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Electron-tunneling dynamics through a double-barrier structure in the presence of phonons
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Electron-tunneling dynamics through a semiconductor double-barrier structure in the presence of
plane-wave phonons is investigated by directly solving the time-dependent Schrodinger equation. The
temporal profile of tunneling current density due to an electron wave packet incident at the resonant en-

ergy channel E„ is calculated at different lattice temperatures. The magnitude of the tunneling current
density is shown to decrease in the presence of the electron-phonon interaction, which is attributed to an
increase in the reflected current. The calculated tunneling peak current density is shown to decrease
with temperature and is compared with available experimental data.

Since the seminal work of Tsu and Esaki, ' electron
tunneling in semiconductor nanostructures has been of
interest for various electronic applications. The double-
barrier resonant tunneling device has received special at-
tention because of its electronic-transport properties in
high-speed electronics. One of the important issues in
the study of electron tunneling in nanostructures is the
inelastic scattering through the electron-phonon
interaction. Experimentally, Goldman, Tsui, and Cun-
ningham provided evidence that the longitudinal-optical
(LO) phonon assists in tunneling in the valley current re-
gion of a double-barrier structure. The effect of
electron-phonon interaction on tunneling has been
theoretically treated in the steady state by several investi-
gators. Gelfand, Schmitt-Rink, and Levi obtained
the electron tunneling through a thin potential barrier
with local Einstein phonons by means of a continued
fraction expansion and demonstrated the feedback mech-
anism by which inelastic scattering alters the probability
of elastic scattering. Wingreen, Jacobson, and Wilkins
converted the problem to that of scattering of electrons in
a single resonant state with phonons and confirmed the
experimental results provided by Goldman, Tsui, and
Cunningham. Recently a simple independent boson
model approach was proposed by Cai et al. to calculate
the one-dimensional (1D) electron tunneling probability
with electron-phonon interaction. They showed how the
boundary conditions uniquely determine the transmitted
and reAected plane waves. The dynamics of electron tun-
neling through double-barrier structures without pho-
nons has also been treated by several investigators. Col-
lins, Lowe, and Barker showed that the temporal
behavior of resonant tunneling is characterized by a time
constant of ~=2h/I, where I is the resonant energy
width. Guo et al. estimated the charge buildup time by
calculating the probability of finding the electron inside
the quantum well of a double-barrier structure. The tun-
neling dynamics in the presence of phonons has not been
properly treated. Some researchers ' tried to carry out

an analogy to electron tunneling with phonons by consid-
ering a time-modulated barrier height, where transmitted
current was found to have energy sidebands (analogous to
absorption or emission of phonon quanta). This analogy
is not complete because phonon population and different
phonon modes cannot be accounted for.

In this paper, a method was developed to investigate
the temporal dynamics of electron tunneling by directly
solving the time-dependent Schrodinger equation. This
method allows us to calculate several important time con-
stants such as transit time and charge buildup time in the
presence of different phonon modes in a semiconductor
nanostructure. The method was demonstrated by study-
ing electron-tunneling dynamics though a
GaAs/Al Ga, As based double-barrier structure in the
presence of plane-wave phonons. The temporal profiles
of the tunneling current density are calculated at different
temperatures. The magnitude of the current density is
shown to decrease when the effect of the electron-phonon
coupling on resonant tunneling is taken into account due
to inelastic-scattering-induced reAection increase. The
temperature dependence of the tunneling peak current
density is compared with available experimental data.

The Hamiltonian of the electron and phonon system is
given by

H=H, +H +H,

Here H, is the Hamiltonian for a pure electronic system
and can be expressed as

H, = — + Vo(z),
1 0

2 Bz m *(x) Bz

where Vo(z) is the potential profile of the selected
double-barrier structure. In this work the structure con-

0
sists of a 45-A GaAs quantum well sandwiched by two
28-A Alo 3Gao 7As barriers.

