P1. Convex spherical mirror (20%)

Given: R = 20 mm, $h_0 = 8 \text{ mm}$, and p = 30 mm.

Find:

- a) Focal length, f. Ans. Owm
 b) q. Ans. -1.5 wm
- c) h_i. Ans. Zww
- d) Ray-diagram confirmation on left

e) Is the image real or virtual? Ans.

P2. Concave spherical mirror (20%)

Given: R = 20 mm, $h_0 = 8 \text{ mm}$, and p = 40 mm.

Find:

- a) Focal length, f. Ans. 10 mm
- b) q. Ans. \3.3 mm
- c) h_i. Ans. -2.1 MM
- d) Ray-diagram confirmation on left
- e) Is the image real or virtual? Ans.

P3. Convergent/divergent thin-lens (30%)

Given: f1 = 10 mm, $h_{01} = 8 \text{ mm}$, and p1 = 20 mm.

Find:

- a) The image location, q1, Ans. 20 MM
- b) The image height, h_{i1}, Ans.
- c) Ray-diagram confirmation for the 1st lens
- d) Is the image real or virtual? Ans. Real
- e) If the 2^{nd} divergent lens (dashed) with f = -30 mm is placed in the observer side, and separated with the 1st lens by 10 mm, find the final image location respect to the 2nd lens, (6%) Ans. 15 ww, and the final image height, h_{i2}, (2%) Ans. 12 (2%) and indicate it on left

P4. Wave diffraction/interference (30%)

A single-slit diffraction/interference pattern (Fig. 1) was taken using a 5mW (mW = 10^{-3} W) HeNe laser ($\lambda = 632.8$ nm, 1 nm = 10^{-9} m) under the condition: the distance between the slit and screen is 3 m.

- a) (5%) Assume circular laser beam cross-section with a diameter of 0.003 m, find the laser energy flux, Ans. 101 W/m²
- b) (5 %) Find the electric field intensity at the slit, Ans.__
- c) (5 %) Indicate the dark locations of $m = \pm 1, \pm 2, \pm 3$ on the figure below:
- d) (15%) Find the slit width in unit of μ m (1 μ m = 10⁻⁶ m), Ans. $\sqrt{2}$

Reference Equations:

Mirror (or thin-lens) equation: q = pf/(p - f), M = -q/p, hi = Mho, for mirror case, $f = \pm R/2$

Diffraction/Interference: Two-slit bright condition: $d\sin(\theta_B) = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3...$ Single-slit dark condition: $a\sin(\theta_D) = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3...$ Single-slit dark condition: $a\sin(\theta_D) = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3...$ $\pm 1, \pm 2, \pm 3... Small-angle \ approximation: \\ sin(\theta) \sim tan(\theta) \sim y/L. \ S_{EM} = c\epsilon_0 E^2, \ c = 3E+8 \ m/s, \ \epsilon_0 = 8.85E-12 \ F/m = 1.0 \ m/s$