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  Classical and quantum statistics 
 
 

Classical Maxwell–Boltzmann statistics and quantum mechanical Fermi–Dirac statistics are 
introduced to calculate the occupancy of states. Special attention is given to analytic 
approximations of the Fermi–Dirac integral and to its approximate solutions in the non-
degenerate and the highly degenerate regime. In addition, some numerical approximations to the 
Fermi–Dirac integral are summarized. 

Semiconductor statistics includes both classical statistics and quantum statistics. Classical or 
Maxwell–Boltzmann statistics is derived on the basis of purely classical physics arguments. In 
contrast, quantum statistics takes into account two results of quantum mechanics, namely (i) the 
Pauli exclusion principle which limits the number of electrons occupying a state of energy E and 
(ii) the finiteness of the number of states in an energy interval E and E + dE. The finiteness of 
states is a result of the Schrödinger equation. In this section, the basic concepts of classical 
statistics and quantum statistics are derived. The fundamentals of ideal gases and statistical 
distributions are summarized as well since they are the basis of semiconductor statistics. 
 

13.1 Probability and distribution functions 
Consider a large number N of free classical particles such as atoms, molecules or electrons which 
are kept at a constant temperature T, and which interact only weakly with one another. The 
energy of a single particle consists of kinetic energy due to translatory motion and an internal 
energy for example due to rotations, vibrations, or orbital motions of the particle. In the 
following we consider particles with only kinetic energy due to translatory motion. The particles 
of the system can assume an energy E, where E can be either a discrete or a continuous variable. 
If Ni particles out of N particles have an energy between Ei and Ei + dE, the probability of any 
particle having any energy within the interval Ei and Ei + dE is given by 
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where f(E) is the energy distribution function of a particle system. In statistics, f(E) is frequently 
called the probability density function. The total number of particles is given by 

 NNii =∑  (13.2) 

where the sum is over all possible energy intervals. Thus, the integral over the energy 
distribution function is 
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In other words, the probability of any particle having an energy between zero and infinity is 
unity. Distribution functions which obey 
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are called normalized distribution functions. 
The average energy or mean energy E  of a single particle is obtained by calculating the 

total energy and dividing by the number of particles, that is 
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In addition to energy distribution functions, velocity distribution functions are valuable. Since 
only the kinetic translatory motion (no rotational motion) is considered, the velocity and energy 
are related by 
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The average velocity and the average energy are related by 
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and is the velocity corresponding to the average energy 
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In analogy to the energy distribution we assume that Ni particles have a velocity within the 
interval vi and vi + dv. Thus, 
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where f(v) is the normalized velocity distribution. Knowing f(v), the following relations allow 
one to calculate the mean velocity, the mean square velocity, and the root-mean-square velocity 
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Up to now we have considered the velocity as a scalar. A more specific description of the 
velocity distribution is obtained by considering each component of the velocity v = (vx, vy, vz). If 
Ni particles out of N particles have a velocity in the ‘volume’ element vx + dvx, vy + dvy, and 
vz + dvz, the distribution function is given by 
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Since Σi Ni  =  N, the velocity distribution function is normalized, i. e. 
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The average of a specific propagation direction, for example vx is evaluated in analogy to 
Eqs. (13.11 – 13). One obtains 
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In a closed system the mean velocities are zero, that is 0=== zyx vvv . However, the mean 
square velocities are, just as the energy, not equal to zero. 
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13.2 Ideal gases of atoms and electrons 
The basis of classical semiconductor statistics is ideal gas theory. It is therefore necessary to 
make a small excursion into this theory. The individual particles in such ideal gases are assumed 
to interact weakly, that is collisions between atoms or molecules are a relatively seldom event. It 
is further assumed that there is no interaction between the particles of the gas (such as 
electrostatic interaction), unless the particles collide. The collisions are assumed to be (i) elastic 
(i. e. total energy and momentum of the two particles involved in a collision are preserved) and 
(ii) of very short duration. 

Ideal gases follow the universal gas equation (see e. g. Kittel and Kroemer, 1980) 

 P V   =   R T (13.19) 

where P is the pressure, V the volume of the gas, T its temperature, and R is the universal gas 
constant. This constant is independent of the species of the gas particles and has a value of 
R = 8.314 J K–1 mol–1. 

