its radius, so that the
smaller balloon has a greater internal pressure than the larger balloon, resulting in this flow.
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Table 11.3 Surface Tension of Some Liquids[1]

Liquid Surface tension γ(N/m)

Water at 0ºC 0.0756

Water at 20ºC 0.0728

Water at 100ºC 0.0589

Soapy water (typical) 0.0370

Ethyl alcohol 0.0223

Glycerin 0.0631

Mercury 0.465

Olive oil 0.032

Tissue fluids (typical) 0.050

Blood, whole at 37ºC 0.058

Blood plasma at 37ºC 0.073

Gold at 1070ºC 1.000

Oxygen at −193ºC 0.0157

Helium at −269ºC 0.00012

Example 11.11 Surface Tension: Pressure Inside a Bubble

Calculate the gauge pressure inside a soap bubble 2.00×10−4 m in radius using the surface tension for soapy water in
Table 11.3. Convert this pressure to mm Hg.

Strategy

The radius is given and the surface tension can be found in Table 11.3, and so P can be found directly from the equation

P = 4γ
r .

Solution

Substituting r and γ into the equation P = 4γ
r , we obtain

(11.49)
P = 4γ

r = 4(0.037 N/m)
2.00×10−4 m

= 740 N/m2 = 740 Pa.

We use a conversion factor to get this into units of mm Hg:

(11.50)
P = ⎛

⎝740 N/m2⎞
⎠
1.00 mm Hg

133 N/m2 = 5.56 mm Hg.

Discussion

Note that if a hole were to be made in the bubble, the air would be forced out, the bubble would decrease in radius, and the
pressure inside would increase to atmospheric pressure (760 mm Hg).

Our lungs contain hundreds of millions of mucus-lined sacs called alveoli, which are very similar in size, and about 0.1 mm in
diameter. (See Figure 11.31.) You can exhale without muscle action by allowing surface tension to contract these sacs. Medical
patients whose breathing is aided by a positive pressure respirator have air blown into the lungs, but are generally allowed to
exhale on their own. Even if there is paralysis, surface tension in the alveoli will expel air from the lungs. Since pressure
increases as the radii of the alveoli decrease, an occasional deep cleansing breath is needed to fully reinflate the alveoli.
Respirators are programmed to do this and we find it natural, as do our companion dogs and cats, to take a cleansing breath
before settling into a nap.

1. At 20ºC unless otherwise stated.
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Figure 11.31 Bronchial tubes in the lungs branch into ever-smaller structures, finally ending in alveoli. The alveoli act like tiny bubbles. The surface
tension of their mucous lining aids in exhalation and can prevent inhalation if too great.

The tension in the walls of the alveoli results from the membrane tissue and a liquid on the walls of the alveoli containing a long
lipoprotein that acts as a surfactant (a surface-tension reducing substance). The need for the surfactant results from the
tendency of small alveoli to collapse and the air to fill into the larger alveoli making them even larger (as demonstrated in Figure
11.30). During inhalation, the lipoprotein molecules are pulled apart and the wall tension increases as the radius increases
(increased surface tension). During exhalation, the molecules slide back together and the surface tension decreases, helping to
prevent a collapse of the alveoli. The surfactant therefore serves to change the wall tension so that small alveoli don’t collapse
and large alveoli are prevented from expanding too much. This tension change is a unique property of these surfactants, and is
not shared by detergents (which simply lower surface tension). (See Figure 11.32.)

Figure 11.32 Surface tension as a function of surface area. The surface tension for lung surfactant decreases with decreasing area. This ensures that
small alveoli don’t collapse and large alveoli are not able to over expand.

If water gets into the lungs, the surface tension is too great and you cannot inhale. This is a severe problem in resuscitating
drowning victims. A similar problem occurs in newborn infants who are born without this surfactant—their lungs are very difficult
to inflate. This condition is known as hyaline membrane disease and is a leading cause of death for infants, particularly in
premature births. Some success has been achieved in treating hyaline membrane disease by spraying a surfactant into the
infant’s breathing passages. Emphysema produces the opposite problem with alveoli. Alveolar walls of emphysema victims
deteriorate, and the sacs combine to form larger sacs. Because pressure produced by surface tension decreases with increasing
radius, these larger sacs produce smaller pressure, reducing the ability of emphysema victims to exhale. A common test for
emphysema is to measure the pressure and volume of air that can be exhaled.

Making Connections: Take-Home Investigation

(1) Try floating a sewing needle on water. In order for this activity to work, the needle needs to be very clean as even the oil
from your fingers can be sufficient to affect the surface properties of the needle. (2) Place the bristles of a paint brush into
water. Pull the brush out and notice that for a short while, the bristles will stick together. The surface tension of the water
surrounding the bristles is sufficient to hold the bristles together. As the bristles dry out, the surface tension effect dissipates.
(3) Place a loop of thread on the surface of still water in such a way that all of the thread is in contact with the water. Note
the shape of the loop. Now place a drop of detergent into the middle of the loop. What happens to the shape of the loop?
Why? (4) Sprinkle pepper onto the surface of water. Add a drop of detergent. What happens? Why? (5) Float two matches
parallel to each other and add a drop of detergent between them. What happens? Note: For each new experiment, the water
needs to be replaced and the bowl washed to free it of any residual detergent.
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Adhesion and Capillary Action
Why is it that water beads up on a waxed car but does not on bare paint? The answer is that the adhesive forces between water
and wax are much smaller than those between water and paint. Competition between the forces of adhesion and cohesion are
important in the macroscopic behavior of liquids. An important factor in studying the roles of these two forces is the angle θ
between the tangent to the liquid surface and the surface. (See Figure 11.33.) The contact angle θ is directly related to the
relative strength of the cohesive and adhesive forces. The larger the strength of the cohesive force relative to the adhesive force,
the larger θ is, and the more the liquid tends to form a droplet. The smaller θ is, the smaller the relative strength, so that the
adhesive force is able to flatten the drop. Table 11.4 lists contact angles for several combinations of liquids and solids.

Contact Angle

The angle θ between the tangent to the liquid surface and the surface is called the contact angle.

Figure 11.33 In the photograph, water beads on the waxed car paint and flattens on the unwaxed paint. (a) Water forms beads on the waxed surface
because the cohesive forces responsible for surface tension are larger than the adhesive forces, which tend to flatten the drop. (b) Water beads on
bare paint are flattened considerably because the adhesive forces between water and paint are strong, overcoming surface tension. The contact angle
θ is directly related to the relative strengths of the cohesive and adhesive forces. The larger θ is, the larger the ratio of cohesive to adhesive forces.

(credit: P. P. Urone)

One important phenomenon related to the relative strength of cohesive and adhesive forces is capillary action—the tendency of
a fluid to be raised or suppressed in a narrow tube, or capillary tube. This action causes blood to be drawn into a small-diameter
tube when the tube touches a drop.

Capillary Action

The tendency of a fluid to be raised or suppressed in a narrow tube, or capillary tube, is called capillary action.

