P1. Convex spherical mirror (20%)

Given: R = 20 mm, $h_0 = 8 \text{ mm}$, and p = 30 mm.

Find:

- a) Focal length, f. Ans. 10 mm
- b) q. Ans. -1.5 ww
- c) h_i. Ans. γ ww
- d) Ray-diagram confirmation on less 1:81
- e) Is the image real or virtual? Ans. Virtual

P2. Concave spherical mirror (20%)

Given: R = 20 mm, $h_0 = 8 \text{ mm}$, and p = 40 mm.

Find:

- a) Focal length, f. Ans. 10 mm
- b) q. Ans. 13.3 mm
- c) h_i. Ans. , 2.1 mm
- d) Ray-diagram confirmation on left victor
- e) Is the image real or virtual? Ans.

P3. Convergent/divergent thin-lens (30%)

Given: f1 = 10 mm, $h_{01} = 8$ mm, and p1 = 20 mm.

Find:

- a) The image location, q1, Ans. Lower
- b) The image height, h_{il}, Ans.
- c) Ray-diagram confirmation for the 1st lens
- d) Is the image real or virtual? Ans.
- e) If the 2^{nd} divergent lens (dashed) with f = -30 mm is placed in the observer side, and separated with the 1^{st} lens by 10 mm, find the final image location respect to the 2^{nd} lens, (6%) Ans. 12^{nd} , and the final image with height, h_{12} , (2%) Ans. 12^{nd} and indicate it on left

P4. Wave diffraction/interference (30%)

A single-slit diffraction/interference pattern (Fig. 1) was taken using a 5mW (mW = 10^{-3} W) HeNe laser ($\lambda = 632.8$ nm, 1 nm = 10^{-9} m) under the condition: the distance between the slit and screen is 2 m.

- a) (5%) Assume circular laser beam cross-section with a diameter of 0.003 m, find the laser energy flux, Ans. 101 w
- b) (5 %) Find the electric field intensity at the slit, Ans. 516 V/m
- c) (5 %) Indicate the dark locations of $m = \pm 1, \pm 2, \pm 3$ on the figure below:
- d) (15%) Find the slit width in unit of μ m (1 μ m = 10⁻⁶ m), Ans. 84

Reference Equations:

Mirror (or thin-lens) equation: q = pf/(p - f), M = -q/p, hi = Mho, for mirror case, $f = \pm R/2$

Diffraction/Interference: Two-slit **bright** condition: $dsin(\theta_B) = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3...$ Single-slit **dark** condition: $asin(\theta_D) = m\lambda$, $m = \pm 1, \pm 2, \pm 3...$ Small-angle approximation: $sin(\theta) \sim tan(\theta) \sim y/L$. $S_{EM} = c\epsilon_0 E^2$, c = 3E+8 m/s, $\epsilon_0 = 8.85E-12$ F/m