1. **(2D kinematics - projectile, 4/ea.)** A ball at the point of A is launched on the top of a 30-m hill in a direction 30° above horizontal and reaches the point B, 10 m higher above the hill, and then arrives at the point C.

Ignore air resistance and use $g = 10 \text{ m/s}^2$. Find:

- (a) Launching velocity (magnitude only)? **Ans.** 31 m/s
- (b) Time it takes to reach the top point B? Ans. ______1.55 s
- (c) Time it takes to reach the ground after passing the B point? **Ans.** 2.9 s
- (d) The maximum horizontal distance it can travel from A to C? Ans. _____119 m
- (e) The ball's impact velocity at C (magnitude only)? Ans. _____39.5 m/s
- 2. (Newton's laws/gravitation force/normal force/friction force, 4/ea.) A 60-N horizontal force, P, pushes three objects next to each other with masses as indicated, across a horizontal solid surface, as shown below. There are no friction forces on the objects except the 5-kg object. The coefficient of kinetic friction is 0.10. Use g = 10 m/s².

- (a) What is the normal force on the 2-kg object? **Ans.** 20 N
- (b) What is the acceleration of the three-mass system? Ans. ____5.5 m/s^2
- (c) What is the force the 2-kg object exerts on the 3-kg object? **Ans.** 49 N
- (d) What is the force the 3-kg object exerts on the 2-kg object? **Ans.** 49 N
- (e) What is the force the 5-kg object exerts on the 3-kg object? Ans.______ -32.5 N
- 3. (Work/kinetic energy/potential energy, 4/ea.) A spring with a force constant of 20,000 N/m is compressed by X = 0.1 m to launch a student with a mass of 50 kg at the maximum speed attainable. The track shown below is frictionless except for the final 30° incline, where the coefficient of kinetic friction is 0.10. Find:

- (a) The student's speed right after losing contact with spring (x = X)? Ans. __2 m/s
- (b) The student's linear momentum in the valley? **Ans.** 245 Kg.m/s
- (c) How far the student can go along the incline? Ans. ____2.05 m
- (d) What is the work done by the friction force? **Ans.** _____89 J
- (e) What is the work done by the gravitation force? Ans.___512.5 J
- 4. (Waves standing wave, 5/ea.) At Brooklyn College general physics lab, a string with a line mass density of 0.003 kg/m and a string tension of 12 N is excited by a source with a frequency of 120 Hz resulting in a standing wave pattern as shown below. Find:

- (a) The wave traveling velocity (or speed). **Ans.** _____63.25 m/s
- (b) The wavelength of the wave. **Ans.** _____0.53 m
- (c) The length of L. **Ans.** _____1.05 m
- (d) What will be the number of anti-node when the tension is reduced to 7.62 N by reducing the suspended mass? **Ans.____5**
- 5. (**Torque/rotational motion, 4/ea.**) A 400-kg merry-go-around with a radius of 3 m is considered as a uniform disk. Peter exerts a constant force of 100 N for 1 second to speed up the spinning, reaching a faster angular velocity of 3.14 rad/s.

- (a) What is the torque Peter applied to the merry-go-around? **Ans.** ______300 N.m
- (b) What is the angular acceleration of the merry-go-around obtained? **Ans.** ____0.17 rad./s
- (c) What is the initial angular velocity before the Peter's 1-second force? Ans. 2.97 rad./s
- (d) What is the work done by the Peter's force? Ans. _____916.5 J
- (e) What is the increase in the merry-go-around's rotational kinetic energy due to Peter's work?

 Ans.______916.5 J

<< Equations given below are for your reference only. >>

Kinematics	$v = v_0 + at$	$x = x_0 + v_0 t + (1/2)at^2$	$v^2 = v_0^2 + 2a(x -$	$v = sqrt(v_x^2 + v_y^2)$
			x_0)	
Newton's Laws	V_0 remains with $F_{net} = 0$	F _{net} = m a	F ₁ = - F ₂	
Uniform circular	$a_c = v^2/r$; $a_c = r\omega^2$	$F_c = ma_c$	v =rω	
motion for a point- mass				
Work, energy for a point mass	$w = F*d*cos\theta$	KE = (1/2)mv ²	PE = m*g*h	
Momentum, collisions	p = mv	Momentum conservation: $\Delta p = 0$ for an isolated system		
Statics, torque	Condition-1: F _{net} = 0	Condition-2: $\tau_{net} = 0$	τ = F*r	
Rotational motion for a uniform disk	$\theta = \theta_0 + \omega_0 \Delta t + (1/2)\alpha \Delta t^2$	$I = (1/2)mr^{2};$ $\tau = Fr; L = I\omega$	$ \tau = I\alpha; W = \tau \Delta \theta $	$KE_{rot} = (1/2) I\omega^2$
Oscillatory motion for a system with a spring and a point-mass	F = - k Δx	KE = $(1/2)$ mv ² , for a point-mass PE _{sp} = $(1/2)$ kx ²	$\omega = (k/m)^{1/2}$	$KE_{m} = (1/2)mv_{m}^{2};$ $PE_{sp} = (1/2)kX^{2}$ $KE_{m} = PE_{m}$
Waves	$y(x, t) = y_m \sin(\omega t - kx).$	1, 1		
	$k = 2\pi/\lambda$; $w = 2\pi f$; $f = 1/T$; $v = \lambda/T$			
Standing wave (in a string)	$y(x, t) = 2 y_m \cos(\omega t) \sin(kx)$. $v = \text{sqrt} (T/\mu)$, where T is the string tension and μ is the line mass density.			
	L = n ($\lambda/2$), where n is the number of anti-node			