If a capillary tube is placed vertically into a liquid, as shown in Figure 11.34, capillary action will raise or suppress the liquid
inside the tube depending on the combination of substances. The actual effect depends on the relative strength of the cohesive
and adhesive forces and, thus, the contact angle θ given in the table. If θ is less than 90º , then the fluid will be raised; if θ is

greater than 90º , it will be suppressed. Mercury, for example, has a very large surface tension and a large contact angle with
glass. When placed in a tube, the surface of a column of mercury curves downward, somewhat like a drop. The curved surface
of a fluid in a tube is called a meniscus. The tendency of surface tension is always to reduce the surface area. Surface tension
thus flattens the curved liquid surface in a capillary tube. This results in a downward force in mercury and an upward force in
water, as seen in Figure 11.34.
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Figure 11.34 (a) Mercury is suppressed in a glass tube because its contact angle is greater than 90º . Surface tension exerts a downward force as it
flattens the mercury, suppressing it in the tube. The dashed line shows the shape the mercury surface would have without the flattening effect of
surface tension. (b) Water is raised in a glass tube because its contact angle is nearly 0º . Surface tension therefore exerts an upward force when it
flattens the surface to reduce its area.

Table 11.4 Contact Angles of Some Substances

Interface Contact angle Θ

Mercury–glass 140º

Water–glass 0º

Water–paraffin 107º

Water–silver 90º

Organic liquids (most)–glass 0º

Ethyl alcohol–glass 0º

Kerosene–glass 26º

Capillary action can move liquids horizontally over very large distances, but the height to which it can raise or suppress a liquid in
a tube is limited by its weight. It can be shown that this height h is given by

(11.51)
h = 2γ cos θ

ρgr .

If we look at the different factors in this expression, we might see how it makes good sense. The height is directly proportional to
the surface tension γ , which is its direct cause. Furthermore, the height is inversely proportional to tube radius—the smaller the

radius r , the higher the fluid can be raised, since a smaller tube holds less mass. The height is also inversely proportional to
fluid density ρ , since a larger density means a greater mass in the same volume. (See Figure 11.35.)
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Figure 11.35 (a) Capillary action depends on the radius of a tube. The smaller the tube, the greater the height reached. The height is negligible for
large-radius tubes. (b) A denser fluid in the same tube rises to a smaller height, all other factors being the same.

Example 11.12 Calculating Radius of a Capillary Tube: Capillary Action: Tree Sap

Can capillary action be solely responsible for sap rising in trees? To answer this question, calculate the radius of a capillary

tube that would raise sap 100 m to the top of a giant redwood, assuming that sap’s density is 1050 kg/m3 , its contact

angle is zero, and its surface tension is the same as that of water at 20.0º C .

Strategy

The height to which a liquid will rise as a result of capillary action is given by h = 2γ cos θ
ρgr , and every quantity is known

except for r .

Solution

Solving for r and substituting known values produces

(11.52)
r = 2γ cos θ

ρgh = 2(0.0728 N/m)cos(0º)
⎛
⎝1050 kg/m3⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠(100 m)

= 1.41×10−7 m.
Discussion

This result is unreasonable. Sap in trees moves through the xylem, which forms tubes with radii as small as 2.5×10−5 m .

This value is about 180 times as large as the radius found necessary here to raise sap 100 m . This means that capillary
action alone cannot be solely responsible for sap getting to the tops of trees.

How does sap get to the tops of tall trees? (Recall that a column of water can only rise to a height of 10 m when there is a
vacuum at the top—see Example 11.5.) The question has not been completely resolved, but it appears that it is pulled up like a
chain held together by cohesive forces. As each molecule of sap enters a leaf and evaporates (a process called transpiration),
the entire chain is pulled up a notch. So a negative pressure created by water evaporation must be present to pull the sap up
through the xylem vessels. In most situations, fluids can push but can exert only negligible pull, because the cohesive forces
seem to be too small to hold the molecules tightly together. But in this case, the cohesive force of water molecules provides a
very strong pull. Figure 11.36 shows one device for studying negative pressure. Some experiments have demonstrated that
negative pressures sufficient to pull sap to the tops of the tallest trees can be achieved.
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Figure 11.36 (a) When the piston is raised, it stretches the liquid slightly, putting it under tension and creating a negative absolute pressure
P = −F / A . (b) The liquid eventually separates, giving an experimental limit to negative pressure in this liquid.

11.9 Pressures in the Body

Pressure in the Body
Next to taking a person’s temperature and weight, measuring blood pressure is the most common of all medical examinations.
Control of high blood pressure is largely responsible for the significant decreases in heart attack and stroke fatalities achieved in
the last three decades. The pressures in various parts of the body can be measured and often provide valuable medical
indicators. In this section, we consider a few examples together with some of the physics that accompanies them.

Table 11.5 lists some of the measured pressures in mm Hg, the units most commonly quoted.

Table 11.5 Typical Pressures in Humans

Body system Gauge pressure in mm Hg

Blood pressures in large arteries (resting)

Maximum (systolic) 100–140

Minimum (diastolic) 60–90

Blood pressure in large veins 4–15

Eye 12–24

Brain and spinal fluid (lying down) 5–12

Bladder

While filling 0–25

When full 100–150

Chest cavity between lungs and ribs −8 to −4

Inside lungs −2 to +3

Digestive tract

Esophagus −2

Stomach 0–20

Intestines 10–20

Middle ear <1

Blood Pressure
Common arterial blood pressure measurements typically produce values of 120 mm Hg and 80 mm Hg, respectively, for systolic
and diastolic pressures. Both pressures have health implications. When systolic pressure is chronically high, the risk of stroke
and heart attack is increased. If, however, it is too low, fainting is a problem. Systolic pressure increases dramatically during
exercise to increase blood flow and returns to normal afterward. This change produces no ill effects and, in fact, may be
beneficial to the tone of the circulatory system. Diastolic pressure can be an indicator of fluid balance. When low, it may
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indicate that a person is hemorrhaging internally and needs a transfusion. Conversely, high diastolic pressure indicates a
ballooning of the blood vessels, which may be due to the transfusion of too much fluid into the circulatory system. High diastolic
pressure is also an indication that blood vessels are not dilating properly to pass blood through. This can seriously strain the
heart in its attempt to pump blood.

Blood leaves the heart at about 120 mm Hg but its pressure continues to decrease (to almost 0) as it goes from the aorta to
smaller arteries to small veins (see Figure 11.37). The pressure differences in the circulation system are caused by blood flow
through the system as well as the position of the person. For a person standing up, the pressure in the feet will be larger than at
the heart due to the weight of the blood (P = hρg) . If we assume that the distance between the heart and the feet of a person

in an upright position is 1.4 m, then the increase in pressure in the feet relative to that in the heart (for a static column of blood) is
given by

(11.53)ΔP = Δhρg = (1.4 m)⎛
⎝1050 kg/m3⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠ = 1.4×104 Pa = 108 mm Hg.

Increase in Pressure in the Feet of a Person
(11.54)ΔP = Δhρg = (1.4 m)⎛

⎝1050 kg/m3⎞
⎠
⎛
⎝9.80 m/s2⎞

⎠ = 1.4×104 Pa = 108 mm Hg.