 

Next, the pressure P and the kinetic energy of an individual particle of the gas will be 
calculated. For the calculation it is assumed that the gas is confined to a cube of volume V, as 
shown in Fig. 13.1. The quantity of the gas is assumed to be 1 mole, that is the number of atoms 
or molecules is given by Avogadro’s number, NAvo = 6.023 × 1023 particles per mole. Each side 
of the cube is assumed to have an area A = V 2/3. If a particle of mass m and momentum m vx 
(along the x-direction) is elastically reflected from the wall, it provides a momentum 2 m vx  to 
reverse the particle momentum. If the duration of the collision with the wall is dt, then the force 
acting on the wall during the time dt is given by 
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where the momentum change is dp = 2 m vx. The pressure P on the wall during the collision with 
one particle is given by 
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where A is the area of the cube’s walls. Next we calculate the total pressure P experienced by the 
wall if a number of NAvo particles are within the volume V. For this purpose we first determine 
the number of collisions with the wall during the time dt. If the particles have a velocity vx, then 
the number of particles hitting the wall during dt is (NAvo / V) A vx dt. The fraction of particles 
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having a velocity vx is obtained from the velocity distribution function and is given by 
f (vx, vy, vz) dvx dvy dvz. Consequently, the total pressure is obtained by integration over all 
positive velocities in the x-direction 
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Since the velocity distribution is symmetric with respect to positive and negative x-direction, the 
integration can be expanded from – ∞ to + ∞. 
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Since the velocity distribution is isotropic, the mean square velocity is given by 

 2222
zyx vvvv ++=        or      2

3
12 vvx =  . (13.24) 

The pressure on the wall is then given by 

 m
V

N
vP Avo2

3
1

=  . (13.25)  

Using the universal gas equation, Eq. (13.19), one obtains 
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The average kinetic energy of one mole of the ideal gas can then be written as 
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The average kinetic energy of one single particle is obtained by division by the number of 
particles, i. e. 
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where k = R / NAvo is the Boltzmann constant. The preceding calculation has been carried out for 
a three-dimensional space. In a one-dimensional space (one degree of freedom), the average 
velocity is v2  = vx

2  and the resulting kinetic energy is given by 
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Thus the kinetic energy of an atom or molecule is given by (1/2) kT. Equation (13.29) is called 
the equipartition law, which states that each ‘degree of freedom’ contributes (1/2) kT to the total 
kinetic energy. 

Next we will focus on the energetic distribution of electrons. The properties which have been 
derived in this section for atomic or molecular gases will be applied to free electrons of effective 
mass m* in a crystal. To do so, the interaction between the electrons and the lattice must be 
negligible and electron – electron collisions must be a relatively seldom event. Under these 
circumstances we can treat the electron system as a classical ideal gas.  
 

13.3 Maxwell velocity distribution 
The Maxwell velocity distribution describes the distribution of velocities of the particles of an 
ideal gas. It will be shown that the Maxwell velocity distribution is of the form 
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where (1/2) m v2 is the kinetic energy of the particles. If the energy of the particles is purely 
kinetic, the Maxwell distribution can be written as 
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The proof of the Maxwell distribution of Eq. (13.30) is conveniently done in two steps. In the 
first step, the exponential factor is demonstrated, i. e. fM(E) = A exp (– α E). In the second step it 
is shown that α = 1 / (kT). 

In the theory of ideal gases it is assumed that collisions between particles are elastic. The 
total energy of two electrons before and after a collision remains the same, that is  

 2121 EEEE ′+′=+  (13.32)  

where E1 and E2 are the electron energies before the collision and E1′ and E2′ are the energies 
after the collision. The probability of a collision of an electron with energy E1 and of an electron 
with energy E2 is proportional to the probability that there is an electron of energy E1 and a 
second electron with energy E2. If the probability of such a collision is p, then 

 )()( 2M1M EfEfBp =  (13.33)  

where B is a constant. The same consideration is valid for particles with energies E1′ and E2′. 
Thus, the probability that two electrons with energies E1′ and E2′ collide is given by 