The m*(z) is the position-dependent electron effective
mass with 0.067m 0 (0.092m 0) taken for GaAs
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(Alo 3Gao 7As), where mo is the free-electron mass. H is
the Hamiltonian for a pure phonon system. In this model
the phonon system is considered to be in a dynamic equi-
librium state with a characteristic temperature T. Fur-
thermore, the effect of electron-phonon interaction on the
phonon system is assumed to be weak enough. There-
fore, H is neglected in our model. H, h is the Hamil-
tonian for the electron-phonon interaction and can be ex-
pressed as

~1450A ~
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H, „= QM(q)e 'q +~"a +H. c. (3)
q

where a and a are the phonon annihilation and
creation operators, respectively, M(q) is the phonon
wave-number q-dependent electron-phonon scattering
matrix, and R(r, z) is the electron position. In the follow-
ing we use a model that replaces e' by 1 in the H, ph

since electrons couple more strongly with long-
wavelength phonons (q=O).

Using the above described model, the 1D time-
dependent Schrodinger equation for a tunneling electron
in a double-barrier structure is simplified and given by

FIG. 1. Tunneling current components in a double-barrier
structure with electron-phonon interaction. The double-barrier

0 0

structure consists of a 45-A quantum well and two 28-A barriers
with a potential height of 0.28 eV.

double-barrier structure can be expressed as
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(4)

where P is the product of the electron and phonon wave
functions. V and V are defined as V =KM(q)a~,
V"=XM*(q)a~.

It is dificult to find the wave function directly from
Eq. (4) since V and V contain the phonon wave-vector-
dependent electron-phonon scattering matrix and number
operators of aq and a . However, when we limit the
electron-phonon interaction process such that (i) only
electrons at the incident energy E can virtually emit (ab-
sorb) and then absorb (emit) phonons without net genera-
tion or absorption of phonons, and (ii) electrons can only
be scattered to the E+Aco states by real emission and ab-
sorption processes, then the wave function of the
electron-phonon system at the incident energy E in the

where ~n ) is the phonon wave function describing a sin
gle phonon state. The g( )(z, t), P"'(z, t), and g( '(z, t) are
the electronic wave-function components associated with
the single eigenphonon states ~in ), In —1), and ~(n+ I),
respectively.

The tunneling process of an electron wave packet with
the electron-phonon interaction when the incident energy
E is equal to the resonant energy E„ is illustrated using
arrows in Fig. 1.

Substituting the wave function given in Eq. (5) into Eq.
(4) and multiplying from the left by the phonon state (n I

and then averaging over the phonan assembly, the first
component associated with g( '(z, t) in Eq. (6) is obtained.
Similarly, multiplying by the phonon states ( n —1 ~,

(n + 1~ will result in the second and the third component
associated with g")(z, t) and f( '(z, t) in Eq. (6), respec-
tively:
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(6)

where g=g(2n +1) and g is the electron-phonon coupling constant. In Eq. (6), the average values of VVt and V"V
over the phonon assembly were used and are given by

( VV ) =+~M(q) (n +1), ( V V) =+~M(q)~ n, and g =g[ M(q)~/hco]

where n = [exp(fico/kt) T)+ 1] ' is the phonon population.
The numerical solution of the time-dependent Schrodinger equation [Eq. (6)] is obtained by first converting it into

the following difference equation
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and y. = i+ V0 + +
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5 (E) and l (j) are the time (space) interval and index, re-
spectively.

The above three equations for the three components of
the electron wave function are coupled with each other
through phonon emission and absorption. Each equation
represents a complex tridiagonal matrix system. The ma-
trix system is converted into lower and upper diagonal
matrices (LU factorization). The forward and backward
substitutions along with Gaussian elimination are then
used to solve these equations. "

In our numerical calculation a spatial mesh size of 0.5
A, a time mesh size of 1 fs, ' and a phonon energy of 36.2
meV (GaAs LO-phonon energy) were used. Zero bound-
ary conditions were applied at the two end points 1 pm
away from the double-barrier structure. '

For our calculation an initial Gaussian wave packet
with a central kinetic energy of 90 meV (equal to the res-
onant energy E„) and an energy spread of 0.13 meV is

0
placed at the position 1450 A away from the double-
barrier structure in the left lead. The tunneling process is
initiated at time t =0. This wave packet can simulate a
photoexcitation by an ultrafast laser pulse. The develop-
ment of the electron wave function Itl(z, t) in time is fol-
lowed as the wave packet moves into and out of the struc-
ture.

