| Physics | 1005 | (SP2020) | Evam#1 | Name | |----------|------|----------|---------|------| | FILYSICS | 1002 | (SPZUZU) | cxam+1, | wame | | X | NSWOR | . ID# | . Score | |---|-------|-------|---------| | 1 | | | | - 1. (1D Vertical motion with $a = \pm g$, g = 10 m/s², 20%) A 2-m height person throws a stone vertically to the sky with an initial speed of 10 m/s. (a) how long it takes to reach the maximum height? Ans. ______; (b) find the maximum height it can reach from ground? Ans. _____; (c) How long does it take for the stone to return to the ground from the top? Ans. $\sqrt{3}$; (d) the stone speed just before reaching to the ground? Ans. $\sqrt{3}$ - 2. (2D kinematics, 30%) As shown in Fig. 1, an object is launched from the ground with a speed of 40 m/s in an angle of 60 degree from horizontal and lands on ground. Use $g = 10 \text{ m/s}^2$ for this problem. (a) What is horizontal initial-launching speed? Ans. 20 m/5 (b) What is the vertical initial-launching speed? Ans. 2053 m/5 (c) How long does the object take to reach to the maximum height? Ans. $2\sqrt{3}$ $\sqrt{3}$ $\sqrt{5}$ (d) What is the maximum height the object can reach above the ground? Ans. _____ 60 m. (é) How long does it take for the object to reach the ground after reaching the maximum height? Ans. 135 (f) How far does the object fly horizontally? Ans. ~\39 m 3. (Dynamics of motion, net-force, 25%) A mass block is initially at rest on a frictionless solid table top and three forces (F1, F2, & F3) are being applied as indicated at t = 0. Given F1 = 200 N, F2 = 20 N, F3 = 100 N, and m = 20 kg. a) Gravitational force on the block, Ans. ZOD N b) Normal force on the block, Ans. _____ 220 N c) Net force on the block, Ans. 100 N d) Acceleration of block at t = 0, Ans. $\frac{5}{5}$ w/ 5^2 Indicate the direction of acceleration on the diagram. 4. (Energetics, 25%) Refer to the problem #3, at time t = 2 second, the block is being displaced to a new location, bx away from the initial location. Find: a) The work done by the net force, Ans. 10005; b) Kinetics energy of the block at 2 second, Ans. ______ 000 S Fig. 1 $$V_0 = 40 \text{ m/s}$$ ## Reference equations: | Kinematics (a = 0) | $x = x_0 + v_0 t$ | | | | |-------------------------|--|---|-----------------------------|--| | Kinematics (a \neq 0) | $v = v_0 + at$ | $x = x_0 + v_0 t + (1/2)at^2$ | $v^2 = v_0^2 + 2a(x - x_0)$ | | | Dynamics and Energetics | F = ma | $W_F = F \Delta x$ | $E_k = (1/2) m^{V2}$ | | | Note: | $\sin(60^{\circ}) = \cos(30^{\circ}) = \text{sqrt}(3)/2$ | $cos(60^{\circ}) = sin(30^{\circ}) = 1/2$ | | |