 )()( 2M1M EfEfBp ′′=′  . (13.34)  

If the change in energy before and after the collision is ∆E, then ∆E = E1′ – E1 and ∆E = E2 – E2′. 
Furthermore, if the electron gas is in equilibrium, then p = p′ and one obtains 

 )()()()( 2M1M2M1M EEfEEfEfEf ∆−∆+=  . (13.35)  

Only the exponential function satisfies this condition, that is 
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 )(exp)(M EAEf α−=  (13.36)  

where α is a positive yet undetermined constant. The exponent is chosen negative to assure that 
the occupation probability decreases with higher energies. It will become obvious that α is a 
universal constant and applies to all carrier systems such as electron-, heavy- or light-hole 
systems. 

Next, the constant α will be determined. It will be shown that α = 1 / kT using the results of 
the ideal gas theory. The energy of an electron in an ideal gas is given by 
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The exponential energy distribution of Eq. (13.36) and the normalization condition of 
Eq. (13.15) yield the normalized velocity distribution 
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The average energy of an electron is obtained by (first) calculating the mean square velocities, 
vx

2 , vy
2 , vz

2  from the distribution and (second) using Eq. (13.37) to calculate E from the mean 
square velocities. One obtains 

 1)2/3( −α=E  . (13.39)  

We now use the result from classic gas theory which states according to Eq. (13.28) that the 
kinetic energy equals E = (3/2) kT. Comparison with Eq. (13.39) yields 

 1)( −=α kT  (13.40)  

which concludes the proof of the Maxwell distribution of Eqs. (13.30) and (13.31). 
Having determined the value of α, the explicit form of the normalized maxwellian velocity 

distribution in cartesian coordinates is 
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Due to the spherical symmetry of the maxwellian velocity distribution, it is useful to express the 
distribution in spherical coordinates. For the coordinate transformation we note that 
fM(vx, vy, vz) dvx dvy dvz = fM(v) dv, and that a volume element dvx dvy dvz is given by 4 π v2

 dv in 
spherical coordinates. The maxwellian velocity distribution in spherical coordinates is then given 
by 
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The maxwellian velocity distribution is shown in Fig. 13.2. The peak of the distribution, that is 
the most likely velocity, is vp = (2kT / m)1/2. The mean velocity is given by v  = (8kT) / (π m)1/2. 
The root-mean-square velocity can only be obtained by numerical integration. 

 

 
13.4 The Boltzmann factor 

The maxwellian velocity distribution can be changed to an energy distribution by using the 
substitution E = (1/2) m v2. Noting that the energy interval and the velocity interval are related by 
dE = m v dv and that the number of electrons in the velocity interval, fM(v) dv, is the same as the 
number of electrons in the energy interval, fMB(E) dE, then the energy distribution is given by 
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which is the Maxwell–Boltzmann distribution. 
For large energies, the exponential term in the Maxwell–Boltzmann distribution essentially 

determines the energy dependence. Therefore, the high-energy approximation of the Maxwell–
Boltzmann distribution is 

 kTEeAEf /
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which is the Boltzmann distribution. The exponential factor of the distribution, exp (– E / kT), is 
called the Boltzmann factor or Boltzmann tail. The Boltzmann distribution does not take into 
account the quantum mechanical properties of an electron gas. The applicability of the 
distribution is therefore limited to the classical regime, i. e. for E >> kT. 
 

13.5 The Fermi–Dirac distribution 
In contrast to classical Boltzmann statistics, the quantum mechanical characteristics of an 
electron gas are taken into account in Fermi–Dirac statistics. The quantum properties which are 
explicitly taken into account are 
 
• The wave character of electrons. Due to the wave character of electrons the Schrödinger 

equation has only a finite number of solutions in the energy interval E and E + dE. 
 
• The Pauli principle which states that an eigenstate can be occupied by only two electrons of 

opposite spin. 
 
Since the Pauli principle strongly restricts the number of carriers per energy level, higher states 
are populated even at zero temperature. This situation is illustrated in Fig. 13.3, where two 
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electron distributions are illustrated at zero temperature. The distribution in Fig. 13.3(a) does not 
take into account the Pauli principle while that in Fig. 13.3(b) does. 