Standing a long time can lead to an accumulation of blood in the legs and swelling. This is the reason why soldiers who are
required to stand still for long periods of time have been known to faint. Elastic bandages around the calf can help prevent this
accumulation and can also help provide increased pressure to enable the veins to send blood back up to the heart. For similar
reasons, doctors recommend tight stockings for long-haul flights.

Blood pressure may also be measured in the major veins, the heart chambers, arteries to the brain, and the lungs. But these
pressures are usually only monitored during surgery or for patients in intensive care since the measurements are invasive. To
obtain these pressure measurements, qualified health care workers thread thin tubes, called catheters, into appropriate locations
to transmit pressures to external measuring devices.

The heart consists of two pumps—the right side forcing blood through the lungs and the left causing blood to flow through the
rest of the body (Figure 11.37). Right-heart failure, for example, results in a rise in the pressure in the vena cavae and a drop in
pressure in the arteries to the lungs. Left-heart failure results in a rise in the pressure entering the left side of the heart and a
drop in aortal pressure. Implications of these and other pressures on flow in the circulatory system will be discussed in more
detail in Fluid Dynamics and Its Biological and Medical Applications.

Two Pumps of the Heart

The heart consists of two pumps—the right side forcing blood through the lungs and the left causing blood to flow through
the rest of the body.

418 Chapter 11 | Fluid Statics

This content is available for free at http://cnx.org/content/col11406/1.9



Figure 11.37 Schematic of the circulatory system showing typical pressures. The two pumps in the heart increase pressure and that pressure is
reduced as the blood flows through the body. Long-term deviations from these pressures have medical implications discussed in some detail in the
Fluid Dynamics and Its Biological and Medical Applications. Only aortal or arterial blood pressure can be measured noninvasively.

Pressure in the Eye
The shape of the eye is maintained by fluid pressure, called intraocular pressure, which is normally in the range of 12.0 to 24.0
mm Hg. When the circulation of fluid in the eye is blocked, it can lead to a buildup in pressure, a condition called glaucoma. The
net pressure can become as great as 85.0 mm Hg, an abnormally large pressure that can permanently damage the optic nerve.

To get an idea of the force involved, suppose the back of the eye has an area of 6.0 cm2 , and the net pressure is 85.0 mm Hg.

Force is given by F = PA . To get F in newtons, we convert the area to m2 ( 1 m2 = 104 cm2 ). Then we calculate as
follows:

(11.55)F = hρgA = ⎛
⎝85.0×10−3 m⎞

⎠
⎛
⎝13.6×103 kg/m3⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠
⎛
⎝6.0×10−4 m2⎞

⎠ = 6.8 N.

Eye Pressure

The shape of the eye is maintained by fluid pressure, called intraocular pressure. When the circulation of fluid in the eye is
blocked, it can lead to a buildup in pressure, a condition called glaucoma. The force is calculated as

(11.56)F = hρgA = ⎛
⎝85.0×10−3 m⎞

⎠
⎛
⎝13.6×103 kg/m3⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠
⎛
⎝6.0×10−4 m2⎞

⎠ = 6.8 N.

This force is the weight of about a 680-g mass. A mass of 680 g resting on the eye (imagine 1.5 lb resting on your eye) would be
sufficient to cause it damage. (A normal force here would be the weight of about 120 g, less than one-quarter of our initial value.)

People over 40 years of age are at greatest risk of developing glaucoma and should have their intraocular pressure tested
routinely. Most measurements involve exerting a force on the (anesthetized) eye over some area (a pressure) and observing the
eye’s response. A noncontact approach uses a puff of air and a measurement is made of the force needed to indent the eye
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(Figure 11.38). If the intraocular pressure is high, the eye will deform less and rebound more vigorously than normal. Excessive
intraocular pressures can be detected reliably and sometimes controlled effectively.

Figure 11.38 The intraocular eye pressure can be read with a tonometer. (credit: DevelopAll at the Wikipedia Project.)

Example 11.13 Calculating Gauge Pressure and Depth: Damage to the Eardrum

Suppose a 3.00-N force can rupture an eardrum. (a) If the eardrum has an area of 1.00 cm2 , calculate the maximum
tolerable gauge pressure on the eardrum in newtons per meter squared and convert it to millimeters of mercury. (b) At what
depth in freshwater would this person’s eardrum rupture, assuming the gauge pressure in the middle ear is zero?

Strategy for (a)

The pressure can be found directly from its definition since we know the force and area. We are looking for the gauge
pressure.

Solution for (a)

(11.57)Pg = F / A = 3.00 N / (1.00×10−4 m2 ) = 3.00×104 N/m2.

We now need to convert this to units of mm Hg:

(11.58)
Pg = 3.0×104 N/m2 ⎛

⎝
1.0 mm Hg
133 N/m2

⎞
⎠ = 226 mm Hg.

Strategy for (b)

Here we will use the fact that the water pressure varies linearly with depth h below the surface.

Solution for (b)

P = hρg and therefore h = P / ρg . Using the value above for P , we have

(11.59)
h = 3.0×104 N/m2

(1.00×103 kg/m3)(9.80 m/s2)
= 3.06 m.

Discussion

Similarly, increased pressure exerted upon the eardrum from the middle ear can arise when an infection causes a fluid
buildup.
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Pressure Associated with the Lungs
The pressure inside the lungs increases and decreases with each breath. The pressure drops to below atmospheric pressure
(negative gauge pressure) when you inhale, causing air to flow into the lungs. It increases above atmospheric pressure (positive 
gauge pressure) when you exhale, forcing air out.

Lung pressure is controlled by several mechanisms. Muscle action in the diaphragm and rib cage is necessary for inhalation; this 
muscle action increases the volume of the lungs thereby reducing the pressure within them Figure 11.39. Surface tension in the 
alveoli creates a positive pressure opposing inhalation. (See Cohesion and Adhesion in Liquids: Surface Tension and 
Capillary Action.) You can exhale without muscle action by letting surface tension in the alveoli create its own positive pressure.
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Muscle action can add to this positive pressure to produce forced exhalation, such as when you blow up a balloon, blow out a
candle, or cough.

The lungs, in fact, would collapse due to the surface tension in the alveoli, if they were not attached to the inside of the chest wall
by liquid adhesion. The gauge pressure in the liquid attaching the lungs to the inside of the chest wall is thus negative, ranging
from −4 to −8 mm Hg during exhalation and inhalation, respectively. If air is allowed to enter the chest cavity, it breaks the

attachment, and one or both lungs may collapse. Suction is applied to the chest cavity of surgery patients and trauma victims to
reestablish negative pressure and inflate the lungs.

Figure 11.39 (a) During inhalation, muscles expand the chest, and the diaphragm moves downward, reducing pressure inside the lungs to less than
atmospheric (negative gauge pressure). Pressure between the lungs and chest wall is even lower to overcome the positive pressure created by
surface tension in the lungs. (b) During gentle exhalation, the muscles simply relax and surface tension in the alveoli creates a positive pressure inside
the lungs, forcing air out. Pressure between the chest wall and lungs remains negative to keep them attached to the chest wall, but it is less negative
than during inhalation.