The 1D current density (J) is calculated at the observa-
tion point z0, 20 A to the right of the second barrier as
indicated in Fig. 1. Substituting the wave function given
in Eq. (5) into the quantum-mechanical current-density
expression and averaging over the phonon assembly„ the
total electron current density observed at point z0 is given
by

The calculated 1D resonant current-density temporal
profiles are shown in Fig. 2 by the solid curve for no pho-
non coupling, g =0.0, the dotted curve for g =0. 1 and
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FIG. 2. Temporal behavior of the 1D resonant tunneling
current density for the different conditions: (i) the solid curves
for coupling constant g =0.0, (ii) the dotted curves for g =0. 1

and T =300 K, and (iii) the dashed curves for g =0. 1 and T =0
K.

J= [1—[g(nq+1)+gn ]J J0+gn JI+g(n +1)J2, (8)

where

(k) (k)*
k=0, 1,2.
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T=300 K, and the dashed curve for g =0. 1 and T=O
K.

Let us discuss these curves, starting with the discussion
of the solid curve in Fig. 2 which represents the elastic
(coherent) resonant tunneling current density at channel
E„.The current reaches a maximum value at 300 fs after
the excitation of the electron wave packet at the left lead
of the selected structure. This resonant tunneling time is
determined by four factors: (i) how far the packet is
placed away from the left barrier in the left lead, (ii) the
structure dimensions, (iii) how far the observation point
is from the right barrier, and (iv) what the central kinetic
energy of the packet is. The value of 300 fs implies an
average electron traveling speed of 6X 10 cm/sec which
is consistent with the speed calculated using the central
kinetic energy of 90 meV indicating coherent tunneling
nature. The current density decreases once the wave
packet passes the observation point zo and decays ex-
ponentially with a time constant of 320 fs. The dashed
curve in Fig. 2 rejects the net loss of tunneling current
observed at zo due to inelastic scattering at zero tempera-
ture. The maximum value of the current density de-
creases further at 300 K as shown by the dotted curve in
Fig. 2 because both real phonon emission and absorption
are allowed. It should be noted that the effect on transit
time through the double-barrier structure in the presence
of phonons is negligible.

In Fig. 3, the calculated temperature dependence of the
peak current-density ratio [J(T)/J(10 K)I is shown by
the solid curve. As can be seen, the peak current density
remains almost constant over the temperature range of
0—100 K. However, as the temperature is increased fur-
ther, the scattering processes increase and the tunneling
peak current density starts to decrease. For comparison,
the measured data by Bar-Joseph et al. ' are shown by
the stars in Fig. 3. The thermionic contribution for the
current density predicted by a theory' is subtracted from
the data point at 300 K. The thermionic contribution for
other data points is negligible. It is clear that both calcu-
lated and measured peak current density decrease as tem-
perature increases. The difference in the magnitude of
measured and calculated data may be due to the fact that
our model considers only plane-wave phonons, while in
reality the confined, interface, and acoustic phonons
should be taken into account.

It should be pointed out that the use of the value
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g =0. 1 is just for demonstrational purposes. The magni-
tude of phonon-assisted tunneling is smaller for a smaller
value of g. The used value for g in our calculations may
be slightly overestimated for GaAs/Al Ga, As struc-
tures but it may be appropriate for II-VI compound
based structures. Finally it should be emphasized that
our approach can be used to study the phonon-assisted
tunneling dynamics associated with various phon on
modes since the realistic electron-phonon scattering ma-
trix as a function of space can be taken care of.

In conclusion, we have demonstrated an approach for
studying the dynamics of electron tunneling in the pres-
ence of plane-wave phonons in a double-barrier structure.
The temporal profiles of a tunneling electron wave packet
at different lattice temperatures were presented. It was
shown that tunneling current decreases in the presence of
electron-phonon interaction. The calculated temperature
dependence of the peak current density agrees qualita-
tively with available experimental data.
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under Grant No. DAAL-89-9-0110. The authors would
like to thank Dr. W. Cai for valuable discussions.
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FIG. 3. The temperature dependence of the tunneling
current-density peak ratio J( T)/J(10 K). The solid curve is cal-
culated by the model described in the text. The stars indicate
the experimental data.
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