 

The first restriction imposed by quantum mechanics is the finiteness of states within an 
energy interval E and E + dE. Recall that the finiteness of states played a role in the derivation of 
the density of states. The density of states in an isotropic semiconductor was shown to be 
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where E is the kinetic energy. Note that for the derivation of the density of states the Pauli 
principle has been taken into account. Therefore, the states given by Eq. (13.45) can be occupied 
only by one electron. Since the number of states per velocity-interval will be of interest, 
Eq. (13.45) is modified using E = (1/2) mv2 and dE = mv dv. Note that the number of states per 
energy interval dE is the same as the number of states per velocity interval dv, i. e. 
ρDOS(E) dE = ρDOS(v) dv. The number of states per velocity interval (and per unit volume) is then 
given by 
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for an isotropic semiconductor. 
The Fermi–Dirac distribution, also called the Fermi distribution, gives the probability that a 

state of energy E is occupied. Since the Pauli principle has been taken into account in the density 
of states given by Eq. (13.45), each state can be occupied by at most one electron. The Fermi 
distribution is given by 
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where EF is called the Fermi energy. At E = EF the Fermi distribution has a value of 1/2. For 
small energies the Fermi distribution approaches 1; thus low-energy states are very likely to be 
populated by electrons. For high energies the Fermi distribution decreases exponentially; states 
of high energy are less likely to the populated. Particles which follow a Fermi distribution are 
called fermions. Electrons and holes in semiconductors are such fermions. A system of particles 
which obey Fermi statistics are called a Fermi gas. Electrons and holes constitute such Fermi 
gases. 
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An approximate formula for the Fermi distribution can be obtained for high energies. One 
obtains for E >> EF 
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This distribution coincides with the Boltzmann distribution. Thus the (quantum-mechanical) 
Fermi distribution and the (classical) Boltzmann distribution coincide for high energies, i. e. in 
the classical regime. 

Next we prove the Fermi distribution of Eq. (13.47) by considering a collision between two 
electrons. For simplification we assume that one of the electrons has such a high energy that it 
belongs to the classical regime of semiconductor statistics. Quantum statistics applies to the 
other low-energy electron. During the collision of the two electrons, the energy is conserved 

 2121 EEEE ′+′=+  (13.49)  

where, as before (Eq. 13.32), E1 and E2 are electron energies before the collision and E1′ and E2′ 
are the energies after the collision. 

The probability for the transition (E1, E2) → (E1′, E2′) is given by 
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where it is assumed that E2 and E2′ are relatively large energies and the corresponding electron 
can be properly described by the Boltzmann distribution. The terms [ 1 – fF(E1′) ] and              
[ 1 – fB(E2′) ] describe the probability that the states of energies E1′ and E2′ are empty, and are 
available for the electron after the collision. Further simplification is obtained by considering 
that E2′ is large and therefore [1 – fB(E2′)] ≈ 1. Equation (13.50) then simplifies to 
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The same considerations are valid for the transition (E1′, E2′) → (E1, E2). The probability of this 
transition is given by 
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Under equilibrium conditions both transition probabilities are the same, i. e. p = p′. Equating 
Eqs. (13.51) and (13.52), inserting the Boltzmann distribution for fB(E), and dividing by fF(E1) 
fF(E1′) fB(E2 ) yields 
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which must hold for all E1 and E1′. This condition requires that 
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where A is a constant. If the value of the constant is taken to be A = exp (– EF / kT) one obtains 
the Fermi–Dirac distribution 
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which proves Eq. (13.47). 

