	Physics 1100 (T	SSec.), SP2017 Exam#3b (1 h	our), Name	, ID#	, Score_100/100		
1.	(Rotational mot	k with a radius R = 0.2 m for 1					
	second time period to initiate (t = 0) spinning of the disk. Assumption: frictionless.						
	Disc of Mass M Axis of Rotatio	(b) WI rac (c) WI (d) WI (e) WI An	hat is the angular acceleration d./s^2 hat is the angular velocity when t hat is the total rotated angle duri	the torque applied to the disk? Ans. 10 N.m. the angular acceleration during the first 1-second period? Ans. 50 he angular velocity when t = 1 s? Ans. 50 rad./s he total rotated angle during the first 1-second? Ans. 25 rad. the total rotated angle during the second 1-second time period?50 rad.			
2.	(Rotational mot	ion – dynamics/energetics, 5	6/ea.) Refer to the problem #1 (d	ouble-check your res	sults in the first problem), find:		
	Refer to the diagram in 1.	(c) the angular momentum If a point-mass with mass of (d) the rotational inertia for	orque. Ans250 J nergy at the end of the first 1 s. An at the end of the first 1 s. Ans f 5 kg is adhered to the disk at r = the disk with the point-mass? An assuming the angular momentu	10 kg.m^2/s R/2 as shown at th ns0.25 k	ne end of first 1 s, find:		
3.							
being displaced by X _m = 0.15 m. Assume (1) the force constant of the spring (K) is 9 N/m, and (2) the motion of spring/ob							
	frictionless and t	= 0 when the point-mass is a	t x =0 m.				
	(b) What is the contract of th		e oscillation period of the point-mass, T? Ans. 2.1 s e oscillation frequency of the point-mass? Ans. 0.5 Hz lue of x (t) for t = 2T? Ans. 0 e maximum kinetic energy of the point-mass? Ans. 0.1 J e work done by the spring-force when the point-mass is being displaced from X to the				
		(e) what is the work	done by the spring-roice when t	116 hours-mass 12 ne	ting displaced from A to the		

4. (Oscillatory motion: pendulum, 5/ea.) A pendulum system with L = 1 m and m = 2 kg is initially energized by giving a potential energy of 0.2 J to the system. Assumption: frictionless, $g = 9.8 \text{ m/s}^2$

origin x = 0? **Ans.** _____0.1 J

	:\			
	θ	L		
		1		
	1	-	T	
		s	m	
	:	K	L	
-	mg sin	θ	0	
			,	
-	mg sin		θ mg	

- (a) What is the maximum kinetic energy of the point-mass? **Ans.** _____0.2 J
- (b) What is the maximum velocity of the point-mass (magnitude only)? Ans. ______0.45 m/s
- (c) What is the maximum displacement of the point-mass, S_m? **Ans.** _____0.14 m
- (d) What is the maximum force exerts on the point-mass? Ans._____2.7 N
- (e) What is the net force exerts on the point-mass when it has the maximum velocity? Ans._____0

<Equations given below are for your reference only>

Rotational motion	$I = (1/2)mr^2$ for uniform disk	I = mr ² for a point mass		
	$\theta = \theta_0 + \omega_0 \Delta t + (1/2)\alpha \Delta t^2$	τ = Fr; L = Iω	$\tau = I\alpha; W = \tau \Delta \theta$	$KE_{rot} = (1/2) I\omega^2$
	$\omega = \omega_0 + \alpha \Delta t$			2
Oscillatory motion –	F = - Kx; F = ma	$x(t) = X_m \sin(\omega t);$	$a(t) = -X_m \omega^2 \sin(\omega t)$	$PE_{m} = (1/2)kX^{2};$
spring with a point-mass	$\omega = (K/m)^{1/2}$	$v(t) = X_m \omega \cos(\omega t);$		$KE_{m} = (1/2)mv_{m}^{2}$
Oscillatory motion	$\omega = (g/L)^{1/2}$	$s(t) = S_m \sin(\omega t);$	$a(t) = -S_m \omega^2 \sin(\omega t)$	
pendulum		$v(t) = S_m \omega \cos(\omega t);$		