1. (Rotational motion – kinematics/dynamics, 5/ea.) A force of 50 N exerts on 10-kg uniform disk with a radius R = 0.2 m for 1 second time period to initiate (t = 0) spinning of the disk. Assumption: frictionless.

	Disc of Mass M Axis of Rotation	 (a) What is the torque applied to the disk? Ans10 N.m. (b) What is the angular acceleration during the first 1-second period? Ans50 rad./s^2 (c) What is the angular velocity when t = 1 s? Ans50 rad./s (d) What is the total rotated angle during the first 1-second? Ans25 rad. (e) What is the total rotated angle during the second 1-second time period? Ans50 rad. 					
2.	(Rotational mo	tion – dynamics/energetics, 5/ea.) Refer to the problem #1 (double-check your results in the first problem), find:					
	Refer to the	(a) the work done by the torque. Ans 250 J					
	diagram in 1.	(b) the rotational kinetic energy at the end of the first 1 s. Ans250 J					
 (c) the angular momentum at the end of the first 1 s. Ans10 kg.m^2/s If a point-mass with mass of 5 kg is adhered to the disk at r = R/2 as shown at the end of first 1 s, find 							
							(d) the rotational inertia for the disk with the point-mass? Ans. 0.25 kg.m^2 , and
_	(e) the new angular velocity assuming the angular momentum is conserved? Ans40 rad./s						

3. (Oscillatory motion: spring with a point-mass, 5/ea.) A 1-kg point-mass with zero initial velocity connected with a spring is being displaced by $X_m = 0.15$ m. Assume (1) the force constant of the spring (K) is 9 N/m, and (2) the motion of spring/object is frictionless and t = 0 when the point-mass is at x = 0 m.

	(a) What is the oscillation period of the point-mass, T? Ans2.1 s
	(b) What is the oscillation frequency of the point-mass? Ans. 0.5 Hz
	(c) What is value of x (t) for t = 2T? Ans. 0
57 (17) (17) (17)	(d) What is the maximum kinetic energy of the point-mass? Ans0.1 J
	(e) What is the work done by the spring-force when the point-mass is being displaced from X to the
	origin x = 0? Ans. 0.1 J

4. (Oscillatory motion: pendulum, 5/ea.) A pendulum system with L = 1 m and m = 2 kg is initially energized by giving a potential energy of 0.2 J to the system. Assumption: frictionless, g = 9.8 m/s²

	(a) What is the maximum kinetic energy of the point-mass? Ans0.2 J
	(b) What is the maximum velocity of the point-mass (magnitude only)? Ans0.45 m/s
	(c) What is the maximum displacement of the point-mass, S _m ? Ans0.14 m
Τ	(d) What is the maximum force exerts on the point-mass? Ans2.7 N
$-mg\sin\theta$	(e) What is the net force exerts on the point-mass when it has the maximum velocity? Ans 0
w = mg	

<Equations given below are for your reference only>

Rotational motion	$I = (1/2)mr^2$ for uniform disk	$I = mr^2$ for a point mass		
	$\theta = \theta_0 + \omega_0 \Delta t + (1/2) \alpha \Delta t^2$	τ = Fr; L = Ιω	$\tau = I\alpha; W = \tau \Delta \theta$	$\mathrm{KE}_{\mathrm{rot}} = (1/2) \mathrm{I}\omega^2$
	$\omega = \omega_0 + \alpha \Delta t$			
Oscillatory motion –	F = - Kx; F = ma	x(t) = X _m sin(ωt);	$a(t) = -X_m \omega^2 \sin(\omega t)$	$PE_{m} = (1/2)kX^{2};$
spring with a point-mass	$\omega = (K/m)^{1/2}$	$v(t) = X_m \omega \cos(\omega t);$		$KE_{m} = (1/2)mv_{m}^{2}$
Oscillatory motion	$\omega = (g/L)^{1/2}$	$s(t) = S_m sin(\omega t);$	$a(t) = -S_m\omega^2 \sin(\omega t)$	
pendulum		$v(t) = S_m \omega \cos(\omega t);$		