 

The Fermi–Dirac distribution is shown for different temperatures in Fig. 13.4. At the energy 
E = EF the probability of a state being populated has always a value of ½ independent of 
temperature. At higher temperatures, states of higher energies become populated. Note that the 
Fermi–Dirac distribution is symmetric with respect to EF, that is 

 )(1)( FFFF EEfEEf ∆−−=∆+  (13.55)  

where ∆E is any energy measured with respect to the Fermi energy. 
The Fermi–Dirac velocity distribution of the particles in a Fermi gas is obtained by 

multiplication of Eq. (13.46) with Eq. (13.47) 
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where we have used the fact that the energy of the Fermi gas is purely kinetic, i. e. E = (1/2) mv2. 
Note that g(v) is the number of carriers per velocity interval v and v + dv and per unit volume. If 
the velocity v is expressed in terms of its components, then the spherical volume element, 
4π v2

 dv, is modified to a volume element in rectangular coordinates, dvx dvy dvz. Thus, using 
g(v) dv = g(vx, vy, vz) dvx dvy dvz, one obtains 
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which is the Fermi velocity distribution (per unit volume) in cartesian coordinates. 
The Fermi distribution of energies of an ideal gas is obtained by multiplication of Eq. (13.45) 

with Eq. (13.47) and is given by 
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when g(E) is the number of particles in the energy interval E and E + dE and per unit volume.  
 

13.6 The Fermi–Dirac integral of order j = + 1/2 (3D semiconductors) 
The Fermi–Dirac integral of order j = + 1/2 allows one to calculate the free carrier concentration 
in a three-dimensional (3D) semiconductor. The free carrier concentration in one band, e. g. the 
conduction band, of a semiconductor is obtained from the product of density of states and the 
state occupation probability, i. e. 

 EEfEn
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C
ρ= ∫  . (13.60)  

Integration over all conduction band states is required to obtain the total concentration. The 
upper limit of integration is the top of the conduction band and can be extended to infinity. This 
extension of EC

top → ∞ can be done without losing accuracy, since fF(E) converges strongly at 
high energies. The two functions, ρDOS(E), fF(E), and their product are schematically shown in 
Fig. 13.5 for a semiconductor with three, two, and one, spatial degrees of freedom. The 
concentration per unit energy n(E) is the product of state density and distribution function. 

 

Equation (13.60) is evaluated by inserting the explicit expressions for the state density and 
the Fermi–Dirac distribution (Eq. 13.47). One obtains 
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where η = E / kT and ηF = – (EC – EF) / kT is the reduced Fermi energy. ηF is positive when EF is 
inside the conduction band. The equation can be written in a more convenient way by using the 
Fermi –Dirac integral of order j, which is defined by (Sommerfeld, 1928; Sommerfeld and 
Frank, 1931)  
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where Γ( j +1 ) is the Gamma-function.  
 

Sommerfeld’s original definition of the Fermi–Dirac integral omitted the term of the Gamma –
 function, i. e. Fj

s(ηF) = ∫
∞
0 ηj / [1 + exp (η – ηF)] dη. The modern definition of the Fermi–Dirac 

integral of Eq. (13.62) has the following advantages: (i) Unlike Fj
s, the functions Fj exist for 

negative orders of j, e. g. j = – (1/2), –1, – 3/2 etc. (ii) In the non-degenerate limit in which 
ηF << 0, all members of the Fj(ηF) family reduce to Fj(ηF) → exp ηF for all j. (iii) The derivative 
of the Fermi–Dirac integral of integer order j can be expressed as a Fermi–Dirac integral of order 
(j – 1), i. e. (∂ / ∂ηF) Fj(ηF) = Fj - 1(ηF). 

 
With j = (1/2) and Γ(3/2) = π1/2

 / 2 one obtains 

 )( F2/1c η= FNn  (13.63)  

where Nc is the effective state density at the bottom of the conduction band. The Fermi–Dirac 
integral F1/2 is shown in Fig. 13.6 along with several approximations which will be discussed 
later. 

For j = (1/2) the Fermi–Dirac integral is 

 η
η−η+

η
Γ

=η ∫
∞

d
)(exp1)2/3(

1)(
F

2/1

02/1 FF  . (13.64)  

The evaluation of the integral cannot be done analytically. Even though the numerical 
calculation of the Fermi–Dirac integral is straightforward, it proves frequently convenient to use 
approximate analytic solutions of F1/2(ηF). 

