
- 1. (**1D Kinematics**) An unidentified flying object (UFO) flies from the Manhattan Beach to Brooklyn College along the Ocean Avenue. It flies for 3000 m arriving at Ave. Z with a constant speed of 10 m/s. It then accelerates its speed from Ave. Z to Ave. M at which the UFO's speed is 100 m/s. From Ave. M to Brooklyn College, the UFO's speed decreases to zero when it arrives at Brooklyn College, traveling another 3000 m.
 - (a) How long it takes for the UFO to fly from Manhattan Beach and Ave. Z? Ans. __3000/10 = 300 s
 - (b) What is value of acceleration from Ave. Z to M if the distance between the two avenues is 6000 m? Ans.0.825 m/s^2 $\,$
 - (c) How long does the UFO fly from Ave. Z to Ave. M? Ans._____109 s
 - (d) What is the value of de-acceleration between Ave. M and Brooklyn College? Ans. ____1.67 m/s²
 - (e) How long does the UFO fly from Ave. M to Brooklyn College? Ans.___60 s
- 2. (2D kinematics) As shown in Fig.3, an object is launched from a 60-m hill top with a speed of 25 m/s in an angle of 45 degree from horizontal and lands on the ground. Use $g = 10 \text{ m/s}^2$ for this and following problems.
 - (a) What is horizontal initial launching speed? Ans. ____17.7 m/s
 - (b) How long does the object take to reach to the maximum height? Ans._____1.77 s
 - (c) What is the maximum height the object can reach above the ground? Ans. _____75.63 m
 - (d) How far horizontally the object can reach away from the hill when it lands? Ans.___100 m
 - (e) What is the vertical component of the velocity just before the object hits the ground? Ans. __38.9 m/s
 - (f) What is the horizontal speed just before it hits the ground? Ans. _____17.68 m/s
 - (g) What is the magnitude of object's final velocity just before it hits the ground? Ans. _____42.73 m/s
- 3. (Newton's Laws, gravitation, normal force, and friction force) As shown in Fig.1, two objects (M, m) are connected by a rope. M = 100 kg, m = 40 kg, and θ = 30°. The dynamic friction coefficient between the slope surface and object M is 0.01. Find:
 - (a) Normal force on object M? Ans. ____866 N_____ (indicate the direction on Fig. 1)
 - (b) Dynamic friction force on the object M? Ans. _____8.66 N____(indicate the direction on Fig. 1)
 - (c) Gravitational force on the object M? Ans. _____1000 N____ (indicate the direction on Fig. 1)
 - (d) The acceleration of object M? Ans. $__0.65 \text{ m/s}^2$ (indicate the direction on Fig. 1)
 - (e) The acceleration of object m? Ans. 0.65 m/s^2 (indicate the direction on Fig. 1)
 - (f) The value of tension in the rope? Ans._____426 N

4. (Newton's Laws, tension) A 50-kg person is being pulled away with a constant speed from a burning building as shown in Fig.2. Find (a) the tension T₁ in left rope, Ans. __792 N___ (b) the tension T₂ in right rope, Ans. __208 N

Kinematics (a = 0)	$x = v_0 t$		
Kinematics (a $\square \neq 0$)	$v = v_0 + at$	$x = x_0 + v_0 t + (1/2)at^2$	$v^2 = v_0^2 + 2a(x - x_0)$
Newton's Laws	\mathbf{V}_{0} remains with $\mathbf{F}_{\mathbf{net}} = 0$	$\mathbf{F}_{net} = \mathbf{m}\boldsymbol{a}$	$\mathbf{F_1} = -\mathbf{F_2}$