Other Pressures in the Body

Spinal Column and Skull

Normally, there is a 5- to12-mm Hg pressure in the fluid surrounding the brain and filling the spinal column. This cerebrospinal
fluid serves many purposes, one of which is to supply flotation to the brain. The buoyant force supplied by the fluid nearly equals
the weight of the brain, since their densities are nearly equal. If there is a loss of fluid, the brain rests on the inside of the skull,
causing severe headaches, constricted blood flow, and serious damage. Spinal fluid pressure is measured by means of a needle
inserted between vertebrae that transmits the pressure to a suitable measuring device.

Bladder Pressure

This bodily pressure is one of which we are often aware. In fact, there is a relationship between our awareness of this pressure
and a subsequent increase in it. Bladder pressure climbs steadily from zero to about 25 mm Hg as the bladder fills to its normal

capacity of 500 cm3 . This pressure triggers the micturition reflex, which stimulates the feeling of needing to urinate. What is
more, it also causes muscles around the bladder to contract, raising the pressure to over 100 mm Hg, accentuating the
sensation. Coughing, straining, tensing in cold weather, wearing tight clothes, and experiencing simple nervous tension all can
increase bladder pressure and trigger this reflex. So can the weight of a pregnant woman’s fetus, especially if it is kicking
vigorously or pushing down with its head! Bladder pressure can be measured by a catheter or by inserting a needle through the
bladder wall and transmitting the pressure to an appropriate measuring device. One hazard of high bladder pressure (sometimes
created by an obstruction), is that such pressure can force urine back into the kidneys, causing potentially severe damage.

Pressures in the Skeletal System

These pressures are the largest in the body, due both to the high values of initial force, and the small areas to which this force is
applied, such as in the joints.. For example, when a person lifts an object improperly, a force of 5000 N may be created between

vertebrae in the spine, and this may be applied to an area as small as 10 cm2 . The pressure created is

P = F / A = (5000 N) / (10−3 m2 ) = 5.0×106 N/m2 or about 50 atm! This pressure can damage both the spinal discs (the

cartilage between vertebrae), as well as the bony vertebrae themselves. Even under normal circumstances, forces between
vertebrae in the spine are large enough to create pressures of several atmospheres. Most causes of excessive pressure in the
skeletal system can be avoided by lifting properly and avoiding extreme physical activity. (See Forces and Torques in Muscles
and Joints.)

There are many other interesting and medically significant pressures in the body. For example, pressure caused by various
muscle actions drives food and waste through the digestive system. Stomach pressure behaves much like bladder pressure and
is tied to the sensation of hunger. Pressure in the relaxed esophagus is normally negative because pressure in the chest cavity is
normally negative. Positive pressure in the stomach may thus force acid into the esophagus, causing “heartburn.” Pressure in the
middle ear can result in significant force on the eardrum if it differs greatly from atmospheric pressure, such as while scuba
diving. The decrease in external pressure is also noticeable during plane flights (due to a decrease in the weight of air above
relative to that at the Earth’s surface). The Eustachian tubes connect the middle ear to the throat and allow us to equalize
pressure in the middle ear to avoid an imbalance of force on the eardrum.

Many pressures in the human body are associated with the flow of fluids. Fluid flow will be discussed in detail in the Fluid
Dynamics and Its Biological and Medical Applications.
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absolute pressure:

adhesive forces:

Archimedes’ principle:

buoyant force:

capillary action:

cohesive forces:

contact angle:

density:

diastolic pressure:

diastolic pressure:

fluids:

gauge pressure:

glaucoma:

intraocular pressure:

micturition reflex:

Pascal’s Principle:

pressure:

pressure:

specific gravity:

surface tension:

systolic pressure:

systolic pressure:

Glossary
the sum of gauge pressure and atmospheric pressure

the attractive forces between molecules of different types

the buoyant force on an object equals the weight of the fluid it displaces

the net upward force on any object in any fluid

the tendency of a fluid to be raised or lowered in a narrow tube

the attractive forces between molecules of the same type

the angle θ between the tangent to the liquid surface and the surface

the mass per unit volume of a substance or object

the minimum blood pressure in the artery

minimum arterial blood pressure; indicator for the fluid balance

liquids and gases; a fluid is a state of matter that yields to shearing forces

the pressure relative to atmospheric pressure

condition caused by the buildup of fluid pressure in the eye

fluid pressure in the eye

stimulates the feeling of needing to urinate, triggered by bladder pressure

a change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid
and to the walls of its container

the force per unit area perpendicular to the force, over which the force acts

the weight of the fluid divided by the area supporting it

the ratio of the density of an object to a fluid (usually water)

the cohesive forces between molecules which cause the surface of a liquid to contract to the smallest
possible surface area

the maximum blood pressure in the artery

maximum arterial blood pressure; indicator for the blood flow

Section Summary

11.1 What Is a Fluid?
• A fluid is a state of matter that yields to sideways or shearing forces. Liquids and gases are both fluids. Fluid statics is the

physics of stationary fluids.

11.2 Density
• Density is the mass per unit volume of a substance or object. In equation form, density is defined as

ρ = m
V .

• The SI unit of density is kg/m3 .

11.3 Pressure
• Pressure is the force per unit perpendicular area over which the force is applied. In equation form, pressure is defined as

P = F
A.

• The SI unit of pressure is pascal and 1 Pa = 1 N/m2 .

11.4 Variation of Pressure with Depth in a Fluid
• Pressure is the weight of the fluid mg divided by the area A supporting it (the area of the bottom of the container):
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P = mg
A .

• Pressure due to the weight of a liquid is given by
P = hρg,

where P is the pressure, h is the height of the liquid, ρ is the density of the liquid, and g is the acceleration due to

gravity.

11.5 Pascal’s Principle
• Pressure is force per unit area.
• A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of

its container.
• A hydraulic system is an enclosed fluid system used to exert forces.

11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
• Gauge pressure is the pressure relative to atmospheric pressure.
• Absolute pressure is the sum of gauge pressure and atmospheric pressure.
• Aneroid gauge measures pressure using a bellows-and-spring arrangement connected to the pointer of a calibrated scale.
• Open-tube manometers have U-shaped tubes and one end is always open. It is used to measure pressure.
• A mercury barometer is a device that measures atmospheric pressure.

11.7 Archimedes’ Principle
• Buoyant force is the net upward force on any object in any fluid. If the buoyant force is greater than the object’s weight, the

object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object will sink. If the
buoyant force equals the object’s weight, the object will remain suspended at that depth. The buoyant force is always
present whether the object floats, sinks, or is suspended in a fluid.

• Archimedes’ principle states that the buoyant force on an object equals the weight of the fluid it displaces.
• Specific gravity is the ratio of the density of an object to a fluid (usually water).

11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
• Attractive forces between molecules of the same type are called cohesive forces.
• Attractive forces between molecules of different types are called adhesive forces.
• Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible surface area. This

general effect is called surface tension.
• Capillary action is the tendency of a fluid to be raised or suppressed in a narrow tube, or capillary tube which is due to the

relative strength of cohesive and adhesive forces.