For analytic approximations of the Fermi–Dirac integral n / Nc = F1/2(ηF), the inverse function 
is frequently used, that is the reduced Fermi energy ηF is expressed as a function of n / Nc. A 
number of analytic approximations developed prior to 1982 have been reviewed by Blakemore 
(Blakemore, 1982). To classify various approximations, we differentiate between non-
degeneracy and degeneracy. In the non-degenerate regime, the Fermi energy is below the bottom 
of the conduction band, EF << EC. In the degenerate regime the Fermi energy is at or above the 
bottom of the conduction band. 
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• Extreme non-degeneracy (3D) 

In the case of extreme non-degeneracy (i. e. EC – EF >> kT or F1/2 << 1 or n << Nc) the 
Fermi–Dirac distribution approaches the Boltzmann distribution. One obtains 

 
c

FC
F ln

N
n

kT
EE

≈
−

−=η  (13.65)  

which is shown in Fig. 13.7. This approximation is good when the Fermi energy is 2 kT or 
more below the bottom of the conduction band. Rearrangement of the equation yields the 
carrier concentration as a function of the Fermi energy in the non-degenerate limit 

 ⎟
⎠
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c exp  (13.66) 
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• Extreme degeneracy (3D) 
In the case of extreme degeneracy (i. e. (EF – EC) >> kT or F1/2 >> 1 or n >> Nc) the Fermi–
Dirac integral reduces to 
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 (13.67)  

which is shown in Fig. 13.7. The range of validity for this approximation is EF – EC > 10 kT, 
i. e. when the Fermi energy is well within the conduction band. Rearrangement of the 
equation and using the effective density of states (Nc) yields the carrier concentration as a 
function of the Fermi energy in the degenerate limit 

 
( )

2/3

2
CF

*

2
2

3
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

π
=

h

EEmn  (13.68)  

• The Ehrenberg Approximation (3D) 
This approximation (Ehrenberg, 1950) was developed for weak degeneracy and is shown in 
Fig. 13.6. The approximation is given by 
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For small n the second logarithm term approaches zero, that is the Boltzmann distribution is 
recovered. The range of validity of the approximation is limited to EF – EC ≤ 2 kT, i. e.  to 
weak degeneracy. 
 

• The Joyce – Dixon approximation (3D) 
An approximation valid for a wider range of degeneracy was developed by Joyce and Dixon 
(Joyce and Dixon, 1977; Joyce, 1978). This approximation expresses the reduced Fermi 
energy as a sum of the Boltzmann term and a polynomial, i. e. 
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where the first four coefficients Am are given by 

 A1   =   2 / 4   = 3.53553 × 10–1, 

 A2   =   – 4.95009 × 10–3, (13.71) 

 A3   =   1.48386 × 10– 4, 

 A4   =   – 4.42563 × 10–6. 

The Joyce – Dixon approximation given here is shown in Fig. 13.6 and can be used for 
degeneracies of EF – EC ≈ 8 kT. Inclusion of higher terms in the power series (m > 4) allows 
one to extend the Joyce – Dixon approximation to higher degrees of degeneracy.  

 
• The Chang–Izabelle Approximation (3D) 

The Chang–Izabelle approximation (Chang and Izabelle, 1989) is a full-range approximation 
which is valid for non-degenerate as well as degenerate semiconductors. The approximation 
is motivated by the fact that low-density and high-density approximations are available (see 
Eqs. 13.66 and 13.68) which are the exact solutions in the two extremes. The Chang–Izabelle 
approximation represents the construction of a function, which approaches the low-density 
solution and the high-density solution of the Fermi–Dirac integral as shown in Fig. 13.7. The 
reduced Fermi energy is then given by 
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where 

 2/1c/ FNn =  , (13.73)  
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One can easily verify that Eq. (13.72) recovers the low-density approximation and the high-
density approximation for n << Nc and n >> Nc, respectively. Furthermore, the approximation 
yields an exact solution for ηF = 0, i. e. when the Fermi energy touches the bottom of the 
conduction band. The largest relative error of ηF is 1 % in the Chang–Izabelle 
approximation. Chang and Izabelle (1989) showed that the relative error can be further 
reduced by a weighting function and a polynomial function. Using these functions, the 
maximum relative error is reduced to 0.033%.  
 

• The Nilsson approximation (3D) 
The Nilsson approximation (Nilsson, 1973) is valid for the entire range of Fermi energies. It 
is given by 
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The maximum relative error of the approximation is 1.1%. 
 

