Syllabus (1/28/2020): Phys 1005 – fall 2020

Instructor:	Prof. Kai Shum	Phone:	718-951-5000 Ext. 1227	
Lec. Room:	3143N (sec. TEAB)	Time:	Tu/Th (11:00-11:50 am)	
Reference Books:	 <i>Physics Matters</i> by J. Trefil & R. Hazen, 2007 J. Wiley & Sons Chapters by OpenStax College (Rice University) http://userhome.brooklyn.cuny.edu/kshum 	Office Hours: :	1:30 – 2:30 pm on Wed.	
Department:	Physics	Office: :	2156f-N	
Lab. Assignment:	http://depthome.brooklyn.cuny.edu/physics/phylabs_new.html	Instructor's e-mail:	kshum@brooklyn.cuny.edu	

Planned work:

Week of	Topics	Exp. #	Exp. Description	Problems & Exercises
1/28,30	Kinematics of 1D/2D motion (point-mass concept, coordinates, distance, displacement, speed/velocity, &inertial frames)	1	Intro: theory/verification $(L = pi*D)$	Assigned in class
2/4,6	Newton's 1 st law, two-object problems, acceleration, and de- accretion	2	Average speed: $v = \Delta x / \Delta t$	Assigned in class
2/11,13	Vertical motions with gravitational acceleration $a = \pm g$ (g = 9.8 m/s^2)	3	$v^2 \sim \Delta x$	Assigned in class
2/18,20	2D projectile motions	4	$Range = v_{0x} \times \Delta t$	Assigned in class
2/25,26	Dynamics of motion: Newton's 2^{nd} ($\mathbf{F}_{net} = \mathbf{m}\mathbf{a}$), 3^{rd} law (action/reaction forces), and system/sub-systems	5	Newton's 2nd law	Assigned in class
3/3,5	Energetics of motion: work done by a force, kinetic energy, gravitational potential energy, energy conservation; Review	6	Kinetic and potential energy	
3/10,12	Exam#1 (3/10), Solutions of Exam#1	7	Simple pendulum	Assigned in class
3/17,19	Gravitational force/normal force/friction force/tension, Action/reaction force, concepts of systems/sub-systems	8	Heat & temperature (Q = m c ΔT ; Q = R _h Δt)	Assigned in class
3/24,25	Thermodynamics (1 st law, heat, heat-capacity, temperature)	9	Latent-heat of evaporation $(Q = L_v \Delta m)$	Assigned in class
3/31-4/2	Thermodynamics (2 nd law, latent-heat of evaporation/fusion), Ray-optics (mirrors)	10	Imaging by a flat mirror ($\Theta = \Theta$ ')	Assigned in class
4/8-4/16	Spring recess			
4/21,23	Exam#2 (4/21) Solutions of exam#2, Ray-optics,	11	Index of refraction	Assigned in class
4/28,30	Electric current/power, ohm's law	12	Ohm's law (V = IR); P=IV	Assigned in class
5/5,7	Light-bulbs/Resistors in series and in parallel, nuclear physics	13	Radioactivity	Assigned in class
5/12,14	Ray-optics (spherical mirror imaging)	14	Lab exam (or spherical mirror imaging)	Assigned in class
5/15-	Reading day (no lectures)/final-exam			
	Grades: lecture-exams (2) 40%, lab. 28%, and final 32%			

4/7 (Tu.) follows Wed. schedule