11.9 Pressures in the Body
• Measuring blood pressure is among the most common of all medical examinations.
• The pressures in various parts of the body can be measured and often provide valuable medical indicators.
• The shape of the eye is maintained by fluid pressure, called intraocular pressure.
• When the circulation of fluid in the eye is blocked, it can lead to a buildup in pressure, a condition called glaucoma.
• Some of the other pressures in the body are spinal and skull pressures, bladder pressure, pressures in the skeletal system.

Conceptual Questions

11.1 What Is a Fluid?
1. What physical characteristic distinguishes a fluid from a solid?

2. Which of the following substances are fluids at room temperature: air, mercury, water, glass?

3. Why are gases easier to compress than liquids and solids?

4. How do gases differ from liquids?

11.2 Density
5. Approximately how does the density of air vary with altitude?

6. Give an example in which density is used to identify the substance composing an object. Would information in addition to
average density be needed to identify the substances in an object composed of more than one material?

7. Figure 11.40 shows a glass of ice water filled to the brim. Will the water overflow when the ice melts? Explain your answer.
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Figure 11.40

11.3 Pressure
8. How is pressure related to the sharpness of a knife and its ability to cut?

9. Why does a dull hypodermic needle hurt more than a sharp one?

10. The outward force on one end of an air tank was calculated in Example 11.2. How is this force balanced? (The tank does not
accelerate, so the force must be balanced.)

11. Why is force exerted by static fluids always perpendicular to a surface?

12. In a remote location near the North Pole, an iceberg floats in a lake. Next to the lake (assume it is not frozen) sits a
comparably sized glacier sitting on land. If both chunks of ice should melt due to rising global temperatures (and the melted ice
all goes into the lake), which ice chunk would give the greatest increase in the level of the lake water, if any?

13. How do jogging on soft ground and wearing padded shoes reduce the pressures to which the feet and legs are subjected?

14. Toe dancing (as in ballet) is much harder on toes than normal dancing or walking. Explain in terms of pressure.

15. How do you convert pressure units like millimeters of mercury, centimeters of water, and inches of mercury into units like
newtons per meter squared without resorting to a table of pressure conversion factors?

11.4 Variation of Pressure with Depth in a Fluid
16. Atmospheric pressure exerts a large force (equal to the weight of the atmosphere above your body—about 10 tons) on the
top of your body when you are lying on the beach sunbathing. Why are you able to get up?

17. Why does atmospheric pressure decrease more rapidly than linearly with altitude?

18. What are two reasons why mercury rather than water is used in barometers?

19. Figure 11.41 shows how sandbags placed around a leak outside a river levee can effectively stop the flow of water under the
levee. Explain how the small amount of water inside the column formed by the sandbags is able to balance the much larger body
of water behind the levee.

Figure 11.41 Because the river level is very high, it has started to leak under the levee. Sandbags are placed around the leak, and the water held by
them rises until it is the same level as the river, at which point the water there stops rising.

20. Why is it difficult to swim under water in the Great Salt Lake?

21. Is there a net force on a dam due to atmospheric pressure? Explain your answer.

22. Does atmospheric pressure add to the gas pressure in a rigid tank? In a toy balloon? When, in general, does atmospheric
pressure not affect the total pressure in a fluid?

23. You can break a strong wine bottle by pounding a cork into it with your fist, but the cork must press directly against the liquid
filling the bottle—there can be no air between the cork and liquid. Explain why the bottle breaks, and why it will not if there is air
between the cork and liquid.
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11.5 Pascal’s Principle
24. Suppose the master cylinder in a hydraulic system is at a greater height than the slave cylinder. Explain how this will affect
the force produced at the slave cylinder.

11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
25. Explain why the fluid reaches equal levels on either side of a manometer if both sides are open to the atmosphere, even if
the tubes are of different diameters.

26. Figure 11.17 shows how a common measurement of arterial blood pressure is made. Is there any effect on the measured
pressure if the manometer is lowered? What is the effect of raising the arm above the shoulder? What is the effect of placing the
cuff on the upper leg with the person standing? Explain your answers in terms of pressure created by the weight of a fluid.

27. Considering the magnitude of typical arterial blood pressures, why are mercury rather than water manometers used for these
measurements?

11.7 Archimedes’ Principle
28. More force is required to pull the plug in a full bathtub than when it is empty. Does this contradict Archimedes’ principle?
Explain your answer.

29. Do fluids exert buoyant forces in a “weightless” environment, such as in the space shuttle? Explain your answer.

30. Will the same ship float higher in salt water than in freshwater? Explain your answer.

31. Marbles dropped into a partially filled bathtub sink to the bottom. Part of their weight is supported by buoyant force, yet the
downward force on the bottom of the tub increases by exactly the weight of the marbles. Explain why.

11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
32. The density of oil is less than that of water, yet a loaded oil tanker sits lower in the water than an empty one. Why?

33. Is surface tension due to cohesive or adhesive forces, or both?

34. Is capillary action due to cohesive or adhesive forces, or both?

35. Birds such as ducks, geese, and swans have greater densities than water, yet they are able to sit on its surface. Explain this
ability, noting that water does not wet their feathers and that they cannot sit on soapy water.

36. Water beads up on an oily sunbather, but not on her neighbor, whose skin is not oiled. Explain in terms of cohesive and
adhesive forces.

37. Could capillary action be used to move fluids in a “weightless” environment, such as in an orbiting space probe?

38. What effect does capillary action have on the reading of a manometer with uniform diameter? Explain your answer.

39. Pressure between the inside chest wall and the outside of the lungs normally remains negative. Explain how pressure inside
the lungs can become positive (to cause exhalation) without muscle action.
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Problems & Exercises

11.2 Density
1. Gold is sold by the troy ounce (31.103 g). What is the
volume of 1 troy ounce of pure gold?

2. Mercury is commonly supplied in flasks containing 34.5 kg
(about 76 lb). What is the volume in liters of this much
mercury?

3. (a) What is the mass of a deep breath of air having a
volume of 2.00 L? (b) Discuss the effect taking such a breath
has on your body’s volume and density.

4. A straightforward method of finding the density of an object
is to measure its mass and then measure its volume by
submerging it in a graduated cylinder. What is the density of a

240-g rock that displaces 89.0 cm3 of water? (Note that the
accuracy and practical applications of this technique are more
limited than a variety of others that are based on Archimedes’
principle.)

5. Suppose you have a coffee mug with a circular cross
section and vertical sides (uniform radius). What is its inside
radius if it holds 375 g of coffee when filled to a depth of 7.50
cm? Assume coffee has the same density as water.

6. (a) A rectangular gasoline tank can hold 50.0 kg of
gasoline when full. What is the depth of the tank if it is
0.500-m wide by 0.900-m long? (b) Discuss whether this gas
tank has a reasonable volume for a passenger car.

7. A trash compactor can reduce the volume of its contents to
0.350 their original value. Neglecting the mass of air expelled,
by what factor is the density of the rubbish increased?

8. A 2.50-kg steel gasoline can holds 20.0 L of gasoline when
full. What is the average density of the full gas can, taking into
account the volume occupied by steel as well as by
gasoline?