13.7 The Fermi–Dirac integral of order j = 0 (2D semiconductors) 
The Fermi–Dirac integral of order j = 0 allows one to calculate the free carrier density in a two-
dimensional (2D) semiconductor. For semiconductor structures with only two degrees of spatial 
freedom, the Fermi–Dirac integral is obtained from Eq. (13.60) by insertion of the two-
dimensional density of states. One obtains for the 2D carrier density 
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where η = E / kT and ηF = (EF – EC) / kT are reduced energies. The integral can be written as the 
Fermi–Dirac integral of zero (j = 0) order 
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where Γ(1) = 1 is the Gamma-function. The two-dimensional carrier density can be written by 
using the effective density of states of a 2D system (Nc

2D). One obtains 

 n2D = Nc
2D F0(ηF ) (13.80)  
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which is formally similar to the corresponding equation in three dimensions (Eq. 13.63). The 
Fermi–Dirac integral of zero order (j = 0) can be solved analytically. Using the integral formula 
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x  , (13.81)  

one obtains 

 )e1(ln)( FF0
η+=ηF  . (13.82)  

Thus, the two-dimensional carrier density depends on the reduced Fermi energy according to 
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Rearrangement of the equation yields the Fermi energy as a function of the carrier density 
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• Extreme non-degeneracy (2D) 
Approximation for the low-density regime (n2D << Nc

2D) and the high-density regime 
(n2D >> Nc

2D) can be easily obtained from Eqs. (13.83) and (13.84). In the low-density 
regime one obtains 

 2D
c

2D
FC

F ln
N
n

kT
EE

=
−

−=η  (13.85)  

which is valid if the Fermi energy is much below the bottom of the conduction subband. 
Rearrangement of the equation yields the two-dimensional carrier density as a function of the 
Fermi energy in the non-degenerate limit 
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• Extreme degeneracy (2D) 
In the high-density regime one obtains 
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Rearrangement of the equation and insertion of the explicit expression for Nc
2D yields 
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that is the Fermi energy and the two-dimensional density follow a linear relation for two-
dimensional structures. 

 
13.8 The Fermi–Dirac integral of order j = – 1/2 (1D semiconductors) 

The Fermi–Dirac integral of order j = – 1/2 allows one to calculate the free carrier density (per 
unit length) in a one-dimensional (1D) semiconductor. In semiconductor structures with only one 
degree of spatial freedom, the Fermi–Dirac integral is obtained from Eq. (13.60) by insertion of 
the 1D density of states. One obtains 

 ∫∫
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where η = E / kT and ηF = – (EC – EF) / kT are reduced energies. The integral can be written as the 
Fermi–Dirac integral of order j = – 1/2 
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where Γ(1/2) = π1/2 is the Gamma-function. Using the effective density of states of a one-
dimensional system (Nc

1D), the one-dimensional density can be written as 

 )( F2/1
D1

c
D1 η= −FNn  (13.91)  

which is similar to the corresponding equations in three (Eq. 13.63) and two (Eq. 13.80) 
dimensions. The Fermi–Dirac integral of order j = – 1/2 can only be obtained by numerical 
integration or by approximate solutions which will be discussed in the following sections. The 
j = – 1/2 Fermi–Dirac integral has asymptotic solutions for the regimes of non-degeneracy and 
high degeneracy. 
 
• Extreme non-degeneracy (1D) 

In the regime of extreme non-degeneracy (n1D << Nc
1D) the Fermi–Dirac integral of order 

j = – 1/2 approaches the Boltzmann distribution. One obtains 
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This approximation is good for EF – EC ≤ 2 kT, i. e. when the Fermi energy is at least 2 kT 
below the bottom of the conduction subband. Rearrangement of the equation yields the one-
dimensional carrier density as a function of the Fermi energy in the non-degenerate limit 
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• Extreme degeneracy (1D) 
In the case of extreme degeneracy (n1D >> Nc

1D) the Fermi–Dirac integral of order j = – 1/2 
reduces to 
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The range of validity of the approximation is EF – EC > 10 kT, i. e. when the Fermi energy is 
well within the conduction band.  

 


