1. (2D kinematics - projectile, 4/ea.) A ball at the point of A is launched on the top of a 30-m hill in a direction 30° above horizontal and reaches the point B, 10 m higher above the hill, and then arrives at the point C.

2. (Newton's laws/gravitation force/normal force/friction force, 4/ea.) A 60-N horizontal force, P, pushes three objects next to each other with masses as indicated, across a horizontal solid surface, as shown below. There are no friction forces on the objects except the 5-kg object. The coefficient of kinetic friction is 0.10. Use $g = 10 \text{ m/s}^2$.

3. (Work/kinetic energy/potential energy, 4/ea.) A spring with a force constant of 20,000 N/m is compressed by X = 0.1 m to launch a student with a mass of 50 kg at the maximum speed attainable. The track shown below is frictionless except for the final 30° incline, where the coefficient of kinetic friction is 0.10. Find:

- (a) The student's speed right after losing contact with spring (x = X)? Ans. __2 m/s
 (b) The student's linear momentum in the valley? Ans. __245 Kg.m/s
 (c) How far the student can go along the incline? Ans. __2.05 m
 (d) What is the work done by the friction force? Ans. ___89 J
 (e) What is the work done by the gravitation force? Ans. ___512.5 J
- 4. (Waves standing wave, 5/ea.) At Brooklyn College general physics lab, a string with a line mass density of 0.003 kg/m and a string tension of 12 N is excited by a source with a frequency of 120 Hz resulting in a standing wave pattern as shown below. Find:

(a)	The wave traveling velocity (or speed). Ans63.25 m/s
(b)	The wavelength of the wave. Ans. 0.53 m
(c)	The length of L. Ans. 1.05 m
(d)	What will be the number of anti-node when the tension is reduced to 7.62 N
	by reducing the suspended mass? Ans5

5. (Torque/rotational motion, 4/ea.) A 400-kg merry-go-around with a radius of 3 m is considered as a uniform disk. Peter exerts a constant force of 100 N for 1 second to speed up the spinning, reaching a faster angular velocity of 3.14 rad/s.

Merry-go-round	(a) What is the torque Peter applied to the merry-go-around? Ans300 N.m
	(b) What is the angular acceleration of the merry-go-around obtained? Ans0.17 rad./s
r	(c) What is the initial angular velocity before the Peter's 1-second force? Ans2.97 rad./s
	(d) What is the work done by the Peter's force? Ans. 916.5 J
	(e) What is the increase in the merry-go-around's rotational kinetic energy due to Peter's work?
$F \perp r$ for maximum α	Ans 916.5 J

<<Equations given below are for your reference only. >>

Kinematics	$v = v_0 + at$	$x = x_0 + v_0 t + (1/2)at^2$	$v^2 = v_0^2 + 2a(x - $	$v = sqrt(v_x^2 + v_y^2)$
			x_0)	
Newton's Laws	V_0 remains with $F_{net} = 0$	F _{net} = m <i>a</i>	$\mathbf{F_1} = - \mathbf{F_2}$	
Uniform circular	$a_c = v^2/r; a_c = r\omega^2$	F _c = ma _c	v =rw	
motion for a point-				
mass				
Work, energy for a	$w = F^*d^*\cos\theta$	$KE = (1/2)mv^2$	PE = m*g*h	
point mass				
Momentum, collisions	p = m v	Momentum		
		conservation: $\Delta p = 0$ for		
		an isolated system		
Statics, torque	Condition-1: F _{net} = 0	Condition-2: $\tau_{net} = 0$	$\tau = F^*r$	
Rotational motion for a	$\theta = \theta_0 + \omega_0 \Delta t + (1/2) \alpha \Delta t^2$	$I = (1/2)mr^{2};$	$\tau = I\alpha;$	$KE_{rot} = (1/2) I \omega^2$
uniform disk		τ = Fr; L = Ιω	$W=\tau\Delta\theta$	
Oscillatory motion for a	$F = -k \Delta x $	$KE = (1/2)mv^2$, for a	$\omega = (k/m)^{1/2}$	$KE_{m} = (1/2)mv_{m}^{2};$
system with a spring		point-mass		$PE_{sp} = (1/2)kX^2$
and a point-mass		$PE_{sp} = (1/2)kx^2$		$KE_m = PE_m$
Waves	$y(x, t) = y_m \sin(\omega t - kx).$			
	$k = 2\pi/\lambda; w = 2\pi f;$			
	$f = 1/T; v = \lambda/T$			
Standing wave (in a	$y(x, t) = 2 y_m \cos(\omega t) \sin(kx).$			
string)	v = sqrt (T/ μ), where T is the			
	string tension and $\boldsymbol{\mu}$ is the line			
	mass density.			
	L = n ($\lambda/2$), where n is the			
	number of anti-node			