9. What is the density of 18.0-karat gold that is a mixture of
18 parts gold, 5 parts silver, and 1 part copper? (These
values are parts by mass, not volume.) Assume that this is a
simple mixture having an average density equal to the
weighted densities of its constituents.

10. There is relatively little empty space between atoms in
solids and liquids, so that the average density of an atom is
about the same as matter on a macroscopic

12. The pressure exerted by a phonograph needle on a
record is surprisingly large. If the equivalent of 1.00 g is
supported by a needle, the tip of which is a circle 0.200 mm in

radius, what pressure is exerted on the record in N/m2 ?

13. Nail tips exert tremendous pressures when they are hit by
hammers because they exert a large force over a small area.
What force must be exerted on a nail with a circular tip of 1.00

mm diameter to create a pressure of 3.00×109 N/m2 ?
(This high pressure is possible because the hammer striking
the nail is brought to rest in such a short distance.)

11.4 Variation of Pressure with Depth in a Fluid
14. What depth of mercury creates a pressure of 1.00 atm?

15. The greatest ocean depths on the Earth are found in the
Marianas Trench near the Philippines. Calculate the pressure
due to the ocean at the bottom of this trench, given its depth
is 11.0 km and assuming the density of seawater is constant
all the way down.

16. Verify that the SI unit of hρg is N/m2 .

17. Water towers store water above the level of consumers
for times of heavy use, eliminating the need for high-speed
pumps. How high above a user must the water level be to

create a gauge pressure of 3.00×105 N/m2 ?

18. The aqueous humor in a person’s eye is exerting a force

of 0.300 N on the 1.10-cm2 area of the cornea. (a) What
pressure is this in mm Hg? (b) Is this value within the normal
range for pressures in the eye?

19. How much force is exerted on one side of an 8.50 cm by
11.0 cm sheet of paper by the atmosphere? How can the
paper withstand such a force?

20. What pressure is exerted on the bottom of a 0.500-m-
wide by 0.900-m-long gas tank that can hold 50.0 kg of
gasoline by the weight of the gasoline in it when it is full?

21. Calculate the average pressure exerted on the palm of a
shot-putter’s hand by the shot if the area of contact is

50.0 cm2 and he exerts a force of 800 N on it. Express the

pressure in N/m2 and compare it with the 1.00×106 Pa
pressures sometimes encountered in the skeletal system.

22. The left side of the heart creates a pressure of 120 mm
Hg by exerting a force directly on the blood over an effective

area of 15.0 cm2. What force does it exert to accomplish
this?

23. Show that the total force on a rectangular dam due to the
water behind it increases with the square of the water depth.

In particular, show that this force is given by F = ρgh2L / 2 ,

where ρ is the density of water, h is its depth at the dam,

and L is the length of the dam. You may assume the face of
the dam is vertical. (Hint: Calculate the average pressure
exerted and multiply this by the area in contact with the water.
(See Figure 11.42.)
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scale—approximately 103 kg/m3 . The nucleus of an atom

has a radius about 10−5 that of the atom and contains 
nearly all the mass of the entire atom. (a) What is the 
approximate density of a nucleus? (b) One remnant of a 
supernova, called a neutron star, can have the density of a 
nucleus. What would be the radius of a neutron star with a 
mass 10 times that of our Sun (the radius of the Sun is

7×108 m )?

11.3 Pressure
11. As a woman walks, her entire weight is momentarily
placed on one heel of her high-heeled shoes. Calculate the 
pressure exerted on the floor by the heel if it has an area of

1.50 cm2 and the woman’s mass is 55.0 kg. Express the 
pressure in Pa. (In the early days of commercial flight, women 
were not allowed to wear high-heeled shoes because aircraft 
floors were too thin to withstand such large pressures.)
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Figure 11.42

11.5 Pascal’s Principle
24. How much pressure is transmitted in the hydraulic system
considered in Example 11.6? Express your answer in
pascals and in atmospheres.

25. What force must be exerted on the master cylinder of a
hydraulic lift to support the weight of a 2000-kg car (a large
car) resting on the slave cylinder? The master cylinder has a
2.00-cm diameter and the slave has a 24.0-cm diameter.

26. A crass host pours the remnants of several bottles of wine
into a jug after a party. He then inserts a cork with a 2.00-cm
diameter into the bottle, placing it in direct contact with the
wine. He is amazed when he pounds the cork into place and
the bottom of the jug (with a 14.0-cm diameter) breaks away.
Calculate the extra force exerted against the bottom if he
pounded the cork with a 120-N force.

27. A certain hydraulic system is designed to exert a force
100 times as large as the one put into it. (a) What must be the
ratio of the area of the slave cylinder to the area of the master
cylinder? (b) What must be the ratio of their diameters? (c) By
what factor is the distance through which the output force
moves reduced relative to the distance through which the
input force moves? Assume no losses to friction.

28. (a) Verify that work input equals work output for a
hydraulic system assuming no losses to friction. Do this by
showing that the distance the output force moves is reduced
by the same factor that the output force is increased. Assume
the volume of the fluid is constant. (b) What effect would
friction within the fluid and between components in the
system have on the output force? How would this depend on
whether or not the fluid is moving?

11.6 Gauge Pressure, Absolute Pressure, and
Pressure Measurement
29. Find the gauge and absolute pressures in the balloon and
peanut jar shown in Figure 11.16, assuming the manometer
connected to the balloon uses water whereas the manometer
connected to the jar contains mercury. Express in units of
centimeters of water for the balloon and millimeters of
mercury for the jar, taking h = 0.0500 m for each.

30. (a) Convert normal blood pressure readings of 120 over
80 mm Hg to newtons per meter squared using the
relationship for pressure due to the weight of a fluid
(P = hρg) rather than a conversion factor. (b) Discuss why

blood pressures for an infant could be smaller than those for
an adult. Specifically, consider the smaller height to which
blood must be pumped.

31. How tall must a water-filled manometer be to measure
blood pressures as high as 300 mm Hg?

32. Pressure cookers have been around for more than 300
years, although their use has strongly declined in recent
years (early models had a nasty habit of exploding). How
much force must the latches holding the lid onto a pressure
cooker be able to withstand if the circular lid is 25.0 cm in
diameter and the gauge pressure inside is 300 atm? Neglect
the weight of the lid.

33. Suppose you measure a standing person’s blood
pressure by placing the cuff on his leg 0.500 m below the
heart. Calculate the pressure you would observe (in units of
mm Hg) if the pressure at the heart were 120 over 80 mm Hg.
Assume that there is no loss of pressure due to resistance in
the circulatory system (a reasonable assumption, since major
arteries are large).

34. A submarine is stranded on the bottom of the ocean with
its hatch 25.0 m below the surface. Calculate the force
needed to open the hatch from the inside, given it is circular
and 0.450 m in diameter. Air pressure inside the submarine is
1.00 atm.

35. Assuming bicycle tires are perfectly flexible and support
the weight of bicycle and rider by pressure alone, calculate
the total area of the tires in contact with the ground. The
bicycle plus rider has a mass of 80.0 kg, and the gauge

pressure in the tires is 3.50×105 Pa .

11.7 Archimedes’ Principle
36. What fraction of ice is submerged when it floats in
freshwater, given the density of water at 0°C is very close to

1000 kg/m3 ?

37. Logs sometimes float vertically in a lake because one end
has become water-logged and denser than the other. What is
the average density of a uniform-diameter log that floats with
20.0% of its length above water?

38. Find the density of a fluid in which a hydrometer having a
density of 0.750 g/mL floats with 92.0% of its volume

submerged.

39. If your body has a density of 995 kg/m3 , what fraction

of you will be submerged when floating gently in: (a)
Freshwater? (b) Salt water, which has a density of

1027 kg/m3 ?

40. Bird bones have air pockets in them to reduce their
weight—this also gives them an average density significantly
less than that of the bones of other animals. Suppose an
ornithologist weighs a bird bone in air and in water and finds
its mass is 45.0 g and its apparent mass when submerged

is 3.60 g (the bone is watertight). (a) What mass of water is

displaced? (b) What is the volume of the bone? (c) What is its
average density?

41. A rock with a mass of 540 g in air is found to have an
apparent mass of 342 g when submerged in water. (a) What
mass of water is displaced? (b) What is the volume of the
rock? (c) What is its average density? Is this consistent with
the value for granite?

42. Archimedes’ principle can be used to calculate the density
of a fluid as well as that of a solid. Suppose a chunk of iron
with a mass of 390.0 g in air is found to have an apparent
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mass of 350.5 g when completely submerged in an unknown
liquid. (a) What mass of fluid does the iron displace? (b) What
is the volume of iron, using its density as given in Table 11.1
(c) Calculate the fluid’s density and identify it.

43. In an immersion measurement of a woman’s density, she
is found to have a mass of 62.0 kg in air and an apparent
mass of 0.0850 kg when completely submerged with lungs
empty. (a) What mass of water does she displace? (b) What
is her volume? (c) Calculate her density. (d) If her lung
capacity is 1.75 L, is she able to float without treading water
with her lungs filled with air?

44. Some fish have a density slightly less than that of water
and must exert a force (swim) to stay submerged. What force
must an 85.0-kg grouper exert to stay submerged in salt

water if its body density is 1015 kg/m3 ?

45. (a) Calculate the buoyant force on a 2.00-L helium
balloon. (b) Given the mass of the rubber in the balloon is
1.50 g, what is the net vertical force on the balloon if it is let
go? You can neglect the volume of the rubber.

46. (a) What is the density of a woman who floats in
freshwater with 4.00% of her volume above the surface?
This could be measured by placing her in a tank with marks
on the side to measure how much water she displaces when
floating and when held under water (briefly). (b) What percent
of her volume is above the surface when she floats in
seawater?

47. A certain man has a mass of 80 kg and a density of

955 kg/m3 (excluding the air in his lungs). (a) Calculate his

volume. (b) Find the buoyant force air exerts on him. (c) What
is the ratio of the buoyant force to his weight?

48. A simple compass can be made by placing a small bar
magnet on a cork floating in water. (a) What fraction of a plain
cork will be submerged when floating in water? (b) If the cork
has a mass of 10.0 g and a 20.0-g magnet is placed on it,
what fraction of the cork will be submerged? (c) Will the bar
magnet and cork float in ethyl alcohol?

49. What fraction of an iron anchor’s weight will be supported
by buoyant force when submerged in saltwater?

50. Scurrilous con artists have been known to represent gold-
plated tungsten ingots as pure gold and sell them to the
greedy at prices much below gold value but deservedly far
above the cost of tungsten. With what accuracy must you be
able to measure the mass of such an ingot in and out of water
to tell that it is almost pure tungsten rather than pure gold?

51. A twin-sized air mattress used for camping has
dimensions of 100 cm by 200 cm by 15 cm when blown up.
The weight of the mattress is 2 kg. How heavy a person could
the air mattress hold if it is placed in freshwater?

52. Referring to Figure 11.21, prove that the buoyant force on
the cylinder is equal to the weight of the fluid displaced
(Archimedes’ principle). You may assume that the buoyant

11.8 Cohesion and Adhesion in Liquids:
Surface Tension and Capillary Action
54. What is the pressure inside an alveolus having a radius of

2.50×10−4 m if the surface tension of the fluid-lined wall is
the same as for soapy water? You may assume the pressure
is the same as that created by a spherical bubble.

55. (a) The pressure inside an alveolus with a 2.00×10−4 -

m radius is 1.40×103 Pa , due to its fluid-lined walls.
Assuming the alveolus acts like a spherical bubble, what is
the surface tension of the fluid? (b) Identify the likely fluid.
(You may need to extrapolate between values in Table 11.3.)

56. What is the gauge pressure in millimeters of mercury
inside a soap bubble 0.100 m in diameter?

57. Calculate the force on the slide wire in Figure 11.29 if it is
3.50 cm long and the fluid is ethyl alcohol.

58. Figure 11.35(a) shows the effect of tube radius on the
height to which capillary action can raise a fluid. (a) Calculate
the height h for water in a glass tube with a radius of 0.900
cm—a rather large tube like the one on the left. (b) What is
the radius of the glass tube on the right if it raises water to
4.00 cm?

59. We stated in Example 11.12 that a xylem tube is of radius

2.50×10−5 m . Verify that such a tube raises sap less than

a meter by finding h for it, making the same assumptions

that sap’s density is 1050 kg/m3 , its contact angle is zero,

and its surface tension is the same as that of water at
20.0º C .

60. What fluid is in the device shown in Figure 11.29 if the

force is 3.16×10−3 N and the length of the wire is 2.50
cm? Calculate the surface tension γ and find a likely match

from Table 11.3.

61. If the gauge pressure inside a rubber balloon with a
10.0-cm radius is 1.50 cm of water, what is the effective
surface tension of the balloon?

62. Calculate the gauge pressures inside 2.00-cm-radius
bubbles of water, alcohol, and soapy water. Which liquid
forms the most stable bubbles, neglecting any effects of
evaporation?

63. Suppose water is raised by capillary action to a height of
5.00 cm in a glass tube. (a) To what height will it be raised in
a paraffin tube of the same radius? (b) In a silver tube of the
same radius?

64. Calculate the contact angle θ for olive oil if capillary
action raises it to a height of 7.07 cm in a glass tube with a
radius of 0.100 mm. Is this value consistent with that for most
organic liquids?

65. When two soap bubbles touch, the larger is inflated by the
smaller until they form a single bubble. (a) What is the gauge
pressure inside a soap bubble with a 1.50-cm radius? (b)
Inside a 4.00-cm-radius soap bubble? (c) Inside the single
bubble they form if no air is lost when they touch?

66. Calculate the ratio of the heights to which water and
mercury are raised by capillary action in the same glass tube.

67. What is the ratio of heights to which ethyl alcohol and
water are raised by capillary action in the same glass tube?
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force is F2 − F1 and that the ends of the cylinder have

equal areas A . Note that the volume of the cylinder (and that

of the fluid it displaces) equals (h2 − h1)A .

53. (a) A 75.0-kg man floats in freshwater with 3.00% of his

volume above water when his lungs are empty, and 5.00%
of his volume above water when his lungs are full. Calculate
the volume of air he inhales—called his lung capacity—in
liters. (b) Does this lung volume seem reasonable?
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11.9 Pressures in the Body
68. During forced exhalation, such as when blowing up a
balloon, the diaphragm and chest muscles create a pressure
of 60.0 mm Hg between the lungs and chest wall. What force

in newtons does this pressure create on the 600 cm2

surface area of the diaphragm?

69. You can chew through very tough objects with your
incisors because they exert a large force on the small area of
a pointed tooth. What pressure in pascals can you create by
exerting a force of 500 N with your tooth on an area of

1.00 mm2 ?

70. One way to force air into an unconscious person’s lungs
is to squeeze on a balloon appropriately connected to the
subject. What force must you exert on the balloon with your
hands to create a gauge pressure of 4.00 cm water, assuming

you squeeze on an effective area of 50.0 cm2 ?

71. Heroes in movies hide beneath water and breathe
through a hollow reed (villains never catch on to this trick). In
practice, you cannot inhale in this manner if your lungs are
more than 60.0 cm below the surface. What is the maximum
negative gauge pressure you can create in your lungs on dry
land, assuming you can achieve −3.00 cm water pressure
with your lungs 60.0 cm below the surface?

72. Gauge pressure in the fluid surrounding an infant’s brain
may rise as high as 85.0 mm Hg (5 to 12 mm Hg is normal),
creating an outward force large enough to make the skull
grow abnormally large. (a) Calculate this outward force in
newtons on each side of an infant’s skull if the effective area

of each side is 70.0 cm2 . (b) What is the net force acting on
the skull?

73. A full-term fetus typically has a mass of 3.50 kg. (a) What
pressure does the weight of such a fetus create if it rests on

the mother’s bladder, supported on an area of 90.0 cm2 ?
(b) Convert this pressure to millimeters of mercury and
determine if it alone is great enough to trigger the micturition
reflex (it will add to any pressure already existing in the
bladder).

74. If the pressure in the esophagus is −2.00 mm Hg while

that in the stomach is +20.0 mm Hg , to what height could

stomach fluid rise in the esophagus, assuming a density of
1.10 g/mL? (This movement will not occur if the muscle
closing the lower end of the esophagus is working properly.)

75. Pressure in the spinal fluid is measured as shown in
Figure 11.43. If the pressure in the spinal fluid is 10.0 mm
Hg: (a) What is the reading of the water manometer in cm
water? (b) What is the reading if the person sits up, placing
the top of the fluid 60 cm above the tap? The fluid density is
1.05 g/mL.

Figure 11.43 A water manometer used to measure pressure in the
spinal fluid. The height of the fluid in the manometer is measured
relative to the spinal column, and the manometer is open to the

atmosphere. The measured pressure will be considerably greater if the
person sits up.

76. Calculate the maximum force in newtons exerted by the
blood on an aneurysm, or ballooning, in a major artery, given
the maximum blood pressure for this person is 150 mm Hg

and the effective area of the aneurysm is 20.0 cm2 . Note
that this force is great enough to cause further enlargement
and subsequently greater force on the ever-thinner vessel
wall.

77. During heavy lifting, a disk between spinal vertebrae is
subjected to a 5000-N compressional force. (a) What
pressure is created, assuming that the disk has a uniform
circular cross section 2.00 cm in radius? (b) What
deformation is produced if the disk is 0.800 cm thick and has

a Young’s modulus of 1.5×109 N/m2 ?

78. When a person sits erect, increasing the vertical position
of their brain by 36.0 cm, the heart must continue to pump
blood to the brain at the same rate. (a) What is the gain in
gravitational potential energy for 100 mL of blood raised 36.0
cm? (b) What is the drop in pressure, neglecting any losses
due to friction? (c) Discuss how the gain in gravitational
potential energy and the decrease in pressure are related.

79. (a) How high will water rise in a glass capillary tube with a
0.500-mm radius? (b) How much gravitational potential
energy does the water gain? (c) Discuss possible sources of
this energy.

80. A negative pressure of 25.0 atm can sometimes be
achieved with the device in Figure 11.44 before the water
separates. (a) To what height could such a negative gauge
pressure raise water? (b) How much would a steel wire of the
same diameter and length as this capillary stretch if
suspended from above?

Figure 11.44 (a) When the piston is raised, it stretches the liquid slightly,
putting it under tension and creating a negative absolute pressure

P = −F / A (b) The liquid eventually separates, giving an

experimental limit to negative pressure in this liquid.
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81. Suppose you hit a steel nail with a 0.500-kg hammer,
initially moving at 15.0 m/s and brought to rest in 2.80 mm.
(a) What average force is exerted on the nail? (b) How much
is the nail compressed if it is 2.50 mm in diameter and
6.00-cm long? (c) What pressure is created on the 1.00-mm-
diameter tip of the nail?

82. Calculate the pressure due to the ocean at the bottom of
the Marianas Trench near the Philippines, given its depth is
11.0 km and assuming the density of sea water is constant
all the way down. (b) Calculate the percent decrease in
volume of sea water due to such a pressure, assuming its
bulk modulus is the same as water and is constant. (c) What
would be the percent increase in its density? Is the
assumption of constant density valid? Will the actual pressure
be greater or smaller than that calculated under this
assumption?

83. The hydraulic system of a backhoe is used to lift a load as
shown in Figure 11.45. (a) Calculate the force F the slave
cylinder must exert to support the 400-kg load and the 150-kg
brace and shovel. (b) What is the pressure in the hydraulic
fluid if the slave cylinder is 2.50 cm in diameter? (c) What
force would you have to exert on a lever with a mechanical
advantage of 5.00 acting on a master cylinder 0.800 cm in
diameter to create this pressure?

Figure 11.45 Hydraulic and mechanical lever systems are used in heavy
machinery such as this back hoe.

84. Some miners wish to remove water from a mine shaft. A
pipe is lowered to the water 90 m below, and a negative
pressure is applied to raise the water. (a) Calculate the
pressure needed to raise the water. (b) What is unreasonable
about this pressure? (c) What is unreasonable about the
premise?

85. You are pumping up a bicycle tire with a hand pump, the
piston of which has a 2.00-cm radius.

(a) What force in newtons must you exert to create a pressure

of 6.90×105 Pa (b) What is unreasonable about this (a)
result? (c) Which premises are unreasonable or inconsistent?

86. Consider a group of people trying to stay afloat after their
boat strikes a log in a lake. Construct a problem in which you
calculate the number of people that can cling to the log and
keep their heads out of the water. Among the variables to be
considered are the size and density of the log, and what is
needed to keep a person’s head and arms above water
without swimming or treading water.

87. The alveoli in emphysema victims are damaged and
effectively form larger sacs. Construct a problem in which you
calculate the loss of pressure due to surface tension in the
alveoli because of their larger average diameters. (Part of the
lung’s ability to expel air results from pressure created by
surface tension in the alveoli.) Among the things to consider
are the normal surface tension of the fluid lining the alveoli,
the average alveolar radius in normal individuals and its
average in emphysema